
From PeleC to PeleACC, to
PeleC++

P3HPC Forum 2020, September 2
Jon Rood, Marc Henry de Frahan, Ray
Grout

NREL | 2

The Pele Project

Solves reacting Navier-Stokes on structured
grid using AMR and embedded boundaries
based on AMReX library
PeleC

– Compressible combustion simulations
– Explicit time stepping

PeleLM
– Low-mach combustion simulations
– Implicit, requiring linear solver

PelePhysics
– Shared code for chemistry/reactions

NREL | 3

PeleC Overview

• 50k LOC
• 11373 lines of C++
• 38905 lines of Fortran (including duplicate dimension-specific

code)
• High level C++ orchestration with Fortran kernels
• Source code generator used for chemistry to unroll code
• C++ -> Fortran -> C

– Mixed languages pose many issues

NREL | 4

Original PeleC Programming Model

• MPI + OpenMP
• Ranks operate in bulk-synchronous data-

parallel fashion
• Threads operate on independent tiles
• Originally focused on KNL and

vectorization (lowered loops)
#pragma omp parallel
for (MFIter mfi(F,true); mfi.isValid(); ++mfi) {

const Box& box = mfi.tilebox();
Array4<Real const> const& u = U.const_array(mfi);
Array4<Real > const& f = F.array(mfi);
f2(box, u, f); // Call Fortran kernel

}

AMReX FAB data structures1.

NREL | 5

PeleC on GPUs

• Xeon Phi discontinued; GPUs become focus for birth of Exascale
• Quickest way to utilizing GPUs

– Offload kernels to device
• OpenACC most mature Fortran GPU programming model at the time
• Tied to PGI compiler
• Introduced in 2011

– Used in production since ~2014
• OpenMP 4 introduced for accelerators in 2013

– Jeff Larkin (NVIDIA) - GTC March 2018 – OpenMP on GPUs, First Experiences and
Best Practices

• OpenACC pragmas have a straightforward mapping to OpenMP pragmas
• Minimize the need to modify current PeleC code
• Don’t need to remove current OpenMP pragmas

NREL | 6

PeleC OpenACC Programming Model

• Memory management
originally done explicitly

• Later used AMReX’s GPU
memory management
– Use default(present)

• Just need to make sure every
routine under kernel is
decorated as seq device
routine

• Run with MPS, 7 ranks per
Summit GPU to obtain
asynchronous kernels

NREL | 7

PeleC Call Graph

• do_mol_advance – 90%
– getMOLSrcTerm – 64%
– react_state – 26%

NREL | 8

OpenACC Effort

• 90% of runtime under one routine
• Around 5 kernel routines under getMOLSrcTerm to parallelize

on GPU
– Around 50 routines to label as seq

• react_state is implicit ODE solver with thousands of if conditions
– Implement a simpler explicit solver instead
– Explicit solver written in C and CUDA
– Explicit solver 6x slower on CPU

• Completely dominates runtime (react_state now around
90%)

NREL | 9

Test Case – Pre-mixed Flame

NREL | 10

OpenACC Results

• Initial OpenACC port
over 3x faster than
Cori KNL

• 8x faster with CUDA
react_state()

• 2 people, 3 weeks of
development time

• 1 major bug found
and reported to PGI

NREL | 11

C++ Effort

• AMReX GPU strategy was emerging alongside our OpenACC effort
– Much like Kokkos using C++ lambdas, but need not be as

general
• Steven Reeves, graduate student at LBL prototyped PeleC on the

GPU over 6 months by porting every necessary routine to C++
– Performance much better than OpenACC prototype

• However, once AMReX’s memory management was used in
OpenACC, performance over OpenACC seemed to be a toss-up
(mostly due to sharing of react_state routine)

• Performance in general was 16-18x faster than KNL

NREL | 12

OpenACC vs C++ Prototype

NREL | 13

C++ Effort

• MPI+CUDA for GPUs
• Essentially one thread per cell
• Focus on maximum parallelism in kernel

(hoisted loops)
• 1 rank per GPU with CUDA streams for

asynchronous behavior
#pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
for (MFIter mfi(mf,TilingIfNotGPU()); mfi.isValid(); ++mfi)
{

const Box& bx = mfi.tilebox();
Array4<Real> const& fab = mf.array(mfi);
amrex::ParallelFor(bx, ncomp,
[=] AMREX_GPU_DEVICE (int i, int j, int k, int n)
{

fab(i,j,k,n) += 1.;
});

}

AMReX GPU strategy2.

NREL | 14

C++ Results • 2x faster on CPU
• 18x faster than fastest

CPU case using Intel
compiler

• 56x faster than GCC
CPU on Summit

• 124x faster than
original Fortran on
Summit CPUs

24576
GPUs on
90% of
Summit

NREL | 15

Conclusions

• PeleC now 19363 lines of C++
• Fortran appears to be not

beneficial to PeleC in any way
• Even 2x faster on the CPU
• Easier to debug and profile
• Kernels easier to write and to

read
• Much less duplicate code

necessary for dimensions
• Ability to use many compilers
• Good performance portability

• OpenACC allowed us to
prototype PeleC on GPU very
quickly

• Performance can be similar to
CUDA

• Code quickly became
displeasing

• Mixed languages cause
problems for readability,
debugging, profiling, and
compiler optimizations

NREL | 16

References

1. https://amrex-codes.github.io/amrex/docs_html/Basics.html#mfiter-and-tiling
2. https://amrex-codes.github.io/amrex/docs_html/GPU.html#overview-of-amrex-

gpu-strategy

https://amrex-codes.github.io/amrex/docs_html/Basics.html#mfiter-and-tiling
https://amrex-codes.github.io/amrex/docs_html/GPU.html#overview-of-amrex-gpu-strategy

www.nrel.gov

Q&A

NREL/PR-2C00-77661

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy,
LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the
Exascale Computing Project. The views expressed in the article do not necessarily represent the views of the DOE or
the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication,
acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish
or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S.
Department of Energy organizations (Office of Science and the National Nuclear Security Administration)
responsible for the planning and preparation of a capable exascale ecosystem, including software, applications,
hardware, advanced system engineering, and early testbed platforms, in support of the nation's exascale computing
imperative.

	The Pele Project
	PeleC Overview
	Original PeleC Programming Model
	PeleC on GPUs
	PeleC OpenACC Programming Model
	PeleC Call Graph
	OpenACC Effort
	Test Case – Pre-mixed Flame
	OpenACC Results
	C++ Effort
	OpenACC vs C++ Prototype
	C++ Effort
	C++ Results
	Conclusions
	References

