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Abstract

Sensing and measurement systems are quintessential to the safe and reliable operation of
electric power grids. Their strategic placement is of ultimate importance because it is not
economically viable to install measurement systems on every node and branch of a power
grid, though they need to be monitored. An overwhelming number of strategies have
been developed to meet oftentimes multiple conflicting objectives. The prime challenge
in formulating the problem lies in developing a heuristic or an optimisation model that,
though mathematically tractable and constrained in cost, leads to trustworthy technical
solutions. Further, large-scale, long-term deployments pose additional challenges because
the boundary conditions change as technologies evolve. For instance, the advent of new
technologies in sensing and measurement, as well as in communications and networking,
might impact the cost and performance of available solutions and shift initially set
conditions. Also, the placement strategies developed for transmission grids might not be
suitable for distribution grids, and vice versa, because of unique characteristics; therefore,
the strategies need to be flexible, to a certain extent, because no two power grids are alike.
Despite the extensive literature on the present topic, the focus of published works tends
to be on a specific subject, such as the optimal placement of measurements to ensure
observability in transmission grids. There is a dearth of work providing a comprehensive
picture for developing optimal placement strategies. Because of the ongoing efforts on the
modernisation of electric power grids, there is a need to consolidate the status quo while
exposing its limitations to inform policymakers, industry stakeholders, and researchers on
the research-and-development needs to push the boundaries for innovation. Accordingly,
this paper first reviews the state-of-the-art considering both transmission and distribution
grids. Then, it consolidates the key factors to be considered in the problem formulation.
Finally, it provides a set of perspectives on the measurement placement problem, and it
concludes with future research directions.

1 INTRODUCTION

Sensing and measurement systems are ubiquitous in electric
power grids. From power generation stations to end-customer
sites, measurement systems are continuously acquiring raw
data that are mission-critical to the long-term planning and
real-time monitoring and control of power grids. In long-
term planning, recorded measurements are used for model
validation and calibration [1] as well as for model reduc-
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tion [2]. Further, recorded measurements are used for the
postmortem analysis of major events such as blackouts [3].
As for monitoring and control, sampled measurements are
continuously feeding energy management systems running
at control centres [4] across the country. Sampled mea-
surements enable near-real-time situational awareness, and
corrective control actions are taken based on the analysis of
the available information. Examples of the application for
monitoring and control include static state estimation [5],
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security assessment [6, 7], event detection [8], and voltage
control [9].

Despite their extension, experts recognise the need for fur-
ther expanding the measurement systems in the near future [10].
One reason lies in the advent of new technologies—not only in
sensing and measurement technology but also in communica-
tions and networking, optimisation and control, energy conver-
sion and storage, and power electronics—that are transforming
the electric energy sector. The ongoing developments are being
referred to as grid modernisation, and they are mainly driven by
governmental initiatives aimed at the safe and reliable electrifica-
tion of the economy. The Grid Modernisation Laboratory Con-
sortium,1 supported by the U.S. Department of Energy, and the
Global Power System Transformation Consortium,2 are exam-
ples of such initiatives.

Grid modernisation initiatives are pushing for rapid growth
in the adoption of solar and wind power plants as primary
sources of electric energy. Despite their advantages, however,
these sources are naturally variable and stochastic [11]. As a con-
sequence, empirical data show that system states are experienc-
ing excursions more often and more abruptly than in the past.
Advanced controls are required to accommodate this variability
and intermittency while maintaining grid reliability and enhanc-
ing grid resilience; in turn, additional measurements at higher
spatial and temporal resolutions are required for advanced con-
trols. This is arguably a worldwide trend.

In this scenario of the continuous expansion of measurement
systems, the following question is posed:

Can the synergies across disparate measurement systems be exploited for

an optimal placement solution that serves multiple applications?

In pursuit of the answers, this paper reviews the prominent
applications for which measurement placement strategies have
been formulated. The paper also delves into the relatively newer
applications for which measurement placement strategies have
been formulated, particularly in the distribution grid because
of the continuous increase in the number of distributed energy
resources (DERs). The objective is to fulfil a gap in the open
literature for a systematic framework guiding the placement of
disparate measurement systems synergistically.

This study is motivated by the fact that the current prac-
tice in the industry hinges heavily on engineering judgment and
the analysis of worst-case scenarios despite the extensive lit-
erature on the formulation of measurement placement strate-
gies. For example, some of the most common industry practices
include placing measurements to monitor critical devices/sites
(e.g. step-up transformers in large power stations and tie-line
buses) and to gather further information on specific locations
to fix localised problems, such as voltage stability [12]. On
the other hand, academic publications tend to focus on spe-
cific applications. For example, there is much literature on the
optimal placement of measurements to attain observability and
thus enable static state estimation in transmission grids [13].
Of course, these approaches are well justified within their own
context. The industry needs a method that is reliable and cost-
efficient yet simple, whereas academia mostly seeks novelty and

1 https://gmlc.doe.gov/
2 https://globalpst.org/

rigor in the problem formulation. Accordingly, the primary role
of this paper is to build a bridge between industry practices and
existing formulations of the measurement placement problem.
Further, this paper aims to review, present, and discuss mea-
surement placement formulations in an accessible yet rigorous
form. From a broader perspective, however, this paper serves
multiple objectives, including to:

∙ Review, present, and discuss existing formulations for mea-
surement placement in power grids. The review is thorough
and rigorous though accessible to the larger community.

∙ Identify synergies among different strategies that can lead to
improved solutions.

∙ Inform the industry, policymakers, and researchers on the
research-and-development needs for measurement place-
ment.

Attaining these objectives is obviously challenging. First, the
literature on this topic is vast; chronologically organising key
contributions on this topic is a laborious task. Second, the syn-
ergy among existing strategies is not obvious. To begin with,
measurement placement is a classic planning problem, and it is
challenging because the usage of measurements covers almost
all the different types of power system research and analysis.
Nonetheless, a multi-objective framework that offers a parsi-
monious solution to the contemporary problem of measure-
ment placement for the future grid modernisation scenarios and
applications is required. The solution must recognise that future
grids will include more uncertainty. Third, the identification of
research-and-development needs that are worth the time and
investment cost requires cross-disciplinary expertise.

The reviewed measurement placement methods are sepa-
rated into two sections—one for transmission grids and the other
for distribution grids—to effectively address these challenges. See
Figure 1. The methods are categorised within these sections
by application (and sub-application, in some cases). For exam-
ple, Subsection 2.1.2 presents and discusses methods aimed at
enhancing the measurement redundancy for static state esti-
mation in transmission grids. This categorisation is critical in
reviewing such extensive literature without losing sight of the
main objectives previously outlined. Moreover, a categorisation
based on applications establishes common ground for compar-
isons between transmission and distribution grids.

Note that the present work aims to provide insight into
the works that made fundamentally new contributions to the
literature or exposed an important factor to the problem of
measurement placement; incremental contributions are referred
to without further elaboration. Therefore, the References section
is not exhaustive—full cataloguing of the existing literature on
the present topic is beyond the scope of this paper. Second,
before proceeding, we stress that many measurement systems
acquiring non-electrical quantities are found throughout electric
grids. For example, equipment-level measurements of dissolved
gas, vibration, temperature, pressure, humidity, and strain are
used for equipment diagnostics. Measurements of solar irra-
diance and wind speed integrated with solar and wind power
plants, respectively, are used in operational planning. Binary
measurements of switchgear status are used for monitoring,
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FIGURE 1 Categorisation by application of the measurement placement
problem in electric power grids

topology processing, and control. We focus primarily on mea-
surement systems that acquire electrical quantities; within these,
we are specifically interested in the measurements that support
monitoring and control at a systems level. Table 1 summarises
the measurement systems of interest. Note that sample values
acquired by merging units are popularly known in the United
States as point-on-wave measurements.

The most frequently adopted strategies to formulate the mea-
surement placement problem include:

∙ Minimise the total cost, including measurement devices and
systems, infrastructure, data communications, storage, and
processing.

∙ Ensure system observability under normal and anomalous oper-
ating conditions.

∙ Maximise the performance of the applications using the measure-
ments, for example, state estimation accuracy.

The first factor models the investment cost elements,
whereas the other two capture technical aspects. The impor-
tance of including cost in the problem formulation is illustrated

by an anecdotal example. Suppose that the operator of a power
transmission grid of 900 buses decides to invest in making the
measurement system observable solely by phasor measurement
units (PMUs). The details of this problem, including the def-
inition of observability, will be given in the next section. For
now, it is sufficient to know that at least 300 PMUs are needed
[16]. Based on a report for the U.S. Department of Energy
[17], the cost of a PMU—including procurement, installation,
and commissioning—can range from $40,000 to $180,000,
depending on the device class of precision, the number of
measurement channels, and other characteristics; hence, the
total investment in this anecdotal example ranges from $12
million to $54 million. Note that it is not uncommon to find
transmission grids of this size around the world. The magnitude
of the measurement placement in electric power grids—in
terms of both problem dimension and involved costs—is
formidable. The following sections uncover additional technical
factors. The contributions of this paper are as follows:

∙ It provides a comprehensive collection and an in-depth dis-
cussion of methods for measurement placement in electric
power grids.

∙ It jointly discusses measurement placement in transmission
and distribution grids. Note that even the most basic con-
cepts, such as observability, have different interpretations for
transmission and distribution grids, making this review a chal-
lenging undertaking. Such a review is non-existent in the lit-
erature.

∙ It reveals and discusses research gaps. For example, the dis-
cussion on leverage measurements is novel and not found
elsewhere. The same applies to the discussion on dynamic
state estimation, a timely and fast-evolving research area. The
paper discusses several other research gaps in different appli-
cation domains.

∙ It identifies synergies among applications often considered
separately. The idea of approaching the measurement place-
ment problem from this standpoint is novel.

The paper proceeds as follows. Sections 1 and 3 present mea-
surement placement strategies applied to electric power trans-
mission and distribution grids, respectively. Section 4 provides
an outlook on what has been accomplished and delineates the
major future research directions in this field. Section 5 con-
cludes the paper.

TABLE 1 Considered measurement systems and their location in the grid

Generation site

1–25 kV

Transmission

69–1,000 kV

Subtransmission

15–69 kV

Distribution

7.2–15 kV

Customer site

100–240 V

Smart meter ✓

Power quality monitor ✓ ✓

Digital fault recorder ✓ ✓ ✓ ✓

Digital protective relay ✓ ✓ ✓ ✓

PMU ✓ ✓ ✓

Micro-PMU ✓

Merging unit [14, 15] ✓ ✓
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2 MEASUREMENT PLACEMENT IN
TRANSMISSION GRIDS

In legacy transmission grids, all major substations are equipped
with remote terminal units (RTUs); their role is to gather
the measurements collected at the substation and transmit
them to centralised control centres. Typically, RTUs transmit a
batch of measurements once every 1–4 s. This paper does not
consider the placement of RTUs and associated sensing and
measurement devices. This is in part because another device,
based on more recent technology and referred to as a PMU,
has taken precedence in transmission grids. Depending on
their class and manufacturer, PMUs can transmit a batch of
Global Positioning System-synchronised measurements up to
240 times per second.3 On a historical note, PMUs became
commercially available a few years after the development of the
prototype was completed in 1988 [18, 19]. The U.S. Department
of Energy released the wide-area measurement system project
[20, 21] shortly after that. The placement of PMUs has been
well explored since then, with initial work dating to the early
1990s. A review of PMU placement methodologies developed
up to 2011, with a focus on static state estimation only, is given
in [13]. In a complementary fashion, this paper encompasses
all the different applications that can be considered for PMU
placement, starting with static state estimation.

2.1 Static state estimation in transmission
grids

Consider an electric power network of nbu buses, equipped with
m measurements contained in the measurement vector, z. The
measurement model is given by

z = Hx + e, (1)

where H is the measurement matrix, and x is the true algebraic
state vector. The elements of the measurement error vector,
e, are assumed to be zero-mean, independent, and identically
distributed random processes following a Gaussian probabil-
ity density function, e ∼ (0,R)—that is,  (e) = 0,  (ee𝖳 ) =
R = diag(𝜎2

1, … , 𝜎
2
m ), where  denotes the expectation opera-

tor, R is the error covariance matrix, and 𝜎k is the standard
deviation associated with kth measurement zk. This is a conve-
nient assumption because the widely used weighted least squares
(WLS) estimator [see Weighted least squares (WLS) estimator] is the
maximum likelihood estimator under these conditions. Note
that the measurement model (1) is linear because PMUs mea-
sure both the magnitude and phase angle of voltages and cur-
rents [22]. For example, suppose that buses {2, 4, 6, 7} in the
network shown in Figure 2 are equipped with PMUs. In this
case, the measurement model is given explicitly in (7), where
vk = |vk|e j𝜃k , |vk| (𝜃k) is the voltage magnitude (phase angle) at
bus k; ṽk (vk) denotes the measured (true) algebraic state variable
associated with bus k; ik𝓁 = |ik𝓁|e j𝛼k𝓁 , |ik𝓁| (𝛼k𝓁) is the current

3 https://www.vizimax.com/products-services/phasor-measurement-unit

WLS ESTIMATOR

A state estimate, x̂, is obtained by minimizing an objec-
tive function of choice, J , as follows:

x̂ = arg min
x

J (x). (2)

The WLS estimator minimises a quadratic criterion:

J (x) =
1
2

(
z −Hx

)𝖳
R
−1(

z −Hx
)
. (3)

The solution, x̂, is obtained by setting to zero the par-
tial derivative of J (x) with respect to x:

x̂=
𝜕J (x)

𝜕x

||||x=x̂

=−H
𝖳

R
−1(z−Hx̂)=−H

𝖳
R
−1

r = 0,

(4)
where the residual vector r = z −Hx̂. From (4), we
have

−H
𝖳

R
−1

z +H
𝖳

R
−1

Hx̂ = 0, (5)

yielding to

x̂ =
(
H
𝖳

R
−1

H
)−1

H
𝖳

R
−1

z = G
−1

H
𝖳

R
−1

z. (6)

From (6), if the gain matrix, G, is non-singular, then
(1) is numerically observable. Recall that R is a diago-
nal matrix.

FIGURE 2 One-line diagram of the 7-bus system [23]. The bus (branch)
indices are indicated by Arabic (Roman) numerals

magnitude (phase angle) from bus k to 𝓁; ĩk𝓁 denotes the mea-
sured current phasor from bus k to 𝓁; yk0 is the shunt admit-
tance of bus k; and yk𝓁 is the series admittance between buses
k and 𝓁. Hereafter, unless otherwise stated, it is assumed that
a PMU installed on bus k measures the voltage phasor at bus
k as well as the current phasor in all the branches that are inci-
dent to bus k. For example, if a PMU is placed on Bus 2 of the
network in Figure 2, then measurements of {v2, i21, i23, i26, i27}
are supposedly available from this device. In other words, the
number of measurement channels in each PMU is assumed to
be unlimited unless otherwise stated.

https://www.vizimax.com/products-services/phasor-measurement-unit
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OBSERVABILITY FOR STATIC STATE ESTI-

MATION IN TRANSMISSION GRIDS

The key contributions to power system observability
analysis are attributed to Clements, Krumpholz, and
Davis [24, 25]. Two definitions of observability are well
accepted:
Numerical observability is defined as the ability of the
measurement model (1) to be solved for a state esti-
mate, x̂. If H in (1) is of full rank and well conditioned,
or, equivalently, if G in (6) is non-singular, then the sys-
tem is said to be numerically observable.
Topological observability is defined as the existence of at
least one spanning measurement tree of full rank in
the network.
Numerical observability implies topological observ-
ability, but the converse is not true. In practice, how-
ever, cases where a power grid is topologically but not
numerically observable are rare. See, for example, [26]
for more details.

2.1.1 Observability for static state estimation in
transmission grids

Minimum PMU placement for observability in ideal conditions:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṽ2
ṽ4

ṽ6

ṽ7

ĩ21

ĩ23

ĩ26

ĩ27

ĩ43

ĩ45

ĩ47

ĩ62

ĩ63

ĩ72

ĩ74

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

−y12 y20 + y12 0 0 0 0 0

0 y20 + y23 −y23 0 0 0 0

0 y20 + y26 0 0 0 −y26 0

0 y20 + y27 0 0 0 0 −y27

0 0 −y34 y40 + y34 0 0 0

0 0 0 y40 + y45 −y45 0 0

0 0 0 y40 + y47 0 0 −y47

0 −y26 0 0 0 y60 + y26 0

0 0 −y36 0 0 y60 + y36 0

0 −y27 0 0 0 0 y70 + y27

0 0 0 −y47 0 0 y70 + y47

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

v6

v7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

The most basic requirement for state estimation is the observ-
ability of the measurement model (1) [see Observability for static

state estimation in transmission grids]. This is because H is assumed

to be perfectly known; thus, if (1) is observable, one can rely on
the measurements in z to obtain an estimate, x̂, of the algebraic
state vector. On the other hand, installing a PMU on each bus
of an electric transmission grid is cost-prohibitive; hence, a rel-
evant question to ask is, what is the minimum set of PMUs that
makes the measurement model (1) observable? This question is
investigated in [16, 27] by extending the notion of a spanning
measurement tree to the specific case of PMUs. Following [16],
a spanning measurement tree is any network subgraph that con-

tains all the nodes of the network and has an actual measurement or a

calculated pseudo-measurement assigned to each of its branches. A pseudo-

measurement is assigned to either a non-metered branch where the voltage

phasor at both ends are known [using Ohm’s law], or to a non-metered

branch which is incident to a bus where all but the current of that branch

are known [using Kirchhoff ’s current law]. In particular, it is shown in
[16] through numerical simulations performed on various test
systems that approximately:

∙ One-fourth to one-third of the network buses in general and
∙ One-half of the network buses in the worst-case scenario

need to be instrumented with PMUs to achieve observability.
The pioneering work in [16, 27] sets the ground for the mini-
mum PMU placement problem in transmission grids. It relies
on a dual search algorithm, comprising a modified bisecting
search and a simulated annealing method, to build the spanning
measurement tree of the network. When computing time is of
concern, several modifications can be applied to the heuristics

in [16] to accelerate the solution process [28]. See also [29] for
some variations of the heuristics in [16] and [30] for a method
based on Tabu search.
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TABLE 2 Metaheuristics used to find the minimum set of PMUs for
observability

Metaheuristic Ref. Metaheuristic Ref.

Bisecting search [16, 27] Fuzzy logic [33]

Cellular learning
automata

[34] Genetic algorithm [35–40]

Chemical reaction
optimisation

[41] Iterated local
search

[42]

Cuckoo search
algorithm

[43] Particle swarm
optimisation

[44–47]

Evolutionary
algorithm

[48–50] Simulated
annealing

[16, 27, 28,
51, 52]

Exhaustive binary
search

[53] Tabu search [28, 30, 54]

The reader interested in a formal treatment of the minimum
PMU placement problem is referred to [31, 32], where a graph-
theoretic approach is taken to prove that, under an ideal sce-
nario, no more than one-third of the network buses need to
be provided with PMUs for observability—we stress that this
holds only under ideal scenarios. In fact, later in this section,
we discuss a counterexample where more than one-half of the
network buses need to be instrumented with PMUs to achieve
observability. It is also shown in [31, 32] that the minimum PMU
placement problem is NP-complete. The metaheuristics used to
find a solution to the problem under discussion are summarised
in Table 2.

Note that reference [53] in Table 2 uses an exhaustive binary
search to find the minimum number of PMUs that makes (1)
topologically observable. Despite being computationally expen-
sive, the exhaustive search provides a globally optimal solution;
thus, the results obtained for the systems in [53]—IEEE
14-bus, IEEE 24-bus, IEEE 30-bus, and New England 39-
bus—serve as a benchmark solution. Other than an exhaustive
search, the metaheuristics in Table 2 do not guarantee a globally
optimal solution. Unfortunately, an exhaustive search becomes
quickly impractical as the number of buses (and thereby the
dimension of the problem) increases because the problem is
NP-complete.

Instead of a heuristic, the formulation in [23] relies on an
optimisation model, as follows:

min
nbu∑

k=1

ck ⋅ uk,

s.t. g(u) ≥ 1nbu
,

(8)

where ck denotes the cost of installing a PMU on bus k; gk(u) ∈
ℤ, 1nbu

denotes the vector of all ones of dimension nbu ; and

uk =

{
1 if a PMU is installed on bus k,

0 otherwise.
(9)

The solution to the optimisation problem in (8) is obtained
by integer programming (IP). For this reason, (8) is here-
after referred to as the IP method. During the solution pro-
cess, the inequality constraints associated with g(u) enforce
topological observability. The rationale of the mechanism by
which topological observability is enforced is explained next.
Consider

gk(u) =
nbu∑
𝓁=1

Ak𝓁 ⋅ u𝓁 ≥ 1, (10)

where

Ak𝓁 =

{
1 if k = 𝓁, or if buses k and 𝓁 are connected,

0 otherwise,
(11)

denotes the k𝓁th element of the bus-to-bus connectivity matrix
[see Admittance matrix and connectivity matrices]. The constraints
defined in (10) are better explained through an example. To this
end, consider again the network in Figure 2. From (10)–(11), we
have

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0
1 1 1 0 0 1 1
0 1 1 1 0 1 0
0 0 1 1 1 0 1
0 0 0 1 1 0 0
0 1 1 0 0 1 0
0 1 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g1 = u1 + u2 ≥ 1,

g2 = u1 + u2 + u3 + u6 + u7 ≥ 1,

g3 = u2 + u3 + u4 + u6 ≥ 1,

g4 = u3 + u4 + u5 + u7 ≥ 1,

g5 = u4 + u5 ≥ 1,

g6 = u2 + u3 + u6 ≥ 1,

g7 = u2 + u4 + u7 ≥ 1.

(12)

The constraints in (12) guarantee topological observability by
enforcing that at least one u𝓁 = 1 for each gk, k, 𝓁 = (1, … , nbu ).
Or, in plain words, they guarantee that the voltage phasor on
each bus in the network is either directly measured or indirectly
calculated. The IP method is well accepted because of its sim-
plicity and scalability. The reader seeking an in-depth under-
standing should start with [56] and the references therein. The
IP method can be modified to consider measurements acquired
from RTUs and/or pseudo-measurements inferred from zero-
injection buses. This is accomplished by modifying the con-
straints associated with g(u). Note that a zero-injection bus is
a bus without generators, loads, or any other shunt device con-
nected to it. For example, let Bus 3 in the 7-bus system shown
in Figure 2 be a zero-injection bus. If the voltage phasor in any
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ADMITTANCE MATRIX AND CONNECTIV-

ITY MATRICES

The admittance matrix—also called Y bus or Y matrix or
bus admittance matrix or nodal admittance matrix—is a
matrix of dimension nbu × nbu that represents the nodal
admittance of electric power networks. The Y bus is
likely the most used matrix in power system studies,
and it has several interesting properties. For example,
the Y bus is
∙ Very sparse for real electric power transmission

grids;
∙ Symmetric if no phase-shifting transformers are

included.
For the network shown in Figure 2:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y11 −y12 0 0 0 0 0
−y12 y22 −y23 0 0 −y26 −y27
0 −y23 y33 −y34 0 −y36 0
0 0 −y34 y44 −y45 0 −y47
0 0 0 −y45 y55 0 0
0 −y26 −y36 0 0 y66 0
0 −y27 0 −y47 0 0 y77

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

One can use Y , which is readily available, to build the
bus-to-bus connectivity matrix, A. To do so, simply set all
non-zero elements of Y to 1. Also, A can be built by
using (11).
The bus-to-branch connectivity matrix, denoted by B in (23),
can be built by using (22). See, for example, [55] for
more details.

three buses in the set {2, 3, 4, 6} is measured, then the voltage
phasor at the fourth bus can be calculated by applying Kirch-
hoff ’s current law at Bus 3, where the net injected current is
known. Following [23], the constraints in (12) are modified as
follows:

g2 = u1 + u2 + u3 + u6 + u7 + g3 ⋅ g4 ⋅ g6 ≥ 1,
g4 = u3 + u4 + u5 + u7 + g2 ⋅ g3 ⋅ g6 ≥ 1,
g6 = u2 + u3 + u6 + g2 ⋅ g3 ⋅ g4 ≥ 1.

(13)

By replacing g2, g3, g4, and g6 in (13) and simplifying via
Boolean logic, one obtains

g2 = u1 + u2 + u3 + u6 + u7 ≥ 1,
g4 = u2 + u3 + u4 + u5 + u6 + u7 ≥ 1,
g6 = u2 + u3 + u6 + u1 ⋅ u4 + u4 ⋅ u7 ≥ 1.

(14)

Note that the modification suggested in [23] makes the con-
straints in (14) non-linear, which is not desirable. A better
approach to modify the constraints in (8) is developed in [57,

FIGURE 3 The symbol ▴ indicates the bus where the PMU is placed and
thus its voltage is directly measured.■ indicates that the voltage at that bus
can be calculated.□ indicates that the voltage at that bus is not accessible

58] and extended in [59]. The interested reader is referred to
those papers for details. See also [60–64]. Note that consid-
ering zero-injection buses is desirable because it reduces the
number of PMUs required for system observability. The IP
method can also be modified to account for the single loss of
any PMU [65] and other relevant factors. Extensions of the IP
method will be discussed in several opportunities throughout
the paper. The trade-offs between some of these extensions and
the obtained solutions are well presented in [61, 66]. Specifically,
in [61], the set of constraints in the IP method is extended such
that:

∙ Zero-injection buses are considered for PMU installation.
∙ The system remains observable in case of the loss of any sin-

gle PMU.
∙ The system remains observable in case of single branch out-

ages.
∙ The number of measurement channels in some or all PMUs

is limited.

Moreover, [61] suggests a specific optimisation solver in
which an optimality gap can be specified as a trade-off between
a slower/optimal and a faster/suboptimal solution.

In practice, the deployment of, for example, nbu∕3 PMUs,
requires an enormous effort, even for limited-size networks.
Considering this practical aspect, the work in [51, 52] devel-
ops the concept of degree of unobservability, which is better
explained through an example. Consider the network in Fig-
ure 3. In Placement 1, the following quantities are mea-
sured: {v2, i21, i23, v6, i65, i67}; thus, the voltage phasor at buses
{2, 6} is directly measured by PMUs, and the voltage phasor
at buses {1, 3, 5, 7} can be calculated by using the following
relation:⎡⎢⎢⎢⎢⎣

i21

i23

i65

i67

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
y20 + y12 0 −y12 0 0 0
y20 + y23 0 0 −y23 0 0

0 y60 + y56 0 0 −y56 0
0 y60 + y67 0 0 0 −y67

⎤⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎣
v1

v3

v5

v7

⎤⎥⎥⎥⎥⎦
. (15)

Conversely, v4 cannot be calculated unless Bus 4 is a zero-
injection bus [28]. The system with the measurement Placement
1 is said to be a system with a depth-of-one unobservability because



812 NETTO ET AL.

there is at least one bus in which the voltage is not accessible,
linked to two or more buses in which the voltage is calculated.
Similarly, Placement 2 defines a system with a depth-of-two

unobservability. It is stated in [52] that the crux of this approach is

that the state [voltage phasor] of buses that are not observable can be

interpolated from the state of their neighbours rather accurately, although
the level of accuracy is not discussed. The idea is to use the
degree of unobservability to strategically plan for a phased, or
multi-stage, installation of PMUs. The work in [67] fuses the
concept of the degree of unobservability with the IP method
and develops a placement scheme that prioritises the real-time
monitoring of critical buses of the network. Buses are defined
to be critical if they satisfy one or more of the following
conditions:

∙ Are high voltage, that is, 200 kV and more;
∙ Have many incident branches;
∙ Are relevant to rotor angle stability;
∙ Are relevant to small-signal stability;

and they are selected based on stability assessments performed
offline. The PMU placement problem is formulated to ensure
that the voltage phasor of critical buses is directly or indirectly
accessible by at least one PMU, with weights assigned to priori-
tise the critical buses.

The weakness of relying solely on the concept of degree of
unobservability to allocate PMUs in a multi-stage fashion is
that upon completion of the last stage, the number of installed
PMUs will be larger than the minimum necessary for observ-
ability. In other words, this approach leads to a larger num-
ber of placed PMUs than [16], [23], and others. Nonetheless,
the idea of installing PMUs in a phased manner is of practical
interest given the amount of investment involved. Along these
lines, let𝕊, card(𝕊) = np, be the minimum set of PMUs required
to attain observability. Ideally, card(𝕊) = card(𝕊1 ∪ 𝕊2 ∪⋯ ∪
𝕊t ), where𝕊t denotes the set of PMUs installed in the last stage,
t . This condition would ensure that upon completion of the
last stage, the number of PMUs installed is not larger than the
minimum set of PMUs required to attain observability. On the
other hand, the measurement model will not be observable until
the last stage is completed. This idea is pursued in [68], which
accounts for an important extension of the IP method. The
minimum set of PMUs required to attain observability is deter-
mined beforehand. Also, the number of PMUs to be installed at
each stage is defined a priori based on, for example, the available
budget for each stage. Then, for each stage 𝓁:

max
nbu∑

k=1

sk,

s.t. Au ≥ s,

uk =

{
0 ∀ k ∉ 𝕊,
1 ∀ k ∈ 𝕊0 ∪ 𝕊1 ∪⋯ ∪ 𝕊t−1,

nbu∑
k=1

uk =

t∑
𝓁=1

n𝓁.

(16)

The interpretation of (16) is simple. The set 𝕊 is known, but
not all PMUs can be installed at once. The question is what is
the best choice of 𝕊𝓁 ⊂ 𝕊, 𝓁 = 1, … , t . The strategy in (16) is,
for each stage 𝓁, to maximise the number of buses in which
the voltage phasor is measured or can be calculated, given the
number of PMUs to be installed at stage 𝓁, n𝓁 < np. In (16),
sk is equal to 1 if the voltage at bus k is directly measured
or can be calculated, and 0 otherwise. The inequality Au ≥ s

is a relaxation of (10). The equality uk = 0 ∀ k ∉ 𝕊 ensures
that only elements of 𝕊 are candidates for placement, whereas
uk = 1 ∀ k ∈ 𝕊0 ∪ 𝕊1 ∪⋯ ∪ 𝕊t−1 fixes the candidates chosen
in earlier stages; 𝕊0 = ∅. The last equality constraint restricts
the number of PMUs allowed to be placed at stage 𝓁. The
formulation in (16) is amenable to the consideration of zero-
injection buses, and the constraints remain linear, as is the case
in [57, 58]; therefore, this formulation is henceforth referred to
as the multi-stage ILP method. In addition to (16), the work in [68]
develops a simple yet effective way of including a measure of
the degree of redundancy in the optimisation model. The num-
ber of PMUs that provides access to the voltage phasor at bus k

is

n
(k)
pmu = n

(k)
br
+ 1, (17)

where n
(k)
br

denotes the number of branches connected to bus k.
A measure of the degree of redundancy is given by

𝛾 =

nbu∑
k=1

n
(k)
pmu, (18)

and it can be easily incorporated into the IP method and its
extensions. Similar ideas are used in, for example, [69, 70].
Note that the degree of redundancy has an important effect
on the performance of the well-known robust state estimators,
for example, the least absolute value (LAV) estimator [5] and
the Schweppe-type generalised maximum likelihood estimator
[71]. The work in [72] modifies the IP method and develops
a systematic approach to place PMU measurements such that
the minimum degree of redundancy required by the LAV esti-
mator is achieved. Measurement redundancy is mission-critical
for state estimation and will be discussed in more detail later
in this section. In addition to (18), other criteria can be used
to prioritise certain locations in earlier stages of a multi-stage
plan or to rank multiple solutions of single-stage placements.
For example, one can prioritise the observability of voltage
control areas and/or important tie-lines; see [73]. The multi-
stage minimum PMU placement problem is approached from
a probabilistic viewpoint in [74], where the observability of
each bus in a network is modelled by a probability density
function. In other words, as opposed to a deterministic view,
where each bus in a network is either observable or not, the
view in [74] is that each bus in a network is observable with
a given probability. Accordingly, the problem constraints are
modified, and the IP method is reformulated as a mixed-integer
linear programming problem. Unfortunately, the additional
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ALGORITHM 1 Incremental reduction of H

complexity added by the probabilistic constraints is exchanged
by neglecting the zero-injection buses, which is an important
deficiency. This deficiency is addressed in [75, 76]. See also
[77].

The placement strategies discussed to this point are based
on the notion of topological observability, which is not strictly
a sufficient condition to solve the state estimation problem (6)
[78]. In practice, it is possible to encounter cases in which H

is numerically ill conditioned. The work in [79] addresses this
issue by developing a simple procedure [80] to attain numerical
observability [see Observability for static state estimation in trans-

mission grids]. Note that the dimension of H in (1) is m × nbu ,
and, in general, m ≥ nbu . In particular, m = nbu is the size of the
minimum set of linearly independent measured variables for
which (1) can be solved. The idea in [79] is to start by building
the matrix H considering all possible nbu voltage measurements,
plus all possible nbr current measurements, such that, initially,
m = nbu + 2nbr > nbu . Then, Algorithm 1 is executed.

The rows of H that last on the completion of Algorithm
1 indicate the minimum set of independent variables that
guarantees numerical observability. Note that this method leads
to the minimum set of independent variables, which does not
necessarily correspond to the minimum number of PMUs.
This important drawback is alleviated by a heuristic given in
[81], but there is no guarantee that the obtained set of PMUs
is minimum. This drawback is effectively overcome in [82] by
combining the IP method with the original ideas in [79]. The
work in [54] relies on similar ideas, that is: (i) build H for an
initial PMU placement; (ii) remove a PMU and update H ; (iii)
check if the updated H is of full rank. The solution is obtained
iteratively.

Consideration of PMUs with limited measurement channels:

To this point, it is assumed that a PMU installed on bus k

measures the voltage phasor at bus k as well as the current
phasor in all the branches that are incident to bus k. This is
possible because of the capability of the commercially avail-
able PMUs that typically have more than 20 measurement
channels; however, this capability could be limited, thereby

influencing the problem solution. To this end, [83, 84] use a
strict assumption that PMUs are supposedly provided with
two measurement channels—one for the voltage signal and the
other for the current signal. Moreover, though previous work
supposes that PMUs are installed on the network buses, here,
PMUs are supposedly installed on the network branches. Accord-
ingly, the optimisation problem in (8)–(11) is reformulated as
follows:

min
nbr∑

k=1

c′
k
⋅ u′

k
,

s.t. g(u′ ) ≥ 1,

(19)

where nbr is the number of branches in the network; c′
k

is the
cost of installing a PMU on branch k:

u′
k
=

{
1 if a PMU is installed on branch k,

0 otherwise,
(20)

gk(u′ ) =
nbr∑
𝓁=1

Bk𝓁 ⋅ u
′
𝓁
≥ 1, (21)

Bk𝓁 =

{
1 if branch 𝓁 is incident to bus k,

0 otherwise,
(22)

and Bk𝓁 denotes the k𝓁th element of the bus-to-branch connec-
tivity matrix B [see Admittance matrix and connectivity matrices]. For
example, for the network in Figure 2:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0

0 1 0 0 1 1 0 0

0 0 0 0 1 0 1 1

0 0 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

As in [23], by modifying the constraints g(u′ ), it is possible to
consider zero-injection buses, eliminate critical measurements
[see Measurement classification], and retain observability under a set
of contingencies and single PMU losses [83, 84]. Interestingly, a
set of 1291 PMUs resulted from solving (19) for a large utility
system with 2285 buses. Note that 1291 > nbu∕2, which is, in
principle, the worst-case scenario [16]. This result provides evi-
dence that the minimum number of PMUs required to attain
system observability might be considerably augmented by con-
sidering practical factors. This is clearly the case of devices with
limited measurement channels. A set of devices with more mea-
surement channels tends to yield a larger spanning measurement
tree. For other works that consider the case of limited measure-
ment channels, see [85, 86].
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MEASUREMENT CLASSIFICATION

In static state estimation, a measurement is classified
as either critical or redundant. A well-designed measure-
ment system should not contain critical measurements.
See, for example, [87] for more details.
A measurement is critical if, after removing it, (1)
becomes unobservable. Errors in critical measure-
ments cannot be detected by bad data analysis algo-
rithms embedded in the state estimator.
A measurement is redundant if, after removing it, (1)
remains observable. Errors in redundant measure-
ments can always be detected by bad data analysis.

2.1.2 Measurement redundancy for static state
estimation in transmission grids

To this point, the review is centred around the question of the
minimum set of PMUs that makes (1) observable. For state esti-
mation, however, the observability of the measurement model
is not enough. One key task performed by a state estimator is
to detect, identify, and correct measurement errors. This task is
referred to as bad data analysis [88], and it is improved by mea-
surement redundancy. The elimination of critical measurements
is of particular interest. This is because the state estimator is
unable to detect if a critical measurement is a bad measurement.

A PMU placement strategy that eliminates critical measure-
ments in the existing RTU measurement system is developed in
[89] and extended in [90]. The work in [89, 90] develops and
expands on the applicability of the IP method. It starts with a
clever observation that from a topological standpoint, the sys-
tem observability is independent of the numerical value of the
parameters, {yk0, yk𝓁}, and the algebraic state vector, x. This
allows for series admittances to be set equal to j1.0 per unit
and voltage magnitudes to be set equal to 1.0 per unit. Shunt
admittances are neglected. We stress that (topological) observ-
ability analysis does not depend on the actual state of the system
or the branch parameters, making it possible to use these simpli-
fications without loss of generality [5]. By plugging values into

ik𝓁 = yk𝓁

(|vk|e j𝜃k − |v𝓁|e j𝜃𝓁
)
= − j1.0

(
e j𝜃k − e j𝜃𝓁

)
, (24)

and after some algebraic manipulations, one obtains a linear
regression model between currents and voltage phase angles:

Re(ik𝓁 ) ≈ 𝜃k − 𝜃𝓁, (25)

that is valid for sufficiently small 𝜃k and 𝜃𝓁, such that:

⎡⎢⎢⎢⎣
⋮
𝜃k

Re(ik𝓁 )
⋮

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
⋱
⋯ 1 0 ⋯
⋯ 1 −1 ⋯

⋱

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
⋮
𝜃k

𝜃𝓁
⋮

⎤⎥⎥⎥⎦ = H pmu ⋅ 𝜽. (26)

Note that the algebraic manipulations in (24)–(26) are nec-
essary to merge the measurement model of the RTU measure-
ment system, which is non-linear, with the measurement model
of the PMU measurement system, which is linear. Next, instead
of (1), consider the measurement model:

z
P
= HP𝜃𝜽 + e, (27)

where z
P

contains measurements of real power flows and injec-
tions, and HP𝜃 is the P𝜃 sub-matrix of the Jacobian matrix
obtained from the DC power flow equations. See also [91, 92].
By augmenting (27) with (25):

Measurement matrix =

[
HP𝜃

H pmu

]
, (28)

and it is possible to consider mixed measurement systems of
RTUs and PMUs together. The measurement matrix in (28) is
used along with the IP method to place PMUs and eliminate
critical measurements simultaneously. See [90] for more details
and [93, 94] for an insightful discussion. The computational effi-
ciency of the method in [90] can be improved by resorting to the
lower–upper decomposition of the measurement matrix along
with sparsity techniques [92].

In addition to eliminating critical measurements, one must
consider leverage measurements [see Leverage measurement]. This
is because leverage measurements have an undue effect on
most power system state estimators, with a few exceptions
[71, 95, 96]. Note that most energy management systems
available commercially employ a WLS state estimator, which is
vulnerable to leverage measurements. Indeed, the vulnerability
of the WLS estimator to bad data has been known since the
seminal work of Schweppe and Handschin [88, 97]. Moreover,
as pinpointed in [95], locations susceptible to create leverage
measurements ‘have to be provided with enough measurements
in order to increase their local redundancy. Indeed, they tend
to be isolated in the factor space and weakly coupled with
the surrounding measurements’. Thus, a cluster of measure-
ments around these locations is recommended to bound their
influence in the estimation process; otherwise, the algebraic
states (voltage phasors) close to these locations are estimated
with large variances. Unfortunately, though the formulation in
[89, 90] eliminates critical measurements, it does not consider
leverage measurements. The problem of measurement redun-
dancy is only partially solved in [89, 90]. The consideration of
leverage measurements is a gap in the literature and an oppor-
tunity for future development. This is further discussed in
Section 4.

Consideration of topology changes and topology errors:

In addition to critical measurements, topology changes are
another factor that might render a measurement system with
minimally placed PMUs ineffective. Note that topology changes
occur every so often, and they are driven by, for example,
scheduled maintenance of equipment, seasonal trends in electric
power consumption, and unforeseen equipment/systems out-
ages.
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LEVERAGE MEASUREMENT

Recall the measurement model (1), which is given by
z = Hx + e. Let zi be the ith element of z, and h

𝖳
i be

the ith row of H . All the row vectors h
𝖳
i , i = {1, … ,m},

lie in the so-called factor space of regression. If there
is an outlier in h

𝖳
i , then the corresponding measure-

ment zi will have an undue influence on the state esti-
mate x̂. See (6). In this case, zi is a leverage measure-

ment. For more details, the reader is referred to [5, 95].
Note that this definition of a leverage measurement is
based on the notion of factor space, and it is anchored
on statistics theory. The notion of leverage measure-
ments was introduced to the power system commu-
nity by Mili, Rouseeuw, and colleagues [95]. So-called
by statisticians as influential data points, Rouseeuw and
colleagues [98, 99] coined the term leverage point. Note,
however, that the numerical effect of leverage measure-
ments on power system state estimation was noticed
earlier by Monticelli [78]. The following conditions are
known to create leverage measurements in power sys-
tems:
∙ An injection measurement placed at a bus that is

incident to a large number of branches.
∙ An injection measurement placed at a bus that is

incident to branches of very different impedance
values.

∙ Flow measurements along branches whose
impedances are very different from those of the
other branches in the system.

∙ Using a very large weight for a specific measure-
ment.

Additionally, the measurement matrix, H , needs to be re-
evaluated after any topology change. This is accomplished by
topology processing algorithms embedded into the static state
estimators. These algorithms are responsible for building the
network connectivity model—also referred to as a bus-branch
model—based on the status of switchgear in the field; how-
ever, it is not uncommon for the equipment statuses to be
reported incorrectly, for example, because of communications
issues. This is an issue because topology errors yield biased esti-
mates and might cause the state estimator to diverge.

Therefore, a reliable measurement system should guarantee
observability in case of topology changes and in case of erro-
neous switchgear status [100]. By relying on the original ideas in
[16], [29] addresses N-1 contingencies, and [36] addresses single
branch outages. In general, to ensure topological observability
in case of contingencies, additional constraints can be imposed
on the IP formulation as follows:

gc
k
(u) =

nbu∑
𝓁=1

Ac
k𝓁
⋅ u𝓁 ≥ 1, (29)

where the constraint gc
k

enforces the topological observability
of bus k in case of a contingency c, for example, the loss of a
branch or a PMU; Ac

k𝓁
denotes the k𝓁th element of the bus-to-

bus connectivity matrix of the system under a contingency; and
u𝓁 is defined as in (9). Also, some work has addressed the case
of single outages by enforcing all buses to be observed at least
twice by PMUs—to do so, one simply sets the right-hand side
of (10) to be ≥ 2 instead of ≥ 1.

The work in [101] builds on [79] and addresses single mea-
surement losses and single branch outages. These strategies
remedy specific cases of topology changes but do not address
the case of erroneous switchgear status. Conversely, [102]
expands on (24)–(28) and develops a PMU placement strategy
that ensures that any single branch topology error is detectable.
As a by-product of the developed strategy, it is guaranteed that
the system will remain observable in case of any single branch
contingency. The approach in [102] provides a systematic way to
address the problem of topology changes and is overall superior
to the others. Note that the approach in [102] does not account
for leverage measurements either.

Other ideas with limited impact appear in the literature. An
example is considering controlled islanding. Provided the sys-
tem has a sufficient degree of observability, including con-
trolled islanding [103] in the measurement placement problem
is unnecessary.

2.1.3 State estimation accuracy under ideal
conditions

There is prolific work on the minimum placement of PMUs for
system observability. Some also consider the legacy measure-
ment system based on RTUs. For example, [89, 90] develops a
systematic approach to eliminate critical measurements in the
legacy measurement system by strategically allocating PMUs.
Following [89, 90], the work in [104] also supposes that the sys-
tem is observable through the legacy measurement system, but
it brings in a new perspective—it focuses on placing PMUs to
reduce the variance of estimated quantities [see Residual sensitiv-

ity analysis]. By reducing the variance of estimated quantities, one
improves the accuracy of the state estimation process.

It is cumbersome to consider variance reduction in formu-
lations using the notion of topological observability. This is the
case, for example, of the previously described IP method and its
extensions. An error covariance matrix exogenous to the origi-
nal formulation would have to be built and assessed iteratively.
Conversely, the notion of numerical observability lends itself
better by intrinsically considering the covariance matrix within
the formulation. In this context, the idea of using the covari-
ance matrix to place measurements can be traced back to the
seminal work of Schweppe and colleagues; see, for example,
[105] (p. 124, Discussion of Theory), or [97] (p. 980, Meter Configura-

tion). These works use the numerical observability-based prob-
lem formulation.

From the standpoint of an optimal experimental design, a
reasonable goal during the design phase of an experiment is to
minimise G

−1 in some way. Note that G
−1 has a direct impact
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RESIDUAL SENSITIVITY ANALYSIS

Define ẑ ∶= Hx̂. Then, using (6):

ẑ = H
(
H
𝖳

R
−1

H
)−1

H
𝖳

R
−1

z = Sz, (30)

where S is referred to as the hat matrix. Now, define the
residual vector r ∶= z − ẑ. Thus

r = z − Sz = (I − S)z =W z =W (Hx + e)

=W Hx +W e = (I − S)Hx +W e

=
(

Hx −H
(
H
𝖳

R
−1

H
)−1

H
𝖳

R
−1

Hx

)
+W e

=W e, (31)

where W is referred to as the residual sensitivity matrix.
Now, under the assumption that the measurement
errors are Gaussian:

 (r ) =  (W e) =W (e) = 0, (32)

 (rr𝖳 ) =  (W ee𝖳W
𝖳 ) =W (ee𝖳 )W𝖳 =W RW

𝖳.
(33)

It can be verified that (RW
𝖳 )𝖳 = RW

𝖳. By plugging
this into (33) and using the fact that R is a diagonal
matrix:

 (rr𝖳 ) =WW R =W R, (34)

where WW =W because W is an idempotent matrix;
hence, the residual sensitivity is related to the error
covariance matrix, R.

on the state estimate x̂; see (6). There are many different ways
in which G

−1 might be made minimal. Three optimality criteria
considered in [104] are:

∙ A-optimality: minimise the trace of G
−1;

∙ D-optimality: minimise the determinant of G
−1;

∙ E-optimality: minimise the maximum eigenvalue of G
−1.

The work in [104] is extended in [106, 107], wherein the
mutual information is the adopted criterion. Both works use
a greedy algorithm to solve the problem numerically. The idea
of placing PMUs to improve the state estimation performance
from an optimal experimental design standpoint is also pursued
in [108–110], wherein the problem is solved after relaxing it to
a convex semi-definite program. In particular, [109] formulates
a multi-criteria framework that concurrently seeks to:

∙ Increase measurement redundancy;
∙ Eliminate critical measurements;
∙ Maintain observability in case of single branch outages;
∙ Attain E-optimality;
∙ Improve the convergence of the Gauss–Newton algorithm.

The latter is noteworthy because [109] is the first attempt to
consider the numerical convergence of the state estimation solu-
tion process in the PMU placement problem. Note, however,
that the iteratively reweighted least-squares algorithm [111] is
preferred over the standard Gauss–Newton algorithm because
of superior numerical stability. See also [112], wherein the opti-
mal design considers the fact that PMU measurements of phase
angles (for both voltages and currents) are not perfectly syn-
chronised; and, [113], wherein the robust LAV estimator is con-
sidered in addition to the classic WLS estimator. The works in
[104, 106–110, 112, 113] also offer interesting theoretical devel-
opments, particularly in the areas of signal processing and opti-
misation.

In power systems, however, the standard deviations of the
noise of the metering devices and their associated communi-
cations channels, including the PMUs, are estimated with large
uncertainties [114, 115]. This fact adds to the level of uncer-
tainty of any approach that, directly or indirectly, uses G

−1.
Moreover, to each state x, there is a corresponding matrix G

−1.
In other words, G

−1 varies depending on the system operating
condition. The use of a single matrix G

−1 is, therefore, discour-
aged because it yields a plan that focuses on a single operat-
ing scenario. This drawback can nonetheless be circumvented
by using multiple operating conditions sampled, for example,
through Monte Carlo simulations.

Consideration of additional costs:

The discussion until now focuses on the cost of placing
PMUs subject to constraints, which are specifically tailored to
guarantee a predefined goal, for example, system observability.
However, a study conducted by the U.S. Department of Energy
reveals that the cost of PMUs represents approximately 5%
of the total investment [17]. The communications infrastruc-
ture is unquestionably an important layer between the measure-
ment devices and the end-user application [116]. This aspect
is overlooked in most of the previously discussed work. A few
exceptions include [52, 101], in which this aspect is superficially
touched upon. The work in [39] accounts for an attempt to
expand on that front by co-optimizing the cost of PMUs and the
cost of building the communications infrastructure. The cost
of the communications infrastructure is explicitly formulated as
follows:

min
nlink∑
k=1

clink,k ⋅ 𝜆k, (35)

where nlink is the number of communications links necessary
to form a connected graph with the PMUs; clink,k is the cost
per unit of length of the communications link k; and 𝜆k is
the length of the communications link k. The IP method is
augmented with (35), and the solution is obtained through a
multi-objective genetic algorithm. Further costs are considered
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FIGURE 4 Steps and summary of the most important factors to consider in the measurement placement problem. The focus is on only static state estimation
in transmission grids

in [47, 50, 117, 118]. In particular, [47] reports on the experi-
ence obtained from the expansion of the wide-area measure-
ment system of the Danish transmission grid. Although most
extensions of the IP method overlook the dissimilarity in the
cost of installing PMUs on different buses and focus on the
set of constraints in the pursuit of specific enhancements, [47]
focuses on the overall cost and reveals a set of important hidden
factors that must be included in the optimisation model. The
discussions related to instrument transformers are particularly
noteworthy. The cost of a set of three potential transformers
(PTs) plus three current transformers (CTs)—one PT and CT
per phase in a three-phase system—is approximately six times
the cost of a PMU. This does not include the cost of the struc-
tural foundation that is necessary to install the instrument trans-
formers in the substation. Nonetheless, multi-channel PMUs
require three CTs per current measurement channel. Also, there
are additional hidden costs. For instance, it might be necessary
to curtail generation or load for several hours to install the mea-
surement system, from which shutdown costs will incur. It is
interesting that though critical facilities such as large genera-
tion plants are taken as preferred locations to install PMUs, they
might incur the highest shutdown costs. Also, the installation of
instrument transformers involves a significant amount of man-
hours for engineering, cabling, etc. Fortunately, it is straight-
forward to include these costs in the formulation of the IP
method. Reference [47] also provides a cost baseline that might
be useful for initial projections. For costs associated with sub-
station infrastructure, see [119, 120]. For an informative discus-
sion on the communications infrastructure, see [121]. See also
[122, 123].

Pre-selection of the set of candidate buses:

In practice, before attempting to solve a heuristic or an opti-
misation model, it is necessary to build a set of candidate loca-
tions to place measurements. In this process, some buses might
be selected for mandatory PMU installations, whereas others

can be eliminated, thereby reducing the effort to search for
an optimal solution. The latter is very important because the
problem of finding the minimum PMU placement for system
observability is NP-complete [32]. In the models of electric
power grids, it is common to encounter buses that do not exist
physically or are not in practical locations to install PMUs. The
elimination of these buses, though it does not affect the final
solution, significantly reduces the effort to find it [124]. Radial
buses are another important consideration. For example, in the
network in Figure 2, buses {1, 5} are radial buses. Consider Bus
1. To make Bus 1 observable, there are only two candidate buses
to pick from: {1, 2}. Installing a PMU on Bus 1 leads to buses
{1, 2} being observable, whereas installing a PMU on Bus 2 leads
to buses {1, 2, 3, 6, 7} being observable. The second option is
better. This observation can always be leveraged to eliminate
radial buses from the candidate set. Another important observa-
tion relates to zero-injection buses. As discussed in previous sec-
tions, the consideration of zero-injection buses leads to a reduc-
tion in the set of constraints; thus, in general, it is recommended
to not include zero-injection buses in the set of candidate buses.

Before moving on to the next section, we present a sum-
mary of important factors. See Figure 4. These factors must be
addressed when the focus of the measurement placement prob-
lem is on static state estimation.

2.2 Dynamic state estimation in
transmission grids

Dynamic state estimation has gained momentum in the power
system community. Static and dynamic state estimation are sig-
nificantly different in many aspects, such as modelling and
assumptions, the range of applications, and the requirements
imposed on the measurement systems and communications
networks. See, for example, [125–128]. Here, the important
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difference between the two is in the measurement model (1),
specifically, in the vector x. For static state estimation, x denotes
the algebraic state vector, which contains the voltage magnitude
in all buses and the voltage phase angle in all but the reference
bus. As for dynamic state estimation, x denotes the dynamic state
vector or simply the ‘state vector’ (the latter is more common
outside the power system community). In this case, x contains
the variables associated with generators and their controllers,
for example, the rotor speed of synchronous generators and
the pitch angle of wind turbines. Because x is different, H is
different. More importantly, for dynamic state estimation, H is
time-varying. The notion of observability is thus more involved.
In the case of dynamic state estimation, as articulated in [129],
higher (lower) values of the smallest singular value of the observability

matrix indicates stronger (weaker) observability for a given measurement

set. Since observability is a local property, the smallest singular value of the

observability matrix will change along the trajectory of x. In contrast,
the notion of observability in static state estimation is binary—
that is, either the system is observable or not observable—and
not time-varying; therefore, the problem of observability for
dynamic state estimation is more challenging, as is the problem
of measurement placement that seeks to attain observability.

The work in [130] is the first to formulate a PMU place-
ment problem that considers dynamic state estimation. The
classical synchronous generator model [131] is adopted, and
the strategy is as follows. In the first stage, the IP method
is executed to obtain the minimum set of PMUs that yields
(1) as topologically observable for static state estimation;
this typically leads to multiple solutions. Then, in the second
stage, the solutions are ranked using a criterion that relates
to dynamic state estimation. The criterion is based on the
asymptotic error covariance matrix of the Kalman filter, given
by

lim
k→∞

[(x − x̂)(x − x̂)𝖳
]
, (36)

where x and x̂ denote, respectively, the true and estimated
dynamic state vector. Note that although the Gauss–Newton or
the iteratively reweighted least-squares algorithms are used in
the solution process of the static state estimation, dynamic state
estimation relies on Kalman filtering. The work in [132] pro-
poses the use of lower and upper bounds instead of the asymp-
totic error covariance matrix. The work in [133] does not con-
sider static state estimation and focuses exclusively on dynamic
state estimation. It formulates an optimisation model to max-
imise the determinant of the empirical observability Gramian,
which is calculated for a set of operating points to quantify the
degree of observability of a given PMU placement. See also
[134].

Dynamic state estimation will play a critical role in power sys-
tems control and protection [135]. Despite the availability of
preliminary results, the problem of measurement placement for
dynamic state estimation remains open. Accordingly, measure-
ment placement for dynamic state estimation is another oppor-
tunity for future development. This is further discussed in Sec-
tion 4.

2.3 Stability assessment and control in
transmission grids

Real-time stability [136, 137] assessment and control represent
another major application of PMUs. This is discussed next.

2.3.1 Voltage control in transmission grids

The work in [27] studies the effect of PMU location on the
secondary voltage control of transmission grids; it argues
that the minimum set of PMUs that makes (1) observable
is sufficient for systematically identifying pilot points. Note
that, following [27], a pilot point is a voltage at a load bus which

is measured in real-time and used for control action. The pilot point
must be representative of all the voltages within the region
where it is located. The adoption of the notion of pilot points,
however, might be obsolete in the context of the ongoing
modernisation of electric power grids. This is because of the
sustained growth in the number of flexible AC transmission
system devices deployed worldwide. Also, an investigation
of the effect of incremental PMU placement on decision
tree-based online voltage security monitoring [138] reveals
an overall improvement in voltage security misclassification
rates.

The work in [139] combines the multi-stage ILP method
with a measure of the system dynamic performance. The idea
is to perform time-domain simulations and rank the system
buses according to their dynamic vulnerability. The buses are
divided into generator buses and load buses. The vulnerability of
the generator buses is calculated using the individual machine
energy functions [140]. The vulnerability of the load buses is
calculated using the concept of proximity to voltage collapse
[141]. Based on the obtained bus ranking, the most vulnerable
buses are made observable at the earlier stages of the multi-stage
placement. A similar idea is pursued in [142], wherein buses are
ranked based on their correspondence to the largest Lyapunov
exponent of the network [143]. The idea is that buses with a
strong correspondence to the largest Lyapunov exponent are
more significant from the system stability standpoint, and they
should be made observable with higher priority. See also [144].
The drawback of these approaches lies in their dependence on
an explicit energy function, which is challenging to obtain.

2.3.2 Rotor angle stability assessment in
transmission grids

The work in [145] focuses on (small-signal) rotor angle stability.
Consider the similarity transformation:

w = U
−1

x, (37)

where w denotes the vector of the modal variables, and
U is the matrix containing the right eigenvectors of the
linearised system model. By plugging (37) into (1), one
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obtains

z = HUw + e, (38)

a formal relationship between the measurements and modal
variables. The key idea in [145] is to use the matrix prod-
uct HU to find a set of measurements from which all inter-
area modes are observable. This method has two important
drawbacks:

∙ Its performance on highly meshed networks might be poor.
Note that electric power transmission grids are typically
highly meshed.

∙ It relies on information obtained from the eigendecompo-
sition of the linearised system model. This information can
vary significantly under different operating scenarios.

The work in [146] develops a simplistic approach to place
PMUs on tie-lies with the objective of monitoring the inter-
nal voltage of synchronous generators. It focuses on the (tran-
sient) rotor angle stability of reduced two-area power systems,
and because of that, it has limited applicability. A more elabo-
rate strategy is available in [147], which starts by considering the
set of all network buses, 𝔹, card(𝔹) = nbu ; a set of candidate
buses, ℂ, card(ℂ) = nc ; and a set of credible disturbances, 𝔻,
card(𝔻) = nd . Then, for a given disturbance d ∈ 𝔻, define the
measurement matrix:

Z
(d )
ℂ
=
[
z1(t ) z2(t ) … z

nc
(t )
]
, (39)

where z
k
(t ) is a vector containing m pseudo-measurements

of the bus variable associated with the kth element of
ℂ. These pseudo-measurements are generated through the
numerical simulation of each disturbance d ∈ 𝔻. The strat-
egy is to select the set of PMUs, 𝕊 ⊆ ℂ ⊆ 𝔹, that max-
imises the information content of Z

(d )
ℂ

, denoted by (Z
(d )
ℂ

),
which is quantified by some norm (typically the 𝓁2-norm)
of:

∙ The entropy matrix, E—that is, (Z
(d )
ℂ

) = ||E||; or

∙ The coherency matrix, C—that is, (Z
(d )
ℂ

) = ||C||.
The choice in [147] is the Gramian norm, which is defined as

||||||||(Z(d )
ℂ

)|||||||| = det

([(Z(d )
ℂ

)]𝖳[(Z(d )
ℂ

)])1∕nc

. (40)

The k𝓁th element of E is given by

Ek𝓁 = E𝓁k = ∫
∞

0
log

(
z

k𝓁(𝜔)√
z

kk
(𝜔)z𝓁𝓁(𝜔)

)
d𝜔, (41)

where z
k𝓁(𝜔) is the power spectral density for k = 𝓁, and the

cross spectral density otherwise. The k𝓁th element of C is given

by

Ck𝓁 = C𝓁k

=

√√√√ 1
T

(
∫

T

1

[
𝜃k(t ) − 𝜃𝓁(t )

]2
+
[

fk(t ) − f𝓁(t )
]2

dt

)
,

(42)

where T denotes the sampling period, and fk denotes the fre-
quency at bus k. The optimisation model is defined as

min (Z(d )
ℂ

)
,

s.t. np ≤ nc ,

(43)

where np denotes the number of placed PMUs. See also [148].
The consideration of other notions of stability—particularly

frequency, resonance, and converter-driven stability [137]—is a
gap in the literature and an opportunity for future development.
This is further discussed in Section 4.

2.4 Topology change detection in
transmission grids

There have been some attempts to use PMU measurements
to detect line outages directly, without requiring state esti-
mation. Most available methods assume that if a line outage
occurs, then the voltage phase angles change significantly in
response to the change in topology. The work in [149] makes
the additional assumption that the power injections of the
network remain the same within a few seconds after a line
outage occurs. Also, it employs the DC power flow model to
do offline simulations and collect signatures of the system’s
voltage phase angle responses to single-line outages. Based on
these assumptions, the optimisation objective is established
as one of maximizing the minimum distance among the volt-
age phase angle signatures of the outages. The problem is
formulated as an IP and solved by using a greedy algorithm.
Interestingly, for the IEEE 30-bus system, if 10 PMUs are
to be installed to detect line outages, the optimal locations
are found to be at buses {1, 5, 8, 9, 14, 21, 22, 24, 26, 29}.
See also [150]. Now, based on the exhaustive search in [53],
the minimum number of PMUs to make the IEEE 30-bus
system observable under normal operating conditions, con-
sidering zero-injection buses, is equal to 7. If single branch
outages are considered, then this number increases to 10. The
optimal locations of PMUs obtained in [53] are as follows.
Considering:

∙ Normal operating conditions: {1, 2, 10, 12, 15, {19 or 20}, 27}.
∙ Single branch outages {2, 3, 5, 10, 12, 15, 17, 19, 24, 27}.

Note that the optimal locations in [149] and [53] are
hardly comparable. This provides a clear illustration that: (i)



820 NETTO ET AL.

the optimal solution for a particular application might not
be the overall best approach, and (ii) considering different
strategies for optimisation separately might lead to conflict-
ing solutions; therefore, such multiple considerations will be
necessary to develop a coordinated placement strategy that
is cost-effective and applicable to many use cases. In [151],
a logistic regression-based method is employed to identify
the most influential buses for outage detection. See also
[152].

2.5 Fault detection in transmission lines

The work in [153] is the first to propose a PMU placement
scheme for fault location. The adopted heuristic is simple, and
the algorithm has basically two rules: (i) place PMUs on the
two buses with the largest number of connected branches, (ii)
such that between two PMU buses there is a bus with no PMU.
The solution obtained with this simple scheme is not unique,
and the second rule might lead to more PMUs than the mini-
mum needed for fault location; thus, the solution always needs
to be refined. More importantly, the number of PMUs required
for fault location is much larger than the minimum number of
PMUs required for observability in static state estimation. For
example, in the IEEE 14-bus system, three PMUs are required
for observability [16] and eight PMUs are required for fault loca-
tion [153]. See also [154–156].

2.6 Power quality monitoring in
transmission grids

The first work to provide insight into how to place measure-
ments for power quality monitoring is [157], which describes a
reverse power flow procedure to identify the source of harmon-
ics in electric power grids. Note that power quality monitoring
requires a specific type of meter, referred to as harmonic meter
or power quality meter. The procedure relies on a linear relation
between the Fourier transforms of bus voltages, v(𝜔), and bus
injection currents, i(𝜔), as follows:

i(𝜔) = Y (𝜔)v(𝜔), (44)

where Y (𝜔) is the bus admittance matrix. Let io(𝜔), vo(𝜔)
denote a vector of observed or measured quantities, and let
iu (𝜔), vu (𝜔) denote a vector of unobserved quantities, such
that

i(𝜔) =

[
iu (𝜔)

io(𝜔)

]
, v(𝜔) =

[
vu (𝜔)

vo(𝜔)

]
. (45)

It follows that[
iu

io

]
=

[
Y uu Y uo

Y ou Y oo

][
vu

vo

]
, (46)

where (𝜔) is omitted for simplicity of notation. In [157], the
unobserved quantities are estimated in the least-squares sense:

v̂u = Y
𝖳
ou

(
Y ouY

𝖳
ou

)−1
(io −Y oovo), (47)

îu = Y uu v̂u +Y uovo, (48)

and it is suggested to place measurements to reduce the con-
dition number of the matrix Y ou . The rationale of this strategy
is provided, but no guidelines on how to choose the measure-
ment locations are offered. Yet, existing linear algebra-based
algorithms can pinpoint the best variables (measurement loca-
tions) to choose from to improve the condition number of a
given matrix. See, for example, [158]. Conversely, in [159], the
problem is approached in the following manner. For a given set
of candidate measurement locations and a pre-defined number
of measurements to be placed, find a measurement configu-
ration that minimises the error îu − iu . This approach follows
the idea of using the covariance matrix to place measurements
[97, 105]. The evaluation of all possible measurement configura-
tions through a complete enumeration method is a formidable
task. For example, to place five measurements in a system of

100 buses would require the evaluation of (
100

5
) = 75, 287, 520

possible combinations; hence, a sequential solution process is
adopted in [159] under the assumption that the best k + 1 mea-
surement locations contain the best k locations for all k. It turns
out that this sequential scheme is not guaranteed to yield an
optimal solution, as numerically demonstrated in [159]. To cir-
cumvent this issue, a genetic algorithm is proposed in [160]. It
is numerically demonstrated on small-scale test systems that the
solution achieved using a genetic algorithm is optimal and hence
superior to the sequential solution.

The work in [161] extends the methodology developed in [79]
to the specific application of power quality monitoring. Refer to
Subsection 2.1, Algorithm 1. See also [162, 163].

3 MEASUREMENT PLACEMENT IN
DISTRIBUTION GRIDS

In the U.S. electric power grid infrastructure, there are approx-

imately four times more low-voltage distribution substations than there

are high-voltage substations [164]; and each low-voltage distribution
substation minimally houses one feeder that delivers power to a
neighbourhood—this implies that if represented by graphs, dis-
tribution grids certainly have at least 10 times as many nodes as
transmission grids. This is a key difference between transmis-
sion and distribution grids, and it has an important effect on
measurement placement. Note, however, that this difference in
the number of nodes does not necessarily translate linearly into
the technical requirements for (and cost of) measurement place-
ment in distribution grids. It does, however, support the argu-
ment that a careful measurement placement is of paramount
importance. Table 3 summarises additional characteristics that
distinguish distribution from transmission grids.
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TABLE 3 Distribution versus transmission grids: Comparison of
characteristics

Characteristic Distribution grids Transmission grids

Topology Radial to slightly meshed Highly meshed

Phase unbalance/ Significant/each phase Negligible to moderate/

circuit analysis is analysed individually analysis of one phase

often suffices

Measurement system/ RTU/unobservable, RTU/observable,

observability Micro-PMU/unobservable PMU/unobservable1

Renewable generation/ Dispersed/high/very high Lumped at high-voltage

operational2 uncertainty/ substations/moderate/

planning3 uncertainty high to very high

Load demand/ Lumped at distribution Lumped at high-voltage

operational uncertainty/ transformers/high/ substations/moderate/

planning uncertainty very high high to very high

1A few transmission grids in the United States are fully observable by PMUs [128].
2Real time to a few hours ahead.
3Day ahead to weekly to yearly.

Another aspect to consider is the system infrastructure: exist-
ing instrument transformers, availability of communications
systems, space for expansion, etc. The nodes that represent a
transmission grid always reside within a high-voltage substation,
in which adequate infrastructure is often available. On the other
hand, many nodes that represent a distribution grid are located
in a section of an overhead (or underground) cable that crosses
cities with no or minimal infrastructure. This imposes additional
constraints on the candidate locations for measurement place-
ment in distribution grids. These and other aspects are discussed
next. As in the previous section on transmission, in this section,
we elaborate on the optimal measurement placement problem
as well as on challenges and solutions for distribution systems
for several different applications, starting with static state esti-
mation.

3.1 Static state estimation in distribution
grids

Table 3 shows that, irrespective of the measurement system, dis-
tribution grids are not observable. The following remarks are in
order.

Remark 1 (Observability in electric power transmission grids).
To this point, two definitions of observability are given: numer-
ical observability and topological observability. See Observability

for static state estimation in transmission grids in Subsection 2.1. We
refer to these definitions as strong notions of observability; they
are widely used in transmission grids.

Remark 2 (Observability in electric power distribution grids).
Static state estimation of distribution grids relies heavily
on the use of pseudo-measurements [165, 166], which are
obtained from historical load data. Without the use of pseudo-

measurements, distribution grids are not observable according
to the strong notions of observability.

Definition 1. Weak numerical observability is defined as the ability of

the linear model (1) to be solved for a state estimate x̂, provided that the

measurement vector z is augmented with pseudo-measurements.

It is clear from the previous discussion that observability is
yet a challenging concept to be applied in distribution grids.
See [167]. For this reason, the placement of various measure-
ment technologies—particularly when they are simultaneously
considered—remains of high interest, and an optimal mix is
contemplated in what follows. Note that this increases the com-
plexity of the problem; whereas in Section 2 the goal was to find
the number and location of measurements, in this section the
goal is to find the number, location, and type of measurements.
Table 4 summarises the types of measurements considered in
this subsection.

Also, in transmission grids, the algebraic state variables are
defined as the voltage phasors (magnitude and phase angle) at
each bus.4 Accordingly, the static state estimation algorithms are
designed to estimate the voltage phasors based on a set of mea-
surements. Note that the choice of algebraic state variables is
not unique. In distribution grids, two definitions of algebraic
state variables are commonly used:

∙ Voltage phasors at each bus;
∙ Current phasors at each branch.

It is beyond the scope of this paper to discuss the advan-
tages and disadvantages of these two options; see, for example,
[168, 169]. Of importance here, however, is the following: Given
that the measurement placement has a direct impact on the per-
formance of the static state estimator [170, 171], the choice of
algebraic state variables will affect the formulation of the mea-
surement placement problem.

Having motivated the measurement placement problem and
discussed its particularities to distribution grids, let us proceed
to existing methods.

Minimum number of measured quantities for weak observability:

A heuristic approach tailored to radial feeders is proposed in
[172, 173]. A set of rules developed based on empirical observa-
tions is proposed to determine the number, location, and type
of meters, as follows:

∙ Place a power meter at the substation.
∙ Place current meters on all main switch and fuse locations

that need to be monitored.
∙ Place current meters along the feeder such that the total load

in the zones defined by the meters are similar in magnitude.
∙ Place current meters on all normally open tie switches used

for feeder switching. Measurements of voltage magnitude at
both ends of these tie switches are desirable.

4 In certain cases, in addition to voltage phasors, the transformer taps and the firing angle
of converters are also defined as algebraic state variables.
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The number of meters placed on the system if the pre-
vious rules are used alone might be prohibitively large. The
authors circumvent this problem by adapting the method as
follows [196]. First, the notion of interesting or influential quanti-

ties is defined as any variable that can be expressed in terms
of the algebraic state variables and is needed by monitoring
and control applications, referred to as distribution automa-
tion functions. Then, the set of meters obtained with the pre-
vious rules is ranked based on their impact on the variance of
the estimated interesting quantities. The ranking will indicate
the order in which the meters are to be eliminated, if needed.
This method represents the first reported attempt to place mea-
surements in a principled fashion to aid in the static state esti-
mation of distribution grids. Along similar lines, the work in
[174] relies on empirical observations to develop a rule-based
heuristic approach aimed at reducing the variance of the esti-
mated voltage magnitudes on those nodes that are not mea-
sured. As opposed to the deterministic approach taken in [172,
173], uncertainties in the feeder loads, network parameters, and
the calculated feeder node voltages are considered in [174];
more specifically, the uncertainties are characterised by ranges of
values—that is, by intervals with confidence levels represented
as fuzzy numbers—and the measurement placement scheme is
assessed on all plausible system operating conditions. The rule-
based approaches in [172–174] (and their extensions) are simple
but need to be adapted on a case-by-case basis, thereby requiring
specific knowledge of the system. See also [197].

An important characteristic of modern distribution grids is
the presence of distributed generators (DGs), which are not
considered in the previous work. An endeavour to fulfil this
gap is reported in [175], where the case study contemplates
wind power plants connected to the 11-kV section of the U.K.
generic distribution system5 (UKGDS); and in [176, 177], where
the case study contemplates portions of an Italian distribution
grid to which wind, gas, and cogeneration power plants are con-
nected. Following [174], these works rely on the variance of volt-
age [175] or current [176, 177] magnitudes estimated for those
nodes that are not measured as a metric to assess the quality of
the obtained state estimation results. See also [167, 180, 191].

The method in [175] is heuristic and can be summarised as
follows:

(1) Define an initial set of buses, 𝕊, where voltage meters are
installed.

(2) Solve a power flow algorithm for the peak load.
(3) Solve a power flow algorithm for a random,±20% of nom-

inal load to consider uncertainties in load. Note that one
can modify this algorithm to consider variations in net
load—that is, load minus variable distributed generation.

(4) Calculate the difference: e =
∑card(𝕊)

k=1 (V
peak

k
−V rand

k
)2.

(5) If e < preset threshold, store the power flow case obtained
in 2.

(6) Repeat 2–4 until N (preset number of) power flow cases
are obtained.

5 https://github.com/sedg/ukgds

https://github.com/sedg/ukgds
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(7) For each bus b ∉ 𝕊, calculate the 𝜎2
b
=√∑N

𝓁=1(V rand
𝓁
−mean(V rand ))2

N−1
.

(8) If 𝜎2
b
< preset threshold for all b ∉ 𝕊, stop; else, continue.

(9) Move the meters in the set 𝕊 to buses with the largest vari-
ances 𝜎2.

(10) If required, add a meter on the bus with the largest 𝜎2;
update 1; go to 2. Note that the algorithm could be mod-
ified to remove meters from the initial list of buses if the
variance is smaller under all loading conditions.

The previous method is independent of any state estimator,
as opposed to the method in [176, 177], in which the problem
definition is stated as follows. Find a measurement placement
that makes the system observable with established accuracy at a min-
imum cost. The accuracy requirement is a consequence of the
use of pseudo-measurements with corresponding large uncer-
tainties. For example, it is suggested in [178] that the error in the
pseudo-measurements is in between 20% and 50%. Formally,
consider a system with n state variables, and define 𝜎2

max, the
maximum acceptable variance of any estimated state variable.
Then, for a given set of measurements:

min J =

n∑
k=1

(
𝜎k

𝜎max

)2

,

s.t. 𝜎k ≤ 𝜎max ∀ k = 1, … , n,

(49)

where 𝜎k is the variance associated with the estimated state vari-
able, x̂k. Finding the optimal solution to the combinatorial opti-
misation problem in (49) is challenging. A suboptimal solution
to (49) is achieved in [176, 177] by using dynamic program-
ming. The proposed method proceeds as follows. First, using
the model of a distribution grid of interest:

∙ Build sets of true values for N operating conditions by solv-
ing a power flow algorithm for different random loading sce-
narios.

∙ For each operating condition, build sets of synthetic measure-

ments by adding random noise to the power flow variables.

Next, assume that measurement devices are installed at the
substation and DG buses. Accordingly, synthetic measurements
corresponding to these locations are used in an attempt to solve
(49). If a solution is found, no additional measurements are
required. Else, define a set ℂ of candidate locations for mea-
surement placement. Also, define

𝜖 =
1
N

N∑
𝓁=1

J𝓁. (50)

Then, beginning from the initial configuration with measure-
ments at the substation and DG locations:

(1) Evaluate 𝜖 for all candidate locations in ℂ.

FIGURE 5 Pictorial idea of the sequential method in [176, 177]

(2) Place a measurement at the candidate location that yields
min(𝜖).

(3) Remove the corresponding candidate location from ℂ.
(4) If min(𝜖) < preset value and the constraints in (49) are not

violated, stop; else, go to 1.

The procedure is illustrated in Figure 5, where ℂ =
{a, b, … , z}. Starting from the initial configuration, 𝜖 is evaluated
for all candidate locations, and c yields min(𝜖). An additional
measurement is placed at this location, but the stopping criteria
are not met; thus, 𝜖 is re-evaluated for each of the remaining can-
didate locations, and z yields min(𝜖). This process is repeated
again before the stopping criteria are met. At the end, three
additional measurements are placed at locations {b, c, z}. It is
reported in [177] that approximately 29,000 combinations are
evaluated by this method before a suboptimal solution to (49)
is achieved for a distribution grid of 51 nodes. For the same
grid, an optimal solution to (49) using a complete enumeration
method would require the evaluation of combinations in the
order of 1013. The algorithm developed in [176, 177] is further
exploited in [182] with an extended error covariance matrix that
accounts for network model parameter uncertainties.

An extension of the previous methods is developed in [178,
179] in which the variance of voltage magnitudes and phase angles,
estimated on those nodes that are not measured, is used as a
metric to evaluate the obtained results. The authors start by
defining

pk = Pr

{|||| |̂vk| − |vk||vk| |||| < 𝜖v , |||||𝜃k − 𝜃k

𝜃k

||||| < 𝜖𝜃
}
,

∀ k = 2, … , nbu, (51)

where 𝜖v , 𝜖𝜃 are pre-defined thresholds. The goal is to obtain a
probability index pk > 0.95 for all but the substation bus, k = 1,
where supposedly an accurate measurement device is already in
place. From (51)

𝝁k = 
([|̂vk|
𝜃k

])
, (52)
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Rk = 
(([|̂vk|

𝜃k

]
− 𝝁k

)([|̂vk|
𝜃k

]
− 𝝁k

)𝖳)
. (53)

Note that the error covariance matrix, Rk, associated with
bus k is two-dimensional. The authors rely on the geometric
interpretation of the error covariance matrix—in particular,
the fact that the two-dimensional error covariance matrix can
be geometrically seen as an ellipse—as an indication to where
measurements shall be allocated. The strategy is to place mea-
surements at the locations where the ellipse area, proportional
to
√

det Rk, is largest. The accuracy of the estimated state
variables is improved by shrinking the ellipse areas. Ultimately,
this is a way to reduce the variance of the estimates, as in
previous work. But this idea is nicely cast on a more formal
statistical foundation in [178, 179]. The algorithm in [178] is as
follows:

(1) Run the state estimator over a set of Monte Carlo simula-
tions.

(2) For 𝜖v = 1%, 𝜖
𝜃
= 5%, if pk > 95%, k = 2, … , nbu , stop; else

go to 3.
(3) If the relative errors in voltage magnitude are within

bounds, go to 5; else go to 4.
(4) Place a voltage meter on bus k with the largest

√
det Rk.

(5) Compute the error covariance matrix corresponding to
the real and reactive power flow in each branch using the
accordingly modified (53).

(6) Place a power meter on branch 𝓁 with the largest
√

det R𝓁;
go to 1.

The algorithm proposed in [179] extends and improves on
the previous algorithm. See also [188, 190].

Following previous work, the variance of the estimated
quantities is the adopted criterion in [186] to evaluate the esti-
mation accuracy; however, the novelty in [186] is to link the gain
matrix to a circuit representation. For example, nodal voltage
measurements are represented by shunt admittances—branch
current, power flow, and power injection measurements are
also considered. The gain matrix is represented analytically in
the form of a network admittance matrix, which enables the
reformulation of the measurement placement problem as a
mixed-integer linear programming problem with disjunctive
inequalities.

Minimum number of measurement points for weak observability:

In all the previous work, the goal is to minimise the total num-
ber of measured quantities, that is, the total number of measured
voltages, currents, and powers. The authors of [184] argue that
minimizing the total number of measured quantities across the
grid might lead to a large number of geographically spread mea-
sured points, thereby leading to the need for sensors at more
locations and the resulting overall high cost. Alternatively, they
advocate that the optimisation could focus on ensuring the max-
imum utilisation of available information from a few locations,
that is, it might be cost-effective to measure as many quantities
as possible from the same or a few locations; therefore, the goal

here is to minimise the total number of measured points while
maximizing the knowledge from each of those points—a goal
that was also pursued by [177] in identifying the use of more
current measurements from the same node. Apart from this
philosophical difference, the measurement placement method
proposed in [184] follows the same lines of previous works, as
summarised next:

For all medium-voltage substations:

∙ Place voltage measurements on each bus.
∙ Place current measurements on each feeder leaving the sub-

station.

For all large industrial loads and DGs:

∙ Place voltage measurements on each large industrial load and
DG bus.

∙ Place current measurements on each branch connected to
large industrial loads and DG buses.

Further, at least one point of connection with household
loads and one point of connection with commercial loads
must be measured following the scheme for large industrial
loads and DGs. Finally, following previous work, additional
measurements should be placed to improve the performance
of the static state estimator; however, previous works use the
variance of voltage magnitudes and phase angles, estimated
on those nodes that are not measured, as a metric to evaluate
the obtained results. Conversely, [184] uses the variance of
branch voltage phasors as a primary criterion and the vari-
ance of complex power flows as a secondary criterion. The
overall strategy in [184] seems to be supported by a Dutch
distribution grid operator and is well justified; the trade-offs
between the proposed method and previous work are not
elaborated.

Consideration of advanced metering infrastructure:

To this point, standard meters—that is, current, voltage, and
power meters—have been considered. But the next generation
of distribution grids will benefit from more advanced measure-
ment systems [198], referred to as advanced metering infrastruc-
ture. Accordingly, a first attempt to formulate the measurement
placement problem for distribution grids to consider PMUs
and smart meters, in addition to standard meters, is reported
in [181]. The problem is formulated as an optimisation, and it
follows closely the idea in [178]. Formally

min
nbu∑

k=1

c
pmu

k
⋅ u

pmu

k
+

nbu∑
k=1

csm
k
⋅ usm

k
+ 𝛽v

N∑
𝓁=1

e𝓁v + 𝛽𝜃

N∑
𝓁=1

e𝓁
𝜃
,

s.t.

{
e𝓁v ≤ 𝜖v ,
e𝓁
𝜃
≤ 𝜖

𝜃
, ∀ 𝓁 = 1, … ,N ,

(54)
where c

pmu

k
(csm

k
) denotes the cost of installing a PMU (smart

meter) on bus k; 𝛽v and 𝛽
𝜃

are parameters that can be
used to give different weights to voltage amplitude and phase



NETTO ET AL. 825

deviations; and N is the number of considered operating con-
ditions

u
pmu

k

[
usm

k

]
=

{
1 if a PMU [smart meter] is installed on bus k,

0 otherwise,
(55)

ek
v ∶= max

k

|||| |̂vk| − |vk||vk| ||||; and ek
𝜃
∶= max

k

|||𝜃k − 𝜃k
|||. (56)

The optimisation problem (54) is solved by a genetic algo-
rithm. Solutions that violate accuracy limits are penalised,
thereby increasing their cost. Solutions with the same costs are
ranked by their accuracy. Finally, the method finds a Pareto
optimal front that finds a measurement placement solution for
varying degrees of placement costs and estimation accuracy
under several network configurations. This approach in [181]
is extended in [183] to consider the uncertainties associated
with DGs. Specifically, the DG outputs are used as pseudo-
measurements with (non-Gaussian) unknown probability distri-
bution functions modelled as Gaussian mixture models.

The work in [185] develops a PMU placement method that
extends the concept in [104] to distribution grids. The trace of
G
−1 (refer to A-optimality in Subsection 2.1.3) is the selected

criterion to evaluate the estimation accuracy. Following previ-
ous work [176–184, 186], the authors also resort to Monte Carlo
simulations; this is because measurement placement methods
for distribution systems must account for frequent topological
reconfigurations. The formulated problem is solved by using
a robust submodular optimisation algorithm, referred to as a
submodular saturation algorithm. It is demonstrated through
numerical simulations that the submodular saturation algorithm
outperforms greedy and genetic algorithms in most cases. See
also [194], which focuses specifically on microgrids. Following
[185], the works in [187, 189, 192] also approach the measure-
ment placement problem from the standpoint of an optimal
experimental design; only standard meters are considered. The
largest diagonal entry of G

−1 is the selected (M-optimality) cri-
terion to evaluate the estimation accuracy in [187, 189], whereas
a D-optimality criterion is selected in [192]. Finally, the work in
[193] explores properties such as the convexity and the modu-
larity of different metrics in the context of an optimal experi-
mental design to propose and compare several tight lower and
upper bounds on the performance of the optimal solution; the
focus is exclusively on the placement of PMUs.

Measurement placement heuristics/formulations for static
state estimation in distribution grids rely heavily on pseudo-
measurements, whether the notion of weak numerical observ-
ability is considered. Although convenient to address short-
term goals, this strong dependence on pseudo-measurements
is not effective as a long-term measurement placement strat-
egy. This is further aggravated by distributed generation that
adds another layer of uncertainty on pseudo-measurement mod-
els. The progressive elimination of high-uncertainty pseudo-
measurements via a multi-stage formulation is a gap in the liter-
ature and an opportunity for future development. This is further
discussed in Section 4.

3.2 Stability assessment and control in
distribution grids

Given that distribution system state estimation is still an emerg-
ing field, some studies have considered placing measurements
of power to improve load flow calculations and the consequent
voltage control strategies. A method for placing power flow
measurements in low-voltage networks to improve power flow
calculations in medium-voltage networks is proposed in [199,
200]. Along similar lines, but with a focus on volt-var control,
[201] proposes a measurement placement strategy for identify-
ing the most important locations that can help to achieve the
best performance of conservation voltage reduction. The algo-
rithm starts with an initial set of meters and estimates the volt-
age profiles. Using the standard deviation of estimated nodal
voltages, the least significant measurement is removed based on
the voltage estimation accuracy, until one is left with the most
significant locations for voltage measurements.

Stability assessment and associated control schemes repre-
sent a new paradigm in distribution grids. Accordingly, the
number of works on measurement placement with this focus
is scarce. This scenario is rapidly changing with the integra-
tion of DERs to modern distribution grids. Except for micro-
grids operating in island mode, the focus on stability assessment
and control for measurement placement in distribution grids
remains less relevant.

3.3 Topology change detection in
distribution grids

Most previous work addresses the high degree of uncertainty
in power distribution grids by relying on Monte Carlo simula-
tions. An interesting departure from this trend is found in [195].
The authors recognise that the probabilistic approach based
on Monte Carlo simulations depends on the statistics of mea-
surement noise and pseudo-measurements, which are unknown
and time-varying. Instead, the authors propose a determinis-
tic approach based on grid structural notions—namely, topol-

ogy detectability and outage identifiability—that depend only on
the system topology under normal operating conditions. Note,
however, that distributed generation is not considered. The
goal in [195] is to find a measurement configuration to guar-
antee that topology changes can be detected and identified.
The problem is formulated as an optimisation problem that
ensures topology change detection at minimal cost. Given the
definitions:

∙ 𝔹: the set of all buses in the distribution grid;
∙ 𝔹k: the set of all buses downstream of bus k in a radial net-

work;
∙ 𝔼: the set of all branches in the distribution grid;
∙ 𝕀0: the set of all zero-injection buses in the distribution grid;
∙ cbu

k
: the cost of installing a meter on bus k;

∙ cbr
(k,𝓁): the cost of installing a meter on branch (k, 𝓁);

∙ ubu
k
= 1 if a meter is installed on bus k, and 0 otherwise;
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∙ ubr
k
= 1 if a meter is installed on branch (k, 𝓁), and 0 other-

wise;
∙ dk: the degree of bus k, that is, number of branches incident

to bus k;
∙ rk: the index of the bus immediately upstream of bus k, that

is, the parent bus.

Then

min
ubu , ubr

∑
k∈𝔹

cbu
k

ubu
k
+
∑

(k,𝓁)∈𝔼

cbr
(k,𝓁)u

br
(k,𝓁),

s.t. d1ubu
1 +
∑
𝓁∈𝔹1

ubu
𝓁
+
∑

(1,𝓁)∈𝔼

ubr
(1,𝓁) ≥ d1 − 1,

dqubu
q +
∑
𝓁∈𝔹q

ubu
𝓁
+
∑

(q,𝓁)∈𝔼

ubr
(q,𝓁)

≥ dq − 2 ∀ q ∈ 𝔹∖{1} having dq ≥ 3,

ubu
q + ubr

(rq ,q) = 1 ∀ q ∈ 𝕀0,

ubu
𝓁
+ ubr

(k,𝓁) ≤ 1 ∀ (k, 𝓁) ∈ 𝔼.

(57)

It is proven in [195] that the constraints in (57) guarantee
topology change identifiability; the solution to (57) is obtained
by using a dynamic programming algorithm. We remark that
[193, 195] are, to the best of our knowledge, the only published
works that present numerical results on distribution test systems
of relevant size. See Table 5.

3.4 Fault detection in distribution lines

The work in [202] is the first to consider the problem of
measurement placement—specifically PMUs—for fault loca-
tion in distribution grids. Initially, one PMU is placed at the
substation. The pre-fault and fault-on current phasors acquired
by the PMU at the substation are used to calculate the fault
resistance and the fault-on voltage phasors. Then, additional
PMUs scattered at strategic locations provide fault-on voltage
phasor measurements. These locations are chosen to minimise
the error between the calculated and measured voltage phasors.
Formally

min
nbu∑

k=1

nbu∑
𝓁=1
𝓁≠k

uk𝓁

s.t.

⎧⎪⎨⎪⎩
uk𝓁 = 1, if

∑nc

q=1
|||v(k)

q − v
(𝓁)
q
||| = 0,

uk𝓁 = 0, otherwise,

(58)

where

∙ nc : number of candidate locations for measurement place-
ment;

TABLE 5 Distribution grid test systems

System name No. buses Published works

11-node 11 [207]

IEEE 13-node 13 [171, 186, 206]

UKGDS #1 16 [181, 183]

Italy #2 17 [176]

Italy #3 25 [199, 200]

30-node 30 [162, 195]

32-node 32 [185]

IEEE 33-node 33 [186, 191, 194, 197]

IEEE 34-node 34 [167, 171–174, 201, 204, 205]

IEEE 37-node 37 [195]

Italy #4 51 [177]

55-node 55 [187]

IEEE 69-node 69 [188, 190]

70-node 70 [185]

UKGDS #2 77 [180, 181]

Netherlands 77 [184]

India #3 85 [188, 190]

Italy #5 84 [177]

Italy #6 95 [182]

UKGDS #3 95 [175, 178, 179, 189]

119-node 119 [185, 191]

IEEE 123-node 123 [171, 193, 195, 205]

Brazil #4 134 [203]

Brazil #3 136 [192]

Brazil #5 141 [202]

183-node 183 [195]

Europe #2 906 [195]

IEEE 8500-node 8500 [193]

∙ v
(k)
q : measured voltage phasor on bus q for a fault at bus k;

∙ v
(𝓁)
q : calculated voltage phasor on bus q for a fault at bus 𝓁.

The optimisation problem (58) is solved by using a Tabu
search [202]. This method is extended in [203] to account for
multiple fault scenarios by using Monte Carlo simulations. In
this case, instead of a Tabu search, a greedy randomised adap-
tive search metaheuristic is adopted. Note that these methods
[202, 203] are specifically designed to algorithms that use volt-
age sag information to locate faults.

The work in [204] is mostly concerned with the detection
of anomalies in distribution grids using micro-PMUs. A com-
prehensive anomaly detection framework is developed. The
authors recognise that it is not feasible to deploy micro-PMUs
on all system buses and that the performance of the devel-
oped framework depends on the number and location of avail-
able micro-PMUs; therefore, a micro-PMU placement method-
ology specifically tailored to the anomaly detection framework
is developed as follows. For a three-phase system of nbu buses,
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the following algebraic equation holds true during steady-state
operation:

Ld = 0. (59)

where

L =
(
I3nbu
| −Y
)
; d =

[
i
𝖳
1 i
𝖳
2 i
𝖳
3 v𝖳1 v𝖳2 v𝖳3

]𝖳
; (60)

I3nbu
is the identity matrix; Y is the three-phase admittance

matrix; and i
𝖳
1 (v𝖳1 ) is a vector of the bus current injection (bus

voltage) phasors, associated with phase number 1. The symbol
‘|’ is used to denote that the matrix L is composed by two sub-
matrices; the top sub-matrix is I3nbu

, and the bottom sub-matrix
is −Y . Now, define a transformation matrix T such that

T =

[
T u

T a

]
→ T d =

[
d u

d a

]
, LT

𝖳 = (Lu|La ), (61)

where d a and d u contain variables associated with buses in
which micro-PMUs are available and unavailable, respectively.
It follows that

Lud u = −Lad a. (62)

The key idea in [204] is to project (62) onto the subspace
spanned by the left singular vector, 𝝊u , corresponding to the
smallest singular value of Lu . It is expected that this proce-
dure suppresses the effect of quantities associated with buses
in which micro-PMUs are not available, thereby making the
anomaly detection framework a function of available micro-
PMU measurements only. In other words, in steady-state oper-
ation, 𝝊𝖧u Lud u should be numerically small, and the normalised
quantity:

||𝝊𝖧u Lad a
||‖d a‖2
, (63)

should vary smoothly in time. Consequently, anomalies are
detected from abrupt variations in (63). Accordingly, the micro-
PMU placement is formulated as a min–max optimisation prob-
lem, as follows:

𝚷opt = min
𝚷

max
d a

d
𝖧
a X d a‖d a‖2

,

s.t. (Lu|La ) = L

(
T
𝖳
u |T𝖳a ),

T = I2 ⊗ (𝚷⊗ I3),

X = L
𝖧
a 𝝊u𝝊

𝖧
u La,

[𝚷]
k𝓁 ∈ {0, 1},

∑
k

[𝚷]
k𝓁 = 1,

∑
𝓁

[𝚷]
k𝓁 = 1.

(64)

The formulation in (64) seeks to minimise the number of
measurement devices while maximizing the range of buses
where anomalies can be detected. The min–max optimisation
problem (64) is solved by using a greedy search. This approach
has been recently extended to the problem of PMU placement
for fault location [205].

3.5 Power quality monitoring in distribution
grids

A measurement placement method for power quality estima-
tion based on the notion of entropy is proposed in [206]. Monte
Carlo simulations are used to draw samples of network states at
metered and non-metered locations. Then, Bayesian inference
is used to obtain maximum-likelihood estimates of the states
at non-metered locations. Based on simulated and estimated
states at non-metered locations, the most poorly predicted non-
metered locations are selected as the location for the next meter.
See also [207].

4 DISCUSSION AND AVENUES FOR
FUTURE RESEARCH

Previous sections revisited and discussed the different meth-
ods for measurement placement in transmission and distribu-
tion grids. The methods were categorised by application. To
this point, the paper provides a fairly comprehensive description
of the critical factors that go into formulating a measurement
placement problem. Although state estimation remains the cen-
tral application, the paper also summarises the use of measure-
ment placement algorithms for other applications related to
power system stability and online security assessment. Now, the
objective of this section is to provide a summary of what was
discussed in previous sections with a forward-looking view.

Allocation algorithms developed for state estimation prob-
lems generally defined observability in a numerical or topolog-
ical sense, and past works typically tried to optimise the sen-
sor allocation to either maximise the observability against all
uncertainties for a given budget and/or allowable estimation
errors or minimise the cost of allocation given a specific mini-
mum requirement of observability and estimation errors. It was
found that formulations that used the topological definition of
observability—especially IP-based methods—lend themselves
well for incorporating uncertainties related to measurement
errors, topological changes, and PMU or branch outages. The
numerical observability-based problem formulation—though
thorough in its consideration of improving state estimation
accuracy—is not always easy to formulate. In practical situa-
tions, network topological information might be lacking and/or
the complexity of the optimisation problem under uncertainties
might be high.

Other concepts that are considered in the measurement
placement for state estimation improvement are critical mea-
surements, measurement redundancy, and infrastructure costs.
The concept of degree of observability also provides a practical
way to account for phased deployment in the measurement
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placement formulation. Other critical factors considered in the
placement problem for transmission systems are:

∙ Cost of PMU: In addition to sensor cost, other costs
included substation upgrade, instrument transformers such
as CTs/PTs, communications costs, installation and founda-
tion costs, network maintenance cost, data archival platforms
such as phasor data concentrators, and/or selected applica-
tion costs of wide-area measurement and control systems

∙ Network parameters: participation factor of system states,
zero-injection buses, and pre-existing PMU measurements

∙ PMU aspects: measurement channel limits, data availability,
PMU outages, and degree of redundancy

∙ Uncertainties modelled: load variations, generation or branch
outage/variations, network parameters, DER outputs, trans-
mission line outages, topology changes, and N-1/N-2 con-
tingencies

∙ Other applications in addition to state estimation: dynamic
state estimation, stability assessments such as transient rotor
angle stability and voltage stability, line outage or topology
detection, and fault identification.

Some of these applications related to stability and security
assessments typically use the concept of identifying the most
critical bus (with respect to a certain stability or a security index
of interest). The IP method for formulating the measurement
allocation problem can easily accommodate such considerations
of critical buses for sensor placement.

In works related to distribution system measurement place-
ment, the typical strategy is to reduce the estimation errors for
system states and depends on the use of pseudo-measurements
and Monte Carlo simulations. This is partly because of the large
node-to-measurement ratio in distribution systems and the gen-
eral lack of observability—or even the lack of network metadata
to model the state estimation problem using either the notion
of numerical or topological observability. As a consequence,
studies use a less strict definition of topological observability,
and missing data are filled with pseudo-measurements or plan-
ning data. Given the uncertainties introduced because of the
lack of data as well as increasing levels of distributed resources,
studies also resort to probabilistic approaches to solve the
estimation or stability assessment problems; hence, Monte
Carlo simulations provide a simple and straightforward way to
ensure that a measurement placement solution is suitable for
a large percentage of time against operational uncertainties.
Typical factors considered in the distribution grid measurement
placement problems are:

∙ Heterogeneous measurement devices (PMUs, micro-PMUs,
smart meters), multi-channel measurements, and pseudo-
measurements.

∙ Pre-defined number of meters and rule-based candidate
selection.

∙ Uncertainties: load time series, DG uncertainties, mea-
surement device uncertainty, network parameter, power
flow uncertainties, topology reconfiguration, pseudo-
measurement uncertainties, and critical data loss and associ-
ated costs.

4.1 Future directions

∙ Consideration of leverage measurements for static state

estimation in transmission grids: The notion of leverage
measurement was presented in Subsection 2.1.2. We conjec-
ture that the IP method and its extensions can be modified
to address the issues caused by leverage measurements. One
approach is to use the hat matrix S given in (30). Recall that
ẑ = Sz. It follows that the diagonal element of the hat matrix,
0 < Sii < 1, represents the influence of the ith measurement
z on its estimate, ẑ. This fact can be used to avoid placing
leverage measurements—that is, to avoid placing measure-
ments for which Sii is larger than a threshold. This approach
is suggested in [5, chapter 6.3]; however, Sii is directly related
to the Mahalanobis distance, hence it is vulnerable to the
masking effect [208]. Another approach is to place a clus-
ter of measurements around locations known to create lever-
age measurements. This approach is suggested in [95]. This
remains an open research topic, and it requires further inves-
tigation.

∙ Observability for dynamic state estimation in transmis-

sion grids: Power system dynamic state estimation is a
timely topic. Achieving (strong) observability [129, 209] for
dynamic state estimation represents a major effort, a line of
research that has been pursued [130, 132–134]. In all pre-
vious works, the synergy between static and dynamic state
estimation, briefly discussed in [210], has been completely
neglected. Also, none of the previous works considered plac-
ing merging units in addition to phasor measurement units.
An effective multi-stage strategy should consider that mod-
ern digital substations [211] come with merging units by
standard.

∙ Merging units: Most work focuses on PMUs in transmis-
sion grids and micro-PMUs and smart meters in distribution
grids; however, emerging high-resolution sensing and mea-
surement systems—such as merging units that can acquire
sample values at 5–10 kHz—will also play a vital role in future
grids with increasing levels of dynamic and stochastic phe-
nomena. Especially when it comes to (i) developing improved
dynamic models as well as substation protection and con-
trol systems and (ii) detecting high-impedance faults with
higher levels of inverter-based resources that typically con-
tribute very low fault currents. The availability of such high-
resolution data and their fast communications and data ana-
lytics becomes highly attractive for developing autonomous,
resilient systems. Although many such dynamic phenomena
are local, the question of interest for the optimal placement
of merging units will focus on identifying the most impor-
tant locations or substations among the millions of inverter-
interconnected candidate nodes that will be key to have merg-
ing units. The availability of other high-resolution sensing and
measurement systems—such as digital fault recorders, digi-
tal protective relays, and micro-PMUs—must also be consid-
ered while analyzing which location will benefit from merging
units data.

∙ Consideration of notions of stability other than volt-

age stability and rotor angle stability: There is renewed
interest in other notions of stability, including frequency
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stability and resonance stability [137], because of the integra-
tion of converter-interfaced generation in modern power sys-
tems. These notions have never been considered in the mea-
surement placement, and they represent an open field to be
exploited. Resonance stability assessment, in particular, will
require high-resolution measurements provided by merging
units.

∙ Elimination of pseudo-measurements for static state

estimation in distribution grids: The reliance on pseudo-
measurements has long been the only alternative for static
state estimation in distribution grids; however, the continu-
ous increase in distributed generation is increasing the level of
uncertainty associated with pseudo-measurements. The elim-
ination of pseudo-measurements has never been considered
in the measurement placement problem, and it could be an
interesting direction to pursue. The progressive elimination
of pseudo-measurements via a multi-stage formulation is of
particular interest to the industry.

∙ Open-source software: To date, open-source software for
measurement placement is not available. Power system oper-
ators are highly interested in such a computational tool, but
in general they do not have in-house expertise to develop it.
Moreover, it is difficult to justify the investment in a tool that
will not be continuously used. This type of initiative must
depart from governmental initiatives.

∙ Scalability and application to large realistic grids: The
review presented in previous sections indicates that most
measurement placement work presented has been developed
and tested on IEEE and other open-source test systems,
with very few real system applications, for example, the Ital-
ian network; see Tables 5 and 6. The important informa-
tion contained in these tables is twofold: (i) the performance
of most existing methods has not been assessed on realis-
tically sized systems, and (ii) research groups that have the
capability to work with realistically sized systems are clearly
identified.
On transmission grid applications, several papers have
applied their proposed measurement placement algorithms
on many test systems—the IEEE 14-, 30-, 57-, and 118-bus
systems are frequently used—thereby providing a means to
compare the algorithms and results; however, such a prac-
tice is less common on distribution grid applications partly
because of the fewer related works and level of maturity
of the research. In other words, measurement placement
for transmission grid applications has gotten more atten-
tion over the years than distribution grid applications, which
are increasing in relevance with increasing penetrations of
DERs. In general, there is a dearth of studies on large-scale,
realistic systems. One possible future direction could be to
apply appropriate methods to synthetic, large-scale, realistic
test systems developed as part of the ARPA-E GRID DATA
program [215]. Both the open-source transmission6 and dis-
tribution7 data sets available are large enough and will be

6 https://egriddata.org/search/field_topic/transmission-85
7 https://egriddata.org/search/field_topic/distribution-86

able to challenge the measurement placement algorithms. For
instance, the synthetic Bay Area distribution data set models
more than 4 million customers.

∙ Planning uncertainties: Other areas of future research can
be in terms of modelling several sources of power system
uncertainties. Typical considered uncertainties include PMU
outage, branch outage, bad measurements, and load and DER
outputs. Most of these are short-term operational uncertain-
ties; however, given that the measurement placement prob-
lem is a planning problem, long-term uncertainties related to
grid futures could also be considered, such as customer adop-
tion levels of DERs, variations in DER sizing, displacement
of conventional synchronous generators, degree of prolifera-
tion of smart inverters or control devices, and load growth
(including electric vehicle penetrations). These factors can
dictate the required level of observability and controllabil-
ity needed for various applications, the stability drivers in the
grid, and will consequently influence the locations, type, and
number of measurements required.

∙ Synergies from disparate measurement systems and

scalable processing systems: Another future direction to
pursue is modelling and quantifying the synergies across
multiple measurement systems. Most work reviewed in this
paper considered synergies across grid electrical output mea-
surements, for example, PMUs, meters. Very few work has
also considered weather forecasts as pseudo-measurements
of variable renewable generation output. This idea can be
further extended to form an optimal placement of mea-
surements considering both the grid and weather sensing
devices. Further extension could include measurements in
buildings, water delivery systems, and fuel and transportation
infrastructures. For instance, the optimal placement of all-sky
imagers [216] or pyranometers will be essential to forecast
the net load in futures with higher penetrations of distributed
solar; hence, leveraging data from smart meters, PMUs, and
weather measurements will provide an economic solution
for grid-edge observability. The solution strategy could also
include remote sensing, such as satellite image processing.
For both short-term operational states and long-term plan-
ning states, learning algorithms could be trained to estimate
the grid-edge states and identify the most critical locations
that will need sensing of appropriate electrical or weather
parameters to ensure the system observability, estimate the
states, and inform stability indices of interest. One aspect
related to this direction of work is the need for centralised
processing systems that can assimilate and curate all these dis-
parate data streams and distribute them to various operations
or use cases in a business system. Some utilities have already
begun the development of a such a centralised data ingestion
platform. The use of the Apache Spark or Kafka platforms is
also gaining traction among researchers and the power indus-
try to develop a scalable, heterogeneous data ingestion and
distributed analytics platform.

∙ Artificial intelligence, data anomaly detection and

fusion with model-generated data: In addition to fus-
ing raw measured data, artificial intelligence techniques can

https://egriddata.org/search/field_topic/transmission-85
https://egriddata.org/search/field_topic/distribution-86
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TABLE 6 Transmission grid test systems

System name No. buses Published works

5-bus 5 [90, 92]

WSCC 9-bus 9 [61, 74, 86, 117, 130, 132, 133, 159]

IEEE 14-bus 14 [16, 23, 28–31, 33–35, 37, 38, 40, 42–49, 51–54, 57–62, 64–66, 68, 70, 72, 73, 75, 79, 81–83,
85, 92, 101–104, 106, 108–110, 112, 118, 120, 124, 132, 149–153, 160, 161, 212–214]

18-bus 18 [160]

Longitudinal 21-bus 21 [145]

Southern Italy 22 [29]

IEEE 24-bus 24 [40, 46, 47, 53, 149]

West Bengal 24 [121]

New Zealand 27 [161]

Georgia-Florida 29 [146]

Hydro-Québec #1 29 [147]

IEEE 30-bus 30 [28, 34, 35, 38–41, 43–47, 49–54, 58, 60, 61, 66, 70, 81, 83–85, 101–103, 106–110, 112, 113,
118–120, 123, 124, 149, 151, 152, 160, 212]

Central Southern Italy 38 [29]

New England 39-bus 39 [16, 27, 29, 30, 34, 36, 40, 44, 46–49, 53, 54, 61, 66, 73, 77, 82, 101, 103, 107, 132, 139, 142,
144, 156]

Iran #1 50 [152]

IEEE 57-bus 57 [23, 28, 30, 34, 35, 38–46, 51, 52, 54, 58, 60–62, 64–66, 68, 70, 74, 76, 85, 86, 89, 90, 101, 106,
107, 110, 117, 123, 124, 151, 212, 213]

Brazil #1 61 [37]

Hydro-Québec #2 67 [147]

New England 68-bus 68 [134, 148, 156]

North Central U.S. and Canada 75 [157]

Simplified Italy 76 [29]

RTS96 96 [75, 86, 106, 120]

IEEE 118-bus 118 [16, 23, 27, 29, 34–36, 38–46, 50, 54, 59–68, 70, 77, 81, 85, 89, 90, 103, 104, 107–110, 112,
118–120, 122–124, 132, 151, 152, 214]

Italy #1 129 [29]

NPCC 48-machine 140 [133]

IEEE 50-machine 145 [134]

WSCC 173-bus 173 [16, 29, 31]

Mexico #1 190 [148]

Taiwan #1 199 [16, 27]

Iran #2 242 [34]

India #1 246 [33, 73, 82, 139]

Taiwan #2 265 [16]

USA #1 270 [51, 52]

Central America 283 [67]

298-bus 298 [53, 70]

IEEE 300-bus 300 [40, 41, 46, 47, 50, 64, 67, 85, 107, 110, 112, 119, 123]

AEP utility company 360 [138]

USA #2 444 [51, 52]

Denmark 470 [47]

Iran #3 529 [63]

India #2 996 [67]
(Continues)
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TABLE 6 (Continued)

System name No. buses Published works

Europe #1 1354 [107]

Brazil #2 1495 [124]

Entergy 2285 [83, 84]

Poland #1 2383 [40, 43, 54, 61, 62, 103, 107, 119]

Poland #2 2746 [38, 43]

Poland #3 3120 [110]

Poland #4 3375 [64]

USA #3 4520 [85]

Mexico #2 5449 [144]

USA #4 8000 [92]

add further richness to the data by using offline model-
generated data, especially to capture the influence of low-
probability, high-impact events and to detect unforeseen
patterns. This is particularly useful for applications that
are geared towards detecting anomalous data, cybersecu-
rity intrusions, and ensuring grid resilience—something for
which not many past works have designed optimal mea-
surement placement methods, as shown from the reviews in
Sections 2 and 3. Future work must look to fuse disparate
measurement system data sets along with validated model-
generated data through artificial intelligence. Typically infor-
mation content (or entropy) is high in the region of system
parameter measurements where the variability of grid relia-
bility or resilience is high, for example, the boundary region
between acceptable and unacceptable grid performance [7].
Given that such regions are less represented in typical grid
measured conditions, analytics that will further enrich the
data for such conditions through extensive offline model
analysis will be needed. Such efficient sampling of training
data can ensure optimal measurement placement for applica-
tions targeted towards ensuring grid resilience.
In terms of methodologies, typical methods for optimal mea-
surement placement are optimisation or heuristic based. The
former is highly useful considering that planning and state
estimation problems can be represented in terms of optimi-
sation; however, considering the future research directions
in this area that will need to work with large-scale, realis-
tic systems, detailed models of AC power flow equations,
as well as voltage control devices—and that will need to
consider both short-term and long-term uncertainties and
exploit the spatial and temporal synergies across multiple
types of measurements (e.g. sensing for weather, grid, build-
ing, asset health)—scalable data-driven approaches that can
fuse the disparate data from myriad measurements are defi-
nitely needed. Machine learning and statistical methods, such
as clustering and decision trees [7, 217], as well as signal pro-
cessing techniques [126] have already been used in the past to
identify the most representative or influential network nodes
to be monitored and their related measurements. Such meth-
ods are attractive especially for distribution grid applications

[218], given the lack of network models and metering infras-
tructure, including on the secondary side of service trans-
formers.

∙ Business value proposition: For real utility or industry
adoption of solutions, the value proposition of measurement
placement solutions will need to consider relevance to mul-
tiple stakeholders, applications, and planning time horizons.
The papers reviewed typically focus on one or two applica-
tions, and many revolve around ensuring complete or max-
imizing observability; however, a comprehensive placement
method for a business must consider myriad high-impact
applications or use cases (some of which were delineated in
this paper) and also consider values from both short-term
(grid operational performance) and long-term perspectives.
Given that business models in utilities are evolving around
the use and management of data to ensure reliable service
and innovative products for increased customer satisfaction,
the measurement system allocation problem must consider
the value streams and applications important for a typical
business model. One way to ensure this will be to work on
real system data and to work closely with industry stake-
holders to exploit the data streams, both live and historical
archives.

5 CONCLUSIONS

This paper reviewed various methodologies for optimal mea-
surement placement in transmission and distribution systems.
In general, all the transmission/distribution systems have pre-
existing measurements, but most methods ignored this fact
and placed measurements afresh, and very few methodolo-
gies considered pre-existing measurements. Future methods will
need to consider the synergies across the disparate sensing sys-
tems, including cutting-edge, upcoming systems, such as merg-
ing units, to improve the performance of a wide range of appli-
cations and to ensure economic plans for smart grid invest-
ments. Many methodologies—particularly the ones for distri-
bution grids—are validated on small distribution system mod-
els of less than 150 nodes; however, the size of the practical
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distribution system is much larger, and the practical applica-
tion of these methods is not well addressed. Most work in the
open literature has adopted the IP method and its extensions
for their flexibility, scalability, and applicability to real systems. Among
the various references cited in this paper, the works that seek
the minimum-cost PMU placement for system observability and
that report results in networks of 500 buses or more all rely
on some variation of the IP method; see Table 6. Future work
on the placement of measurements should consider the inte-
gration of disparate and synergistic sensing and measurement
system data in addition to synthetic generated data; in informa-
tion technology/operational technology system platforms, such
as energy management systems and advanced distribution man-
agement systems; and/or scalable data set ingestion platforms
in businesses. The use of artificial intelligence methods for sen-
sor placement methods to counter operational and planning
uncertainties as well as future business needs to ensure cyber-
security as well as resilience will gain more traction.
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ACRONYMS

ARPA-E Advanced Research Projects Agency-Energy
CT Current transformer

DER Distributed energy resource
DG Distributed generator
ILP Integer linear programming

IP Integer programming
LAV Least absolute value
PDC Phasor data concentrator
PMU Phasor measurement unit

PT Potential transformer
RTU Remote terminal unit
WLS Weighted least squares

NOMENCLATURE

c Cost of installing a device on a given location
clink,k Cost per unit of length of communications link k

dk Degree of bus k, i.e., number of branches incident to
bus k

e, e Error scalar, error vector
fk Frequency at bus k

g(∙) Vector-valued function of •
ik𝓁 Complex-valued current phasor from bus k to 𝓁

j
√
−1

m Number of measurements
n Number of state variables

n
(k)
br

Number of branches incident to bus k

nbr Number of branches of an electric power network
nbu Number of buses, also called nodes, of a power net-

work
nc Number of candidate locations for measurement

placement
nd Number of credible disturbances

nlink Number of communications links
np Number of placed measurements

n
(k)
pmu Number of PMUs that provide access to the voltage

at bus k

p Probability index
r Residual vector
s Bus observability indicator equal to either 0 or 1
t Total time of a multistage placement
u Measurement indicator equal to either 0 or 1

vk Complex-valued voltage phasor at bus k

w Vector of modal variables
x Algebraic or dynamic state vector (see context)

yk0 Shunt admittance of bus k

yk𝓁 Series admittance between buses k and 𝓁
z Measurement vector

z
P

Measurement vector containing real power
flows/injections

A Bus-to-bus connectivity matrix
B Bus-to-branch connectivity matrix
C Coherency matrix
E Entropy matrix
G Gain matrix
H Measurement matrix

HP𝜃 P𝜃 sub-matrix of the decoupled power flow Jacobian
I, Ik Identity matrix, identity matrix of dimension k

J Objective function of choice
N Number of
R Error covariance matrix

T , T Sampling period, transformation matrix
U Matrix of right eigenvectors
W Residual sensitivity matrix
Y Admittance matrix
Z Measurement matrix
ℂ Set of candidate locations for measurement place-

ment
𝔻 Set of credible disturbances
𝔹 Set of all buses in an electric power grid
𝔼 Set of all branches in an electric power grid
𝕀0 Set of all zero-injection buses in an electric power

grid
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ℝ Set of real numbers
𝕊 Set of selected locations for measurement placement

𝕊1 ∪ 𝕊2 Union of the two sets 𝕊1 and 𝕊2
ℤ Set of integer numbers
 Expectation operator
 Information operator
 Normally distributed random variable
𝛼k𝓁 Phase angle of the complex-valued current phasor

ik𝓁
𝛽 Parameter of choice
𝛾 System observability redundancy index
𝜖 Error bound
𝜃k Phase angle of the complex-valued voltage phasor vk

𝜆k Length of communications link k

𝜇 Sample mean
𝜎k Standard deviation associated with measurement k

𝝊 Left singular vector
∅ Empty set
∈ Element of
∉ Not element of
1k Vector of all ones of dimension k

⊗ Kronecker product
• Estimate of •
∙̃ Measured •
∙−1 Inverse of the matrix •
∙𝖳 Transpose of the vector or matrix •
∙𝖧 Conjugate transpose of the vector or matrix •| ∙ | Magnitude of a complex-valued variable ∙

card(∙) Cardinality, i.e., the number of elements, of a set ∙
det(∙) Determinant of a matrix ∙
Im(∙) Imaginary part of the complex-valued variable ∙
Re(∙) Real part of the complex-valued variable ∙
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