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The Pele Project

Solves reacting Navier-Stokes on structured 
grid using AMR and embedded boundaries 
based on AMReX library
PeleC

– Compressible combustion simulations
– Explicit time stepping

PeleLM
– Low-mach combustion simulations
– Implicit, requiring linear solver

PelePhysics
– Shared code for chemistry/reactions
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PeleC Overview

• 50k LOC
• 11373 lines of C++
• 38905 lines of Fortran (including duplicate dimension-specific 

code)
• High level C++ orchestration with Fortran kernels
• Source code generator used for chemistry to unroll code
• C++ -> Fortran -> C

– Mixed languages pose many issues
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Original PeleC Programming Model

• MPI + OpenMP
• Ranks operate in bulk-synchronous data-

parallel fashion
• Threads operate on independent tiles
• Originally focused on KNL and 

vectorization (lowered loops)
#pragma omp parallel
for (MFIter mfi(F,true); mfi.isValid(); ++mfi) {

const Box& box = mfi.tilebox();
Array4<Real const> const& u = U.const_array(mfi);
Array4<Real      > const& f = F.array(mfi);
f2(box, u, f); // Call Fortran kernel

}

AMReX FAB data structures1.
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PeleC on GPUs

• Xeon Phi discontinued; GPUs become focus for birth of Exascale
• Quickest way to utilizing GPUs

– Offload kernels to device
• OpenACC most mature Fortran GPU programming model at the time
• Tied to PGI compiler
• Introduced in 2011

– Used in production since ~2014
• OpenMP 4 introduced for accelerators in 2013

– Jeff Larkin (NVIDIA) - GTC March 2018 – OpenMP on GPUs, First Experiences and 
Best Practices

• OpenACC pragmas have a straightforward mapping to OpenMP pragmas
• Minimize the need to modify current PeleC code
• Don’t need to remove current OpenMP pragmas
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PeleC OpenACC Programming Model

• Memory management 
originally done explicitly

• Later used AMReX’s GPU 
memory management
– Use default(present)

• Just need to make sure every 
routine under kernel is 
decorated as seq device 
routine

• Run with MPS, 7 ranks per 
Summit GPU to obtain 
asynchronous kernels
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PeleC Call Graph

• do_mol_advance – 90%
– getMOLSrcTerm – 64%
– react_state – 26%
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OpenACC Effort

• 90% of runtime under one routine
• Around 5 kernel routines under getMOLSrcTerm to parallelize 

on GPU
– Around 50 routines to label as seq

• react_state is implicit ODE solver with thousands of if conditions
– Implement a simpler explicit solver instead
– Explicit solver written in C and CUDA
– Explicit solver 6x slower on CPU

• Completely dominates runtime (react_state now around 
90%)
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Test Case – Pre-mixed Flame
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OpenACC Results

• Initial OpenACC port 
over 3x faster than 
Cori KNL

• 8x faster with CUDA 
react_state()

• 2 people, 3 weeks of 
development time

• 1 major bug found 
and reported to PGI
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C++ Effort

• AMReX GPU strategy was emerging alongside our OpenACC effort
– Much like Kokkos using C++ lambdas, but need not be as 

general
• Steven Reeves, graduate student at LBL prototyped PeleC on the 

GPU over 6 months by porting every necessary routine to C++
– Performance much better than OpenACC prototype

• However, once AMReX’s memory management was used in 
OpenACC, performance over OpenACC seemed to be a toss-up 
(mostly due to sharing of react_state routine)

• Performance in general was 16-18x faster than KNL
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OpenACC vs C++ Prototype
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C++ Effort

• MPI+CUDA for GPUs
• Essentially one thread per cell
• Focus on maximum parallelism in kernel 

(hoisted loops)
• 1 rank per GPU with CUDA streams for 

asynchronous behavior
#pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
for (MFIter mfi(mf,TilingIfNotGPU()); mfi.isValid(); ++mfi)
{

const Box& bx = mfi.tilebox();
Array4<Real> const& fab = mf.array(mfi);
amrex::ParallelFor(bx, ncomp,
[=] AMREX_GPU_DEVICE (int i, int j, int k, int n)
{

fab(i,j,k,n) += 1.;
});

}

AMReX GPU strategy2.
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C++ Results • 2x faster on CPU
• 18x faster than fastest 

CPU case using Intel 
compiler

• 56x faster than GCC 
CPU on Summit

• 124x faster than 
original Fortran on 
Summit CPUs

24576 
GPUs on 
90% of 
Summit
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Conclusions

• PeleC now 19363 lines of C++
• Fortran appears to be not 

beneficial to PeleC in any way
• Even 2x faster on the CPU
• Easier to debug and profile
• Kernels easier to write and to 

read
• Much less duplicate code 

necessary for dimensions
• Ability to use many compilers
• Good performance portability

• OpenACC allowed us to 
prototype PeleC on GPU very 
quickly

• Performance can be similar to 
CUDA

• Code quickly became 
displeasing

• Mixed languages cause 
problems for readability, 
debugging, profiling, and 
compiler optimizations
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