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A B S T R A C T   

Deep decarbonization of electricity systems raises concerns about the need for generating capacity that can 
maintain reliable energy supply. Given this concern, we explore the ability of concentrating-solar-power plants 
with thermal energy storage to provide a carbon-free source of such capacity. We develop an approach to 
assessing the capacity contribution of concentrating-solar-power plants that considers future systems. Such 
considerations are important, because of potential differences in net-load patterns compared to today (e.g., due to 
higher renewable-energy penetrations). Using historical data spanning an 18-year period, we demonstrate that 
concentrating-solar-power plants with thermal energy storage can provide this necessary capacity with little 
impact on their financial viability. We examine the impact of myopic decisions and imperfect foresight of future 
system conditions on the operation of concentrating-solar-power plants and the resultant impact on their ca-
pacity contributions. We find that imperfect foresight can have limited impacts on such a use of concentrating- 
solar-power plants, so long as proper forecasting techniques are developed and used. Overall, our work shows 
that concentrating-solar-power plants with thermal energy storage may have a role to play in delivering reliable 
electricity supply in a decarbonized energy system.   

1. Introduction 

Due to learning and other effects, concentrating-solar-power (CSP) 
plants are seeing technology improvements [1]. CSP plants can incor-
porate high-efficiency thermal energy storage (TES), which allows the 
plants to become partially dispatchable sources of carbon-free electricity 
[2]. Denholm et al. [3] provide a comprehensive discussion of the role of 
energy storage in power systems with high penetrations of renewable 
energy. Sioshansi et al. [4] survey some of the unique challenges in 
modeling energy storage, including energy storage that is coupled with 
renewable-energy sources. A CSP plant with TES has the potential to 
have a high capacity value, meaning that it can contribute to the power 
system serving load reliably [5]. This potential is of value as carbon 
constraints limit the ability of power systems to rely on fossil-fueled 
generation [6]. Madaeni et al. [7] examine the capacity value of CSP 
plants without TES. Madaeni et al. [8] expand this analysis to show the 
added capacity-value benefits of incorporating TES into CSP plants. 
There are additional benefits to incorporating TES into CSP, beyond 

capacity value [9]. These analyses [5,7–9] are based, however, on 
examining supply and demand patterns of current power systems. 
Indeed, the high capacity values of CSP plants with TES are driven by the 
current co-incident peaks in electricity demand and solar availability (e. 
g., during hot summer afternoons) in many power systems. 

Thus, most extant studies of the capacity value of CSP plants neglect 
the impact that increasing penetrations of variable renewable-energy 
resources may have on future net-load patterns. The proliferation of 
renewable energy can result in net-load patterns that look significantly 
different than today’s demands, which may yield significant mismatches 
between peaks in net load and solar availability. These load changes 
may require ‘smarter’ power systems that can deliver capacity reliably 
during periods that are of less concern today. Yagi et al. [10] conduct a 
more forward-looking analysis of the capacity value of CSP plants with 
TES. Using 18 years of historical data for a variety of locations in the 
southwestern United States of America (US), they demonstrate that a 
properly sized CSP plant with TES can maintain reliable energy supply 
during the eight highest-load hours of almost all of the days of the year 
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[10]. Thus, Yagi et al. [10] show that CSP plants with TES can play a 
major role ensuring reliable energy supply in decarbonized electricity 
systems. 

An important limitation of much of the extant literature regarding 
the capacity value of CSP plants [5,7–10] is that they assume that the 
CSP plants are operated solely to serve capacity needs. Thus, for the most 
part they neglect the desire of a CSP-plant owner to maximize the value 
of energy that the plant produces. Maximizing CSP-plant profit is 
important to ensure that the plant is a cost-effective and economic source 
of reliable energy supply. Another limitation of the existing literature is 
that much of it neglects the impact of uncertainty on operating CSP 
plants. Uncertainty can impact the reliability benefits of a CSP plant, 
because energy that is stored in TES may be depleted before it is needed 
to meet an unanticipated load peak. 

This paper provides a more comprehensive analysis of the reliability 
benefits of CSP plants with TES and addresses these key limitations of 
the existing literature. Specifically, we examine the operation of a CSP 
plant with TES from the perspective of a profit-motivated plant owner. 
The plant is assumed to be operated to maximize the profit that is earned 
from its selling energy, while meeting system-reliability targets. Spe-
cifically, we set a target that the CSP plant have sufficient energy 
available to operate at its rated capacity during the eight highest-load 
hours of a set number of days of the year. The target does not require 
that the plant be operating at its nameplate capacity during the highest- 
load hours—only that it has sufficient energy available to operate at its 
nameplate capacity if system conditions warrant its doing so. We apply 
the target to the days with the highest peak loads (e.g., if the target is 
applied to thirty days, the thirty days with the highest peak loads are 
chosen). We set the reliability target in this manner to determine 
whether the operational flexibility that TES engenders allows a CSP 
plant to serve power-system-reliability needs in the future when net-load 
patterns may have non-trivial differences compared to today. If a CSP 
plant can provide energy during the eight highest-load hours of a day, 
one may infer that it has sufficient operational flexibility to serve peaks 
under future load patterns. 

We conduct our analysis under three sets of operational assumptions. 
First, we assume that the CSP-plant operator has perfect foresight of 
system conditions (i.e., hours to which the reliability target applies, 
prices, and weather) and optimizes CSP-plant operations over the full 
year. Thus, this set of assumptions yields an ideal benchmark, wherein 
neither forecast errors nor myopic decisions reduce the profit or reli-
ability contribution of the CSP plant. We show that under these ideal 
assumptions, CSP plants can, on average, cover at least 98.4% of peak- 
load requirements during the full year. 

Our second set of assumptions introduces myopic decision making 
but retains perfect foresight. CSP-plant operations are assumed in this 
case to be optimized one hour at a time in a rolling-horizon fashion, 
using a 24-h optimization horizon. Using a 24-h optimization horizon is 
a heuristic approach to obtaining decisions that are somewhat forward- 
looking [11]. Specifically, the 24-h optimization horizon allows the use 
of TES to shift energy within a one-day period, but does not allow 
explicit shifting of energy beyond one day [12]. Real plant operators 
may not use TES to shift energy multiple days into the future. This set of 
assumptions allows us to understand the impact of myopic decisions 
with limited foresight and yields decisions that are closer to real-world 
operation compared to the ideal benchmark. We show that myopic de-
cisions can reduce the ability of the CSP plant to cover the peak-load 
requirement by two or three percentage points relative to the ideal 
benchmark. We show also that operating a CSP plant to meet the peak- 
load requirement reduces its profit by at most 1.2% compared to a case 
of operating the plant solely to maximize profit. These findings imply 
that the operational flexibility of CSP plants makes them a cost-effective 
source of supply reliability to decarbonized power systems. 

Our final set of assumptions relaxes perfect foresight and optimizes 
plant operations myopically using persistence or moving-average fore-
casts. We use relatively simple forecasting techniques. Thus, this set of 

assumptions yields a bounding worst case of how uncertainty can impact 
CSP plants serving as capacity resources. Actual CSP-plant operators 
may have access to higher-fidelity forecasting techniques, which could 
improve upon our results. We demonstrate that using these simple 
forecasting approaches reduce the reliability benefits and operating 
profits of CSP plants by less than 11% and 16%, respectively, relative to 
having perfect foresight. Overall, our results show that even with un-
certainty CSP plants can serve as economic sources of power-system 
reliability. However, improved forecasting will be critical for such use 
of CSP plants, which is an important area of research for improving the 
competitiveness of this technology. 

Our work makes four key contributions to the existing literature. 
First, we examine the capacity value of a profit-motivated CSP-plant 
operator. This can be contrasted with other works [5,7–10] that assume 
that CSP plants are operated by a central planner solely based on their 
capacity contributions. Second, we conduct a detailed examination of 
how myopic decisions impact the capacity value of a CSP plant. Third, 
we show that the operational flexibility that is engendered by TES allows 
a CSP plant to have a high capacity value without undue impact on its 
profitability. Fourth, we examine what uncertain data have the greatest 
impact on the use of a CSP plant as a capacity resource. 

The remainder of this paper is organized as follows. Section 2 dis-
cusses our assumptions regarding the CSP technology that is modeled, 
including the key sizing parameters of solar multiple (SM) and TES ca-
pacity. Section 3 describes our methodology. Sections 4 and 5 summa-
rize, respectively, the data underlying and implementation of our case 
study. Section 6 summarizes case-study results. Section 7 concludes. 

2. CSP assumptions 

We focus our analysis on tower-type CSP plants. Other CSP-plant 
types, such as parabolic-trough systems [13], are excluded from our 
analysis. Baharoon et al. [14] provide a history of the development of 
CSP technology. Mehos et al. [15] discuss technology, performance, and 
dispatchability advances of the technology. Tower-type CSP plants 
consist of an array, which typically is referred to as a solar field, of he-
liostats. The heliostats reflect the direct normal (beam) component of 
solar irradiance towards a central receiver. The concentrated solar en-
ergy heats a working fluid, i.e., a molten salt. The working fluid goes to 
the TES system, which consists of an insulated tank, and can be directed 
towards the powerblock, which consists of a salt-to-water heat 
exchanger and a conventional steam-turbine generator. 

The size of the powerblock in a CSP plant is expressed typically by its 
rated capacity. Powerblock capacity can be given as the maximum 
thermal power that can be input (measured in MW-t) or maximum 
electric output (measured in MW-e). The size of a solar field is measured 
often by its SM. A solar field with an SM of 1.0 is sized to produce enough 
energy to drive the powerblock at its rated output under design weather 
conditions. Because these design conditions occur rarely, an SM greater 
than 1.0 is typical in modern CSP plants. The energy-storage capacity of 
a TES system is measured typically by the number of consecutive hours 
that the plant can operate at full output using only energy from a fully 
charged TES system. We focus on two solar-field and TES config-
urations—plants with an SM of 2.0 and six hours of TES and plants with 
an SM of 3.0 and 12 h of TES. Based on recent CSP-deployment trends, 
we assume a powerblock with a rated gross output capacity of 222 MW- 
e, which corresponds to a rated input capacity of 538 MW-t. The net 
output of a CSP plant is reduced due to parasitic loads from operating the 
motors on the heliostats, pumps that circulate the working fluid through 
the TES and powerblock, and condensers. Six hours of TES corresponds 
to about 3.23 GWh-t for this plant configuration (i.e., with a 222-MW-e 
powerblock). Prolonged periods with high solar availability can result in 
total energy that is collected by the solar field exceeding the energy- 
storage capacity of TES, in which case excess thermal energy must be 
curtailed. 
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3. Methdology 

Our analysis consists of a two-step simulation [16]. First, we employ 
a physical model to determine how much thermal energy the CSP plant’s 
solar field captures during each hour of each year that we analyze. 
Second, we use an optimization model to determine how the CSP plant is 
operated during each hour to maximize its profit while aiming to meet 
its reliability target. 

3.1. Solar-Field Model 

We simulate the solar field using version 2017.1.17.r1 of System 
Advisor Model (SAM) [17]. SAM takes as an input hourly weather data 
and determines the amount of thermal energy that is collected by the 
receiver in the simulated CSP plant’s tower. 

3.2. Optimization-model overview 

We use a two-stage stochastic optimization model, which is adapted 
from the work of Sioshansi and Denholm [18], to determine the hourly 
operation of the CSP plant and its TES. Depending on operating con-
straints, thermal energy that is collected by the CSP plant’s receiver can 
be fed immediately into the plant’s powerblock to produce electricity or 
can be stored in the TES. Stored energy in the TES can be used to sup-
plement thermal energy from the receiver to drive the powerblock. 

3.3. Optimization-model notation 

We define the following sets, indices, parameters, and functions that 
are used in formulating the optimization model.  

C  variable generation cost of CSP plant [$/MWh-e] 
ESF

ω,t  thermal energy that is collected under scenario ω during hour t by the 
receiver [MWh-t]  

ESU  energy that is consumed to start-up the powerblock [MWh-t] 
Fω,t(⋅, ⋅) hour-t powerblock heat-rate function under scenario ω [MWh-e]  
HRD

ω,t  number of consecutive hours that reliability target requires CSP plant 
to operate starting from hour t under scenario ω [h]  

K  penalty for not meeting reliability target [$/MWh-t] 
Mω,t  hour-t electricity price under scenario ω [$/MWh-e]  
PPB

ω,t(⋅, ⋅) hour-t powerblock-parasitic-load function under scenario ω [MWh-e]  

PSF
ω,t  hour-t solar-field parasitic load under scenario ω [MWh-e]  

t  time index 
T = {tst ,…,

ten}

ordered set of hourly time periods in the optimization horizon from 
tst to ten  

TTG
ω  set of target hours under scenario ω  

Θmax  maximum thermal-energy input to the powerblock during an hour 
that it is online [MWh-t] 

Θmin  minimum thermal-energy input to the powerblock during an hour 
that it is online [MWh-t] 

κ  energy-carrying capacity of the TES system [h] 
πω  probability of scenario ω occurring  
Υ  self-discharge rate of TES system [p.u.] 
ω  scenario index 
Ω  set of scenarios  

We model the operation of the CSP plant over an ordered set, T, of 
hourly time periods and over a set, Ω, of scenarios. Each scenario, ω ∈ Ω, 
corresponds to a possible realization of uncertain system conditions (e. 
g., energy prices, reliability need of the power system, and weather). TTG

ω 
is the set of hours, under scenario ω, during which the reliability target 
requires that the CSP plant be able to operate at its nameplate capacity. 
In our case studies, the target hours are the eight highest-load hours of a 
predetermined number of days of the year. If the CSP plant has a 
reliability-related requirement during hour t under scenario ω,HRD

ω,t in-
dicates the consecutive number of hours that the plant must be able to 
produce energy starting from hour t. In many cases, the eight highest- 
load hours of a day occur consecutively. In such a case, HRD

ω,t equals 
eight during the first hour of the consecutive block and the values of HRD

ω,t 

decrease by one to a value of one for the final hour of the consecutive 
block. In some instances (e.g., during winter days) the highest-load hours 
of the day may occur during multiple blocks (e.g., in the early morning 
and late evening, due to lighting and heating demands). In such a case, 
the values of HRD

ω,t indicate the remaining number of consecutive hours 
during a block of target hours. 

Operating the plant’s solar field (e.g., rotating the heliostats) imposes 
a parasitic load of PSF

ω,t MWh-e during hour t of scenario ω. The power-
block imposes parasitic loads as well, e.g., to circulate thermal fluid. 
PPB

ω,t(⋅, ⋅) gives this parasitic load during hour-t under scenario ω. K is a 
penalty parameter for not meeting the reliability target. K can be set 
arbitrarily, so long as it is sufficiently large compared to energy prices to 
incentivize the CSP plant meeting its reliability target. 

We define the following decision variables which are optimized in 
the model.  

eω,t  supplemental energy that is needed during hour t under scenario ω to meet 
reliability requirement [MWh-t]  

lω,t  ending hour-t SOE of the TES under scenario ω [MWh-t]  
rω,t  binary variable that equals 1 if the powerblock is started-up during hour t 

under scenario ω  
uω,t  binary variable that equals 1 if the powerblock is online during hour t under 

scenario ω  
θω,t  hour-t thermal energy that is input under scenario ω to the powerblock [MWh- 

t]  
ξ+ω,t  positive portion of hour-t net electric output of the CSP plant under scenario ω 

[MWh-e]  
ξ−ω,t  negative portion of hour-t net electric output of the CSP plant under scenario ω 

[MWh-e]   

The variable sets, rω,t and uω,t , represent the operating state of the 
powerblock. The variable set, θω,t , represents thermal energy that is 
input to the powerblock and the variable sets, ξ+ω,t and ξ−ω,t , represent the 
resultant electric output. Electric output can be negative due to the 
parastic loads. The variable set, lω,t , is used to track the evolution of the 
SOE of the TES. The variable set, eω,t , is used to measure the inability of 
the plant to meet its reliability target. If the plant has insufficient energy 
(from its solar field or TES) to operate at its nameplate capacity during a 
target hour, the corresponding value of eω,t measures the energy deficit. 

3.4. Optimization-model formulation 

The optimization model is formulated as: 

max
∑

ω∈Ω,t∈T
πω⋅

[
Mω,t⋅

(
ξ+ω,t − ξ−ω,t

)
− C⋅ξ+ω,t − K⋅eω,t

]
(1)  

s.t. Θmin⋅uω,t⩽θω,t⩽Θmax⋅uω,t − ESU⋅rω,t; ∀ω ∈ Ω, t ∈ T; (2)  

ξ+ω,t − ξ−ω,t = Fω,t(θω,t, uω,t) − PPB
ω,t(θω,t, uω,t) − PSF

ω,t; ∀ω ∈ Ω, t ∈ T; (3)  

rω,t⩾uω,t − uω,t− 1; ∀ω ∈ Ω, t ∈ T; (4)  

rω,t⩽1 − uω,t− 1; ∀ω ∈ Ω, t ∈ T; (5)  

rω,t⩽uω,t; ∀ω ∈ Ω, t ∈ T; (6)  

lω,t⩽Υ ⋅lω,t− 1 + ESF
ω,t + eω,t − ESU⋅rω,t − θω,t; ∀ω ∈ Ω, t ∈ T; (7)  

0⩽lω,t⩽κ⋅Θmax; ∀ω ∈ Ω, t ∈ T; (8)  

rω,t, uω,t ∈ {0, 1}; ∀ω ∈ Ω, t ∈ T; (9)  

eω,t, ξ+ω,t, ξ−ω,t⩾0; ∀ω ∈ Ω, t ∈ T; (10)  

eω,tst = eω′
,tst

; ∀ω,ω′

∈ Ω; (11)  
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lω,tst = lω′
,tst

; ∀ω,ω′

∈ Ω; (12)  

rω,tst = rω′
,tst

; ∀ω,ω′

∈ Ω; (13)  

uω,tst = uω′
,tst

; ∀ω,ω′

∈ Ω; (14)  

θω,tst = θω′
,tst

; ∀ω,ω′

∈ Ω; (15)  

ξ+ω,tst
= ξ+ω′

,tst
; ∀ω,ω′

∈ Ω; (16)  

ξ−ω,tst
= ξ−ω′

,tst
; ∀ω,ω′

∈ Ω; (17)  

uω,t − rω,t⩾1; ∀ω ∈ Ω, t ∈ TTG
ω ; (18)  

Υ ⋅lω,t− 1+eω,t+
∑t+HRD

ω,t − 1

s=t
ESF

ω,s⩾ESU ⋅

⎛

⎝rω,t+1− uω,t

⎞

⎠+HRD
ω,t ⋅Θ

max; ∀ω∈Ω,t∈TTG
ω .

(19) 

Objective function (1) computes expected profit that is earned by the 
CSP plant, less penalties that are assessed for not meeting the reliability 
target. The model has two sets of constraints. Constraints (2)–(7) pertain 
to physical limitations on the operation of the plant. Constraints (18)– 
(19) enforce the reliability requirements. 

Constraints (2) impose lower and upper limits on the amount of 
thermal energy that can be delivered to the powerblock when it is on-
line. These constraints force zero thermal energy to be delivered when 
the powerblock is offline. The maximum amount of thermal energy that 
can be delivered is reduced during hours that the powerblock is started- 
up. Constraints (3) define the net electricity output of the CSP plant as 
gross output, which is given by the heat-rate function, less the parasitic 
loads from the powerblock and solar field. Constraints (4) define the 
values of the start-up binary variables in terms of intertemporal changes 
in the values of the online binary variables. Constraints (5) prevent the 
powerblock from being started-up during hour t if it is online during the 
previous hour (i.e., the CSP-plant operator could keep the powerblock 
online as opposed to shutting it down and starting it up immediately 
thereafter). Constraints (6) require the powerblock to enter an online 
state when a start-up takes place. 

Constraints (7) impose hourly thermal-energy balance and define the 
ending hourly SOE of the TES. The left-hand side of the hour-t/scenario- 
ω constraint gives the ending hour-t/scenario-ω SOE of TES. The right- 
hand side of the constraint gives the total amount of thermal energy 
that is available to be stored at the end of hour t, which gives the implicit 
upper bound on lω,t . This bound is defined as the sum of the amount of 
energy that is carried from the previous hour, energy that is collected by 
the solar field, and supplemental energy. From this thermal energy that 
is available, energy that is used to start-up the powerblock and energy 
that is fed to the powerblock to produce electricity are subtracted. 
Constraints (8) impose SOE limits on the TES system. Constraints (9) and 
(10) impose integrality and non-negativity, respectively, on the appro-
priate variables. 

Constraints (11)–(17) impose uncertainty on the first-stage de-
cisions. This is done by forcing all of the variables during hour tst (when 
the realization of the scenario that describes future system conditions is 
unknown) to equal one another across all of the scenarios. Conversely, 
decisions in subsequent hours are free to vary between the scenarios. 
This is a standard approach to representing uncertainty in optimization 
models [19]. 

Constraints (18) and (19) apply only to target hours and ensure that 
the reliability requirements are met. Constraints (18) force the CSP plant 
to be online but not starting-up during target hours. This restriction is 
imposed because the CSP plant is unable to produce 100% of its rated 
output during an hour that it is starting-up. Constraints (19) ensure that 
the plant has sufficient thermal energy available to operate at its rated 

capacity during the full block of target hours. The right-hand sides of 
(19) compute the thermal energy that is necessary to maintain plant 
operations at nameplate capacity during the full block of target hours. 
These energy requirements are given by the products of the rated 
thermal-energy capacity of the powerblock, Θmax, and the number of 
consecutive hours during which the target applies for each hour, HRD

t . 
The left-hand sides of each of these constraints are the total thermal 
energy that is available to the CSP plant during each hour. 

Ramp-rate constraints are excluded from our model. This is because 
modern CSP plants can ramp over their full operating range in less than 
one hour [20]. Our model does not consider additional value streams or 
revenue sources that are provided by the rapid ramping capabilities of 
CSP plant (e.g., the provision of ancillary services). 

4. Case-study data 

Our simulations are performed for the 27 locations that are high-
lighted in Fig. 1. These locations represent a range of sites where CSP 
plants are technically viable, i.e., there is sufficient direct normal irra-
diance (DNI) to justify plant construction given the technology’s current 
technical and cost characteristics. The locations that we examine include 
some at which plants are deployed or in planning stages. Table 1 pro-
vides coordinates and annual-average daily DNI for each of the 27 
locations. 

Our study of each hypothetical plant requires four sets of primary 
data—system loads (which determine the target hours), electricity pri-
ces, assumed design parameters of the plant, and weather data (which 
determine the plant’s real-time operating characteristics). 

Fig. 1 indicates the balancing authority from which price and load 
data are used in simulating the performance of CSP plants at each 
location (i.e., the operation of each plant is optimized vis-à-vis price and 
load data corresponding to the balancing authority in which it is 
located). Historical load data for each balancing authority are obtained 
from Federal Energy Regulatory Commission (FERC) Form 714. His-
torical electricity-price data are obtained from FERC Form 714 for all 
balancing authorities except for California Independent System Oper-
ator (CAISO) and Electric Reliability Council of Texas (ERCOT). Price 
data for CAISO and ERCOT are collected from public data repositories on 
their websites. Table 2 summarizes the years between 1998 and 2015 for 
which load and price data are available for each balancing authority. We 
simulate the operations of plants at each location only for years for 
which we have both load and price data. 

Weather data are obtained from National Solar Radiation Database 
(NSRDB) version 2.0.1. Sengupta et al. [21,22] describe the physical 
modeling that underlies production of NSRDB and provide a high-level 
description of the product in a subsequent work [23]. Wilcox [24] 
provides a guide for its use. 

We assume default design parameters, which are given in SAM, for 
tower-type CSP plants. 

5. Case-study implementation 

We analyze the performance of the hypothetical CSP plants under 
three sets of operational assumptions—the ideal benchmark, myopic 
decision making that assumes perfect foresight or uses day-ahead 
persistence forecasts, and two-stage stochastic optimization. The input 
data to and implementation of model (1)–(19) differ between these three 
sets of assumptions, as detailed in the following subsections. 

5.1. Ideal benchmark 

The ideal benchmark assumes perfect foresight and no myopic de-
cision making. This case is modeled by solving (1)–(19) for an entire 
year at once (i.e., |T| = 8760 or |T| = 8784, depending on whether a 
given year is a leap year). Because we assume perfect foresight, these 
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cases are modeled assuming a single scenario (i.e., |Ω| = 1 and π1 = 1) 
and all of the system conditions for the entire year are known with 
certainty. 

The powerblock’s heat-rate function is approximated as: 

F1,t(θ1,t, u1,t) =
1

0.412
ηamb

1,t ⋅(0.4335⋅θ1,t − 11.345⋅u1,t), ∀t ∈ T;  

where ηamb
1,t is a factor that accounts for the effect on powerblock effi-

ciency of hour-t ambient temperature. For all t ∈ T, the value of ηamb
1,t is 

estimated based on the work of Wagner et al. [25]. 
Solar-field parasitics depend solely on energy that is required to 

operate the motors on the heliostats and have no dependence on how the 
TES or powerblock are operated. As such, ∀t ∈ T, the value of PSF

1,t is 
obtained directly from the SAM simulation that is used to determine ESF

1,t ,

∀t ∈ T. Conversely, powerblock-parasitic load depends on the operation 
of the plant, which is determined by (1)–(19). The SAM simulation that 
is used to determine ESF

1,t ,∀t ∈ T outputs the amount of thermal energy 
that is fed into the powerblock during each hour, if the plant is operated 
using SAM’s dispatch logic. The thermal energy that is fed into the 
powerblock is related to the amount of working fluid that must be 
circulated in the plant and the operation of the plant’s condensers. SAM 
outputs the powerblock’s hourly parasitic loads. We fit a linear regres-
sion to these outputs (hourly energy input to the powerblock and 
powerblock-parasitic loads) to estimate PPB

1,t (θ1,t ,u1,t),∀t ∈ T. Estimating 
PPB

1,t (θ1,t , u1,t),∀t ∈ T in this way allows us to capture endogenously the 
effect of dispatch decisions on plant parasitics in (1)–(19). 

Model (1)–(19) is formulated using Python 2.7 and solved using 
Gurobi version 7.5.1 on a system with two Intel Xeon E5-2697 v4 

processors with 18 2.30-GHz cores each and 270 GB of memory. Default 
solver settings are used, except for the optimality gap, which is set to 2%, 
and disabling of the aggregator in the presolve step. These settings 
improve solution times. However, these settings imply that there may be 
alternative solutions to (1)–(19) that reduce the energy deficit or in-
crease plant profits by at most 2% compared to the solutions that we 
report. We assume K = 10000. 

5.2. Myopic decision making 

The case of myopic decisions with perfect foresight uses the same 
input data and scenario structure (i.e., |Ω| = 1 and π1 = 1) that are used 
for the ideal benchmark. The key modeling difference is that plant op-
erations are simulated one hour at a time in a rolling-horizon fashion. 
Specifically, to determine hour-τ plant operations, an instance of (1)– 
(19) in which tst←τ and ten←τ+23 is solved. This process is repeated 
starting with τ = 1 (to determine the hour-1 operation of the plant) until 
τ = 8760 (or τ = 8784 for a leap year). Because (1)–(19) has a 24-h 
optimization horizon, we can reduce the optimality-gap setting to 
0.3% (meaning that the solutions that we report are very near-optimal) 
with no appreciable computation-time increase. 

5.3. Day-ahead persistence forecasts 

The cases with day-ahead persistence forecasts are implemented in 
the same way that the case of myopic decisions is, with one exception. If 
we assume that a plant operator uses day-ahead persistence forecasts for 
a random variable, which we will denote generically as ζ, historical data 
are used to project future values of ζ. More specifically, for each hour of 
the year, τ, we determine hour-τ plant operations by setting tst←τ and 

Fig. 1. The 27 locations in the southwestern US that are studied and approximate boundaries of the balancing authorities.  
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ten←τ + 23. We set ζτ equal to its true value (based on the historical data 
that are being used to simulate the operation of a plant at a particular 
location during a particular year). The values of ζτ+1, ζτ+2,…, ζτ+23 are 
set equal to the values, ζτ− 23, ζτ− 22, …, ζτ− 1, which are taken from the 
previous day. 

5.4. Two-stage stochastic optimization 

The cases with two-stage stochastic optimization employ the same 
rolling-horizon approach that we use with persistence forecasts. The key 
difference is that, for each hour of the year, τ, we determine hour-τ plant 
operations knowing hour-τ conditions with certainty whereas conditions 
for the following 23 h are represented using 30 equiprobable scenarios 
(i.e., |Ω| = 30 and πω = 1/30, ∀ω ∈ Ω). The scenarios for each random 
variable that is represented explicitly in the scenario tree are generated 
from the previous four weeks’ data. These scenarios and the four weeks’ 
that are used to generate them are updated as our model rolls forward 
from τ = 1 to τ = 8760 (or τ = 8784). Using our previous notation, let 
ζτ

h,d,w denote the historical value of ζ from hour h of day d from w weeks 
before hour τ, for all h ∈ H = {1,2,…,24},d ∈ D = {1,2,…,7}, and w ∈

W = {1,2,…,4}. For all h ∈ H, we let: 

ζh =

∑

d∈D,w∈W
ζt

h,d,w

|D|⋅|W|
;  

denote the sample-average value of ζ that is observed during hour h over 
the previous four weeks. The values of ζh are used as the baseline value 
of each random variable in the scenario-generation technique. We 
compute also the average of the sample averages: 

ζ =
1
|H|

ζh;  

and the sample variance of ζ: 

σ2 =

(
∑

h,d,w
ζt

h,d,w − ζ)2

|H|⋅|D|⋅|W| − 1
.

We use two scenario-generation techniques. The first scenario- 
generation technique, to which we refer as using hourly white noise, 
generates scenarios by adding a different randomly sampled unbiased 
Gaussian-distributed white noise with variance equal to σ2 to ζh,∀h ∈ H. 
Our second scenario-generation process, to which we refer as using 
scenario-consistent white noise, generates a scenario by adding the same 
randomly sampled unbiased Gaussian-distributed white noise with 
variance equal to σ2 to ζh, ∀h ∈ H. The solar-availability profiles are 
truncated to be non-negative, as negative solar availability is physically 
meaningless. 

6. Results 

6.1. Ideal benchmark 

Fig. 2 illustrates the general framework for analyzing our results. It 
shows the hourly flows of thermal energy during 18–19 July, 2010 of a 
CSP plant with an SM of 2.0 and six hours of TES that is located in 
Tonopah, NV. The two sets of bars that are above the horizontal axis 
indicate the amount of energy that is available to CSP plant during each 
hour (i.e., via the solar field and TES). The set of bars that is below the 
horizontal axis indicates thermal energy that is converted into electricity 
by the powerblock. 18 July has the highest load of 2010. As is common 
on summer days in North America, both 18 and 19 July, 2010 have 
continuous blocks of time during which the eight highest loads of the 
days occur. These blocks of time are indicated by the thick blue lines that 
are at the bottom of Fig. 2. 

Both 18 and 19 July have relatively good solar availability, and the 

Table 1 
Coordinates and annual-average DNI of 27 locations in the southwestern US that 
are studied.  

Location Name Latitude 
[◦ N] 

Longitude 
[◦ W] 

Annual-Average Daily 
DNI [kWh/m2/day] 

Fort Irwin, CA 35.26  116.68  8.22  
Kramer Junction, CA 35.01  117.56  8.18  
Rice, CA 34.07  114.82  8.13  
Harper Dry Lake, CA 35.03  117.35  8.11  
Armagosa Valley, NV 36.54  116.52  8.00  
Blythe, CA 33.67  114.98  7.97  
Harper Dry Lake, CA 35.02  117.33  7.88  
California City, CA 35.25  118.01  7.86  
Daggett, CA 34.86  116.83  7.83  
Primm, NV and CA 35.55  115.46  7.81  
Riverside County, CA 33.69  115.22  7.79  
Palmdale, CA 34.64  118.11  7.61  
Inyo County, CA 35.99  115.90  7.60  
Yuma, AZ 32.68  114.62  7.97  
La Paz County, AZ 33.83  114.22  7.92  
Hyder, AZ 33.06  113.26  7.82  
Harquahala, AZ 33.47  113.11  7.82  
Gila Bend, AZ 32.95  112.89  7.67  
Phoenix, AZ 32.92  112.97  7.57  
Boulder City, NV 35.80  114.98  7.60  
Tonopah, NV 38.24  117.36  7.52  
Coyote Springs, NV 36.82  114.93  7.52  
La Junta, CO 37.98  103.54  6.77  
San Luis Valley, CO 37.84  105.98  6.76  
El Paso, TX 32.00  106.77  8.12  
Deming, NM 32.26  107.75  7.94  
Odessa, TX 31.80  103.00  7.32   

Table 2 
Years with available load and price data for each balancing authority.   

Balancing Authority 

Year APS CAISO ELP ERCOT NEVP PNM PSC 

1998 *   *   *  *  *  
1999     *  *  *  
2000 *  *  *   *  *  *  
2001   *   *  *  *  
2002 *  *  *   *  *  *  
2003 *  *  *   *  *  *  
2004 *   *      
2005   *      
2006 *   *   *  *   
2007 *   *   *  *  *  
2008 *   *   *  *  *  
2009 *   *   *  *  *  
2010 *  *  *   *  *  *  
2011 *  *  *  *  *  *  *  
2012 *  *  *  *  *  *  *  
2013 *   *  *  *  *  *  
2014 *   *  *  *  *  *  
2015 *   *  *  *  *  *   
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CSP plant meets the reliability target fully. Indeed, the CSP plant is 
operating at its nameplate capacity during the full block of target hours 
during these two days. Our reliability criterion requires only that the 
plant have sufficient energy available to operate at its nameplate ca-
pacity if system conditions (e.g., a supply shortfall) warrant such a need. 
Our reliability criterion does not require the plant to operate at its 
nameplate capacity during the target hours. Nevertheless, the plant 
operates at its capacity during the target hours because the electricity- 
price and solar-availability patterns justify doing so. 

The TES of the CSP plant reaches its energy-storage capacity at the 
end of hours 16 and 39. As such, a total of 1.22 GWh-t and 1.67 GWh-t, 
respectively, of excess thermal energy that is collected by the solar field 
is curtailed during the two days. This curtailed energy could operate the 
powerblock at its nameplate capacity for about 2.2 hours and 3.1 hours, 
respectively. The CSP plant shuts-down immediately after the eight-hour 
block of highest loads during 18 July. However, the plant remains online 
after the eight-hour block during 19 July. The plant remains online 
during the second day because there are higher evening electricity prices 
compared to those during 18 July. Overall, Fig. 2 shows that during 
summer days with relatively good solar resource, a CSP plant with an SM 
of 2.0 and six hours of TES can meet our reliability criterion with min-
imal or no profit impact. 

Fig. 3a summarizes the hourly operation during 1–2 February, 2010 
of the same CSP plant that is illustrated in Fig. 2. As is common during 
winters in North America, the load profile during these two days has 
morning and afternoon peaks, meaning that the eight highest-load hours 
of each of the two days occur as two distinct blocks of time during each 
day. Fig. 3a shows that these two days have relatively poor solar 
resource. During the two days that are shown in the figure, the solar field 
delivers only 1.83 GWh-t of energy, which can operate the powerblock 
at its nameplate capacity for a total of about 3.4 hours. Stored energy 
that is carried from 31 January in the TES supplements the limited solar 
energy that is available during these two days. Despite having this stored 
energy available, the CSP plant is not able to attain the reliability target 
and has a total energy deficit of about 1.86 GWh-t across the two days (i. 
e., the plant would need an additional 1.86 GWh-t to meet the reliability 
target fully during these two days). 

Unlike the case that is shown in Fig. 2, the operating profile that is 
summarized in Fig. 3a is constrained greatly by the reliability criterion. 
The powerblock is kept online during the target hours, so it is available 
to operate at its nameplate capacity if necessary. However, with the 

exception of hours 44 and 45, the powerblock is operated at its mini-
mum point. The plant is operated in this manner because energy needs 
to be retained in the TES to meet the reliability criterion during the full 
block of target hours. As such, despite electricity prices being relatively 
high during hours 16,17,19–21, and 24, electric output of the CSP plant 
is zero or near-zero during these hours. 

Fig. 3b summarizes the hourly operation during 1–2 February, 2010 
of a CSP plant with an SM of 3.0 and 12 h of TES that is located in 
Tonopah, NV. Contrasting the two plots in Fig. 3 shows that having a 
larger configuration has notable operational impacts, which improve the 
profit and reliability performance of the plant. The higher SM of the 
larger plant results in more energy being collected by the solar field—a 
total of 2.77 GWh-t over the two days that are shown, which is sufficient 
to operate the plant at its nameplate capacity for a total of about 5.2 
hours. The larger TES system carries more energy from 31 January, 
which supplements the increased thermal energy that is gathered and 
allows the larger plant to meet its reliability target during the days that 
are shown in Fig. 3b without any energy deficit. To conserve energy, the 
larger plant does operate at its minimum point during some of the target 

Fig. 2. Hourly thermal energy collected by the solar field, SOE of TES, and 
powerblock input energy during 18 and 19 July, 2010 of a CSP plant in 
Tonopah, NV with an SM of 2.0 and six hours of TES and hourly electricity 
prices. The horizontal blue lines at the bottom of the figure indicate the eight 
highest-load hours during each of the two days. 

Fig. 3. Hourly thermal energy collected by the solar field, SOE of TES, pow-
erblock input energy, and energy deficit during 1 and 2 February, 2010 of a CSP 
plant in Tonopah, NV with (3a) an SM of 2.0 and six hours of TES and (3b) an 
SM of 3.0 and 12 h of TES and hourly electricity prices. The horizontal blue 
lines at the bottom of the figure indicate the eight highest-load hours during 
each of the two days. The two energy-deficit bars in Fig. 3a depict the total 
energy deficit to meet the reliability target during the two corresponding target- 
hour blocks. 
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hours. However, because it has more energy available than the smaller 
configuration, the larger plant operates at its nameplate capacity during 
hours 17,20,21,44, and 45, which allows it to exploit the corresponding 
high electricity prices. 

Despite the improved performance that is illustrated in Fig. 3b (vis- 
à-vis Fig. 3a), a larger CSP plant can experience energy deficits during 
prolonged periods with poor solar resource. Fig. 4 illustrates energy 
imbalances during each day of 2010 for CSP plants at Tonopah, NV with 
the two configurations. The bars below the horizontal axis indicate daily 
energy deficits in meeting the reliability target (for days during which 
there is an energy deficit). The bars above the horizontal axis indicate 
daily thermal-energy curtailments (for days during which there is en-
ergy curtailment). The small and large plant configurations experience 
energy deficits during 165 days and 20 days, respectively, and the solar 
energy that the plants receive meet 80% and 96% of what is required to 
meet the reliability target. Energy deficits for the larger plant all occur 
during the winter, whereas the smaller plant does experience some 
deficits during the summer. The CSP plants could reduce or eliminate 
energy deficits if they have the ability to avoid energy curtailment via 
long-duration TES. The smaller plant curtails a total of 200 GWh-t over 

the year and has a total energy deficit of 203 GWh-t, whereas these 
values are 300 GWh-t and 30 GWh-t for the larger plant. 

The year 2010 has exceptionally poor solar availability. Fig. 5 pro-
vides box plots that show the annual energy deficits of CSP plants in 
Tonopah, NV with the two configurations for different number of days to 
which the reliability target is applied. The energy deficits are given as 
percentages of the total energy that is needed to meet the reliability 
target fully (for the chosen number of days during which it applies). 
Fig. 5a highlights the fact that a CSP plant with six hours of TES is un-
dersized to meet our reliability criterion in the future when changes in 
net-load profiles may call upon it to provide energy during days that 
have relatively low loads today. Even if the TES of such a plant is 
charged fully, its powerblock can operate at its nameplate capacity for at 
most six hours (if relying solely on stored energy). As such, the plant 
must have some solar-energy input to meet the eight-hour reliability 
criterion during a given day. Conversely, so long as the TES system is 
charged sufficiently, a CSP plant with the larger configuration can meet 

Fig. 4. Energy deficit and curtailed solar-field energy during each day of 2010 
for a CSP plant in Tonopah, NV with (4a) an SM of 2.0 and six hours of TES and 
(4b) an SM of 3.0 and 12 h of TES. 

Fig. 5. Standard box plots of total annual energy deficit for a CSP plant in 
Tonopah, NV with (5a) an SM of 2.0 and six hours of TES and (5b) an SM of 3.0 
and 12 h of TES, for different numbers of days to which the target applies. 
Energy deficits are given as percentages of total energy that is needed to meet 
the target fully. Each box gives the 25th, 50th, and 75th percentiles. The 
whiskers represent the range of non-outliers observations, where outliers are 
defined as being more than 150% of the interquartile range less than the 25th 
percentile or more than the 75th percentile. Outliers are indicated with ‘+’. 
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the reliability criterion during a single day with zero solar availability. 
Fig. 5b shows that a properly sized CSP plant can meet a power 

system’s reliability needs fully for the foreseeable future, wherein reli-
ability is determined largely by performance during hot summer days. 
Even in the distant future when resource-adequacy performance may be 
measured during other periods of the year, the CSP plant’s energy deficit 
is below 3% during all but one of the years that we study. Tonopah, NV 
has amongst the highest energy deficits of the locations that we study. 
Indeed, the 4% energy deficit for the larger plant configuration that is 
summarized in Fig. 4b is an outlier amongst all of the location/year 
combinations that we study. These results are due to Tonopah, NV being 
the most northerly amongst the locations that we consider, which gives 
rise to many cloudy winter days. These characteristics of the location 
lead to lower CSP output during many lower-demand days, which gives 
rise to greater energy deficits if the reliability target applies to more 
days. 

Fig. 6 gives a broader feel for the results of our analysis by showing 
the range of average annual energy deficits of CSP plants across the 
locations that we study. The energy deficit for each location is averaged 

across the years that we examine and reported as a percentage of the 
energy that is needed to meet the reliability target fully. Rather than 
plotting the energy deficits for all 27 locations, we show ranges for three 
clusters of locations that have different annual-average daily DNIs. The 
figures demonstrate that for the near future, CSP plants with at least six 
hours of TES can provide very high capacity value throughout the 
southwestern US, with the energy deficit being less than 4% in most 
cases. This finding can be explained by Fig. 4, which shows that the 
energy deficit is low during the summer, which is when load peaks occur 
currently. Contrasting Fig. 6 with the results of Yagi et al. [10] shows 
that profit-driven operation of a CSP plant does not impact its reliability 
contribution in any marked way. This lack of impact is because the 
operational flexibility that the TES engenders allows the plant to operate 
‘around’ energy-price patterns, so long as it maintains some stored en-
ergy to meet the reliability target. 

6.2. Myopic decisions 

We explore the sensitivity of the results to myopic decisions by 
examining the performance of a CSP plant in Tonopah, NV with an SM of 
3.0 and 12 h of TES. We focus our analysis on the years 2010 and 2011, 
which yield the greatest and least energy deficits, respectively, in the 
ideal benchmark. We assume that the reliability target applies to all 365 
days of the years, allowing us to assess the robustness of the reliability 
contribution of a CSP plant in the far future, when net-load patterns may 
be significantly different than they are today. 

Table 3 summarizes the profits and energy deficits of the CSP plant 
under three behavioral assumptions—the ideal benchmark, myopic 
decision making, and myopic decision making that neglects the reli-
ability criterion and is concerned solely with maximizing profit. Con-
trasting this third case with the others allows us to gauge the profit 
impact of meeting the reliability criterion. The profits that are reported 
in Table 3 account for the cost of fulfilling the energy deficit using 
natural gas as a replacement fuel in the CSP plant (i.e., assuming that the 
plant combusts natural gas as a source of thermal energy). We assume 
this natural-gas combustion to be 85%-efficient in delivering thermal 
energy [26]. According to United States Energy Information Adminis-
tration, the average delivered costs of natural gas for the electricity in-
dustry in Nevada were $5.75/MMBTU and $5.00/MMBTU during the 
two years, respectively. These prices are used in computing the cost of 
the replacement energy. 

Comparing the energy deficits that are reported in Table 3 for the 
first two cases shows that myopic decisions increases the energy deficits 
only slightly. Figs. 5 and 6 show that the energy deficits have greater 
variability as a result of differences between locations and years than 
Table 3 shows resulting from myopic decision making. Thus, our find-
ings under the ideal benchmark are robust to the operational assump-
tion. Moreover, comparing profits that are earned if the reliability 
requirement is relaxed to cases in which it is not shows that the reli-
ability criterion impacts CSP profits by less than 1.2%. These results 
show that CSP plants can serve as economic sources of supply reliability, 
as meeting the reliability criterion has minimal profit impacts. 

Fig. 6. Ranges across the locations that are studied of average annual energy 
deficits for CSP plants with (6a) SMs of 2.0 and six hours of TES and (5b) SMs of 
3.0 and 12 h of TES, for different numbers of days to which the target applies. 
Energy deficits are averaged across years for each location and given as per-
centages of total energy that is needed to meet the target fully. The locations are 
clustered into three groups, based on annual-average daily DNI. 

Table 3 
Profits earned ($ million) and energy deficits to meet the reliability target during 
all 365 days of 2010 and 2011 (%) for a CSP plant in Tonopah, NV with an SM of 
3.0 and 12 h of TES with different levels of operational myopia.  

Year  Behavioral Assumption   

Ideal  Profit-Only   
Benchmark Myopic Myopic 

2010 Profit 53.03  52.98  53.62  
Deficit 4.05  7.82  n/a 

2011 Profit 61.02  61.02  61.24  
Deficit 0.18  2.71  n/a  
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6.3. Impacts of uncertainty 

We analyze the impacts of uncertainty in two steps. We begin by 
examining day-ahead persistence forecasts using the same paradigm 
whereby operational decisions are made one hour at a time using a 
rolling 24-h optimization horizon. We consider a CSP plant in Tonopah, 
NV with an SM of 3.0 and 12 h of TES during the years 2010 and 2011 
and assume that the reliability target applies to all 365 days of the two 
years. 

Table 4 summarizes the profits and energy deficits of the CSP plant 
using persistence forecasts of all or some of the uncertain data. The 
profits that are reported account for the cost of fulfilling the energy 
deficit using replacement natural gas. The first case that is summarized 
in Table 4 assumes that persistence forecasts are used for all of the un-
certain system conditions. Comparing the results in this case to what is 
reported in Table 3 shows that persistence forecasts yield considerably 
worse performance, especially with respect to meeting the reliability 
criterion. The remaining two cases that are summarized in Table 4 use 
persistence forecasts for all of the uncertain data except for the target 
hours to which the reliability criterion applies and solar availability, 
respectively, assuming perfect foresight for these two data sets in the 
two cases. Contrasting these two cases with the others shows that per-
formance of the CSP plant is relatively similar between using persistence 
forecasts for all of the uncertain data and assuming perfect foresight of 
the target hours. On the other hand, having perfect foresight of solar 
availability improves the operational performance of the CSP plant 
considerably. This result means that improved forecasting of solar 
availability (we use very simple persistence forecasts) can improve the 
performance of a CSP plant considerably whereas improved load fore-
casting is relatively unimportant. 

In addition to persistence forecasts, we explore the use of two-stage 
stochastic optimization to determine CSP-plant operations one hour at a 
time using a rolling 24-h optimization horizon. Table 5 summarizes our 
results of employing stochastic optimization, taking the same case as 
before of a CSP plant in Tonopah, NV with an SM of 3.0 and 12 h of TES 
during the years 2010 and 2011 assuming that the reliability target 
applies to all 365 days of the two years. Table 5 reports for the two 
scenario-generation techniques that we employ the same metrics that 
are given in Table 3. Both cases that are reported in Table 5 use day- 
ahead persistence forecasts for the target hours and scenarios for elec-
tricity prices and solar availability. 

The results for the two scenario-generation techniques are signifi-
cantly different. Using hourly white noise provides individual scenarios 
with variability around the baseline profile. Conversely, using scenario- 
consistent white noise provides scenarios without this variability. 
Instead, scenario-consistent white noise produces scenarios that are 
shifted up or down from the baseline profile based on the single random 
sample. Given these differences, using hourly white noise yields per-
formance that is similar to using persistence forecasts for all of the un-
certain data. Indeed, this scenario-generation technique yields similar 
energy deficits but higher profits compared to using persistence fore-
casts. Scenario-consistent white noise yields operational behavior that is 

comparable, in terms of energy deficit, to having perfect foresight of 
solar availability. However, scenario-consistent white noise yields much 
lower profits compared to the other cases that we examine. Scenario- 
consistent white noise performs in this manner because it yields con-
servative operational behavior. Each scenario that is generated using 
scenario-consistent white noise has the same random noise applied to 
the baseline solar-availability level for each hour. As such, some sce-
narios that are generated (for which the random noise is negative and 
large in magnitude) predict sustained periods of very low or zero solar 
availability. These scenarios drive the operational model to keep more 
energy in the TES, which improves the performance of the plant vis-à-vis 
the reliability criterion. However, this conservative behavior causes the 
CSP plant to forego profit opportunities, e.g., when prices are high or if 
future solar conditions are higher than the conservative scenarios pre-
dict, resulting in thermal energy being wasted because the combined 
capacity of the TES and powerblock cannot accommodate it. 

To illustrate the impacts of using persistence forecasts versus sto-
chastic optimization, Fig. 7 summarizes the hourly operation of a CSP 
plant at Tonopah, NV with an SM of 3.0 and 12 h of TES during 4–5 
January, 2010. Figs. 7a–7c assume myopic hourly decisions, but corre-
spond to cases in which perfect foresight, day-ahead persistence fore-
casts, and stochastic optimization, respectively, are employed. Fig. 7d 
summarizes the differences in powerblock input energy between the 
operational assumptions. Both of 3 and 4 January have relatively good 
solar resource, meaning that day-ahead persistence forecasts provide 
relatively good operational decisions for 4 January. Indeed, comparing 
Figs. 7a and 7b shows that plant operations during 4 January using 
persistence forecasts are very similar to those that are obtained with 
perfect foresight. In both of these cases the powerblock is started-up 
during hour 6 and it continues operating for the remainder of the day 
while operating the powerblock at its nameplate capacity during high- 
price hours of 4 January. 

Plant operations during 4 January are significantly different when 
using stochastic optimization (cf. Fig. 7c). Because the model includes 
scenarios with relatively low or zero solar availability, the SOE of TES is 
kept considerably higher compared to the other two operational pro-
files. Because 4 January does have relatively high solar availability, the 
SOE of TES peaks at its limit at the end of hour 14 and the plant increases 
its electric output between hours 14 and 16 (when electricity prices are 
relatively low) to avoid curtailing unanticipated solar energy. This 
overly conservative use of TES gives rise to the poor profit performance 
when employing scenario-consistent white noise to generate scenarios. 

The operation of the CSP plant during 5 January that is illustrated in 
Fig. 7b demonstrates the pitfall of relying upon persistence forecasts. 
Using persistence forecasts, the plant is operated during the early 
morning hours of 5 January expecting relatively good solar availability. 
As such, the TES is depleted by hour 33 and during hour 43 the CSP plant 
has an energy deficit. 

Fig. 8 shows daily energy deficits during each day of 2010 for a CSP 
plant in Tonopah, NV with an SM of 3.0 and 12 h of TES under the three 
operational assumptions that are summarized in Fig. 7. With perfect 
foresight, energy deficits are limited to the winter. Persistence forecasts 

Table 4 
Profits earned ($ million) and energy deficits to meet the reliability target during 
all 365 days of 2010 and 2011 (%) for a CSP plant in Tonopah, NV with an SM of 
3.0 and 12 h of TES with use of different persistence forecasts.  

Year  Persistence Forecasts Used   

All All Except All Except   
Data Target Hours Solar Availability 

2010 Profit 49.57  49.56  52.49  
Deficit 25.03  24.68  10.67  

2011 Profit 57.89  58.14  60.68  
Deficit 19.28  18.46  5.11   

Table 5 
Profits earned ($ million) and energy deficits to meet the reliability target during 
all 365 days of 2010 and 2011 (%) for a CSP plant in Tonopah, NV with an SM of 
3.0 and 12 h of TES with use of two-stage stochastic optimization.  

Year  Scenario-Generation Method   

Hourly Scenario-Consistent   
White Noise White Noise 

2010 Profit 50.63  44.21  
Deficit 23.50  10.70  

2011 Profit 59.31  51.03  
Deficit 19.54  7.66   
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yield considerably more energy deficits, in terms of the number of days 
during which deficits occur and the magnitude of the deficits. These 
deficits occur when a day with poor solar availability follows a day with 
relatively good solar availability. The conservatism of the scenarios that 
underlie our stochastic optimization reduce considerably (vis-à-vis using 
persistence forecasts) the frequency and magnitude of the energy 
deficits. 

7. Conclusions 

This paper studies the potential for CSP plants to serve the reliability 
needs of power systems. In doing so, we impose a reliability criterion 
that is robust to changes in net-load patterns that are expected due to the 
adoption of renewable energy. A key novelty of our work is that we 
examine the reliability contribution of CSP through the lens of a profit- 
driven plant owner. In addition, we examine the impacts of data avail-
ability and forecasting. The model that we develop could be used to 
optimize CSP-plant operations based on profit and reliability- 
contribution criteria. We show that during the near future and absent 
myopic decision making and uncertainty, CSP plants with an SM of 2.0 
and six hours of TES can serve reliability needs. Further into the future, 
when CSP supply may be needed during days with relatively low loads 
today, a larger plant configuration is necessary to maintain the same 

level of reliability contribution. These reliability benefits of CSP come 
with very little profit impact compared to a case in which the plants are 
operated solely to maximize profit. The limited profit impact stems from 
the CSP plants leveraging the flexibility that TES provides. We do not 
require the plants to operate at nameplate capacity during target hours. 
Rather, we require only that the plants have sufficient energy available 
to operate at nameplate capacity if doing so is required for purposes of 
power-system reliability. 

We relax the strong assumption of perfect foresight and examine 
myopic decisions. Conducting these computations one hour at a time is 
computationally expensive. As such, we focus this analysis on a single 
location that has relatively poor solar availability and the years with the 
greatest and least energy deficits. We show that myopic decisions have 
relatively muted impacts on the profit and reliability contribution of CSP 
plants. This result is due to TES being used primarily to move energy 
within or between subsequent days. Such a use of TES can be captured 
by a 24-h optimization horizon. On rare occasion (e.g., a number of 
consecutive days with poor solar availability) TES might be used for 
shifting energy over a longer period of time, which a 24-h optimization 
horizon cannot capture. Such use of TES is relatively rare, which is why 
the energy-deficits and profits that are reported in Table 3 are quite 
similar with and without myopic decisions. 

We examine the impacts of uncertainty in two ways. Through the use 

Fig. 7. Hourly thermal energy collected by the solar field, SOE of TES, powerblock input energy, and energy deficit during 4 and 5 January, 2010 of a CSP plant in 
Tonopah, NV with an SM of 3.0 and 12 h TES and hourly electricity prices, assuming myopic decisions with (7a) perfect foresight, (7b) day-ahead persistence 
forecasts, and (7c) stochastic optimization using scenario-consistent white noise. Fig. 7d summarizes differences in powerblock input energy between the different 
operational assumptions. The horizontal blue lines at the bottom of the figure panels indicate the eight highest-load hours during each of the two days. The two 
energy-deficit bars in Fig. 7b depict the total energy deficit to meet the reliability target during the two corresponding target-hour blocks. 

K. Yagi et al.                                                                                                                                                                                                                                     



Energy Conversion and Management: X 12 (2021) 100112

12

of persistence forecasts we demonstrate that predicting future solar 
availability (24 h into the future) is key in attaining good reliability and 
profit performance. Forecasting target hours is less important because, 
so long as it has sufficient stored energy, the TES provides the plant with 
operational flexibility to produce during most any eight-hour block of 
time. Having an accurate solar-availability forecast is key, however, in 
ensuring that TES has sufficient stored energy. We examine a very 
simple scenario-generation technique, which can be used within a 
stochastic-optimization framework to deliver reliability performance 
that is comparable to having perfect foresight of solar availability. This 
reliability performance comes at a profit cost, due to the resultant 
conservative operation of the plant. An alternative scenario-generation 
technique that we examine yields profits that are comparable to hav-
ing perfect foresight of uncertain system conditions, but worse reliability 
performance. 

How a CSP-plant owner trades-off between profits from energy sales 
and reliability performance is, in part, a matter of the design of the 
underlying market in which the plant participates. Some markets 
include explicit auctions that remunerate resources for providing reli-
able supply capacity. Cramton and Stoft [27] provide a formative pro-
posal for designing such market mechanisms. Finon and Pignon [28] 
provide a retrospective view on the early designs of these markets. 
Keppler [29] justifies the use of an explicit capacity mechanism to 
address security-of-supply externalities and asymmetric incentives for 
capacity investment. Duggan [30] provides a survey of the capacity- 
mechanism literature. Other markets rely upon scarcity pri-
cing—electricity prices having extreme spikes when the power system 
experiences a capacity shortfall—to incentivize the provision of supply. 
Hogan [31] provides a succinct vision of this market design, especially 
in a future with high penetrations of low-marginal-cost resources. Oren 
[32] proposes the design of a scarcity-pricing mechanism that uses call 
options to hedge against price volatility. Imran and Kockar [33] provide 
a technical comparison of the designs of electricity markets in North 
America and Europe, including mechanisms for ensuring the availability 
of adequate generating capacity. Should a CSP plant participate in a 
market with an explicit capacity mechanism, the relative profits that are 
earned from the provision of capacity and energy would play a key role 
in determining the conservatism of the plant’s operation vis-à-vis its 
reliability contribution. 

The plant-performance metrics that we report from using stochastic 
optimization and persistence forecasts represent a worst-case scenario, 

because we use very simple forecasting and operational techniques. The 
use of more sophisticated techniques can improve CSP performance with 
respect to reliability contribution and profit. We demonstrate that 
improving day-ahead solar-availability forecasting will have the most 
pronounced impact on improving plant operations. A number of more 
sophisticated forecasting techniques, including approaches based on 
satellite imagery [34], time-series models [35], and ensemble methods 
[36], are proposed in the literature and should yield much better per-
formance than our simulations provide. We do not explore such tech-
niques, as our research focus is not on developing solar-availability 
forecasts. However, surveys that examine the performance of forecasting 
methods are in the literature [37]. A comprehensive analysis of the 
impacts of improved solar-availability forecasts vis-à-vis our findings 
would be a fruitful avenue for future work. 

Our analysis assumes that the CSP plant relies solely upon solar 
thermal energy to produce electricity and that energy deficits are ful-
filled using natural gas. However there are alternative pathways that 
could maintain high reliability contribution without the use of natural 
gas. For instance, inductive or resistive heaters could be installed in the 
TES system of a CSP plant. Such heaters could be used to store excess 
power-system energy (e.g., from solar photovoltaic and wind genera-
tors), which would supplement solar-field energy. Converting electricity 
into thermal energy is nearly 100%-efficient. However, the roundtrip 
efficiency of this process would be lower, because the stored thermal 
energy would be converted back into electricity through a Rankine 
cycle. Nonetheless, there may be considerable periods of time in a sys-
tem with high renewable-energy penetrations during which the system 
has excess electricity. Indeed, Fig. 4 shows that the CSP plants experi-
ence thermal-energy curtailment that is on-par with or exceeds greatly 
the plants’ energy deficits in meeting the reliability target. These find-
ings point to the transformational benefits that a scalable and economic 
seasonal-energy-storage technology would have to achieve extremely 
aggressive decarbonization targets. Incorporating inductive or resistive 
heaters into CSP plants could help to bridge this current technical gap, 
reduce energy curtailment, improve CSP-plant performance, and reduce 
the need for accurate solar-availability forecasting. Alternatively, the 
CSP plant could utilize renewably-derived fuels, such as synthetic 
methane or biofuels, to fulfill the small energy deficit. The relative 
merits of these approaches to supplementing solar thermal energy needs 
further examination. 
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