

Compressed Expanded Natural Graphite (CENG) Processing for PCM Composites

Alex Bulk, Wale Odukomaiya, Ethan Simmons, and Jason Woods

The National Renewable Energy Laboratory

IMECE Paper 2020-57439

Applications for Thermal Energy Storage

Solar Energy Storage

TES Batteries

Building Envelope Energy Storage

Compressed Expanded Natural Graphite (CENG)

Graphit

Benefits

- High th
- Low cc
- High p
- Low pointnanom
- High p
- Ability geome

Compressed Expanded Natural Graphite

- 1. Graphite flakes are intercalated with acid
- 2. Thermal shock causes rapid expansion
- 3. Expanded graphite "worms" are compressed to form a CENG matrix

Mallow et al, 2018

CENG Processing:

Porosity: Well Characterized

Not Investigated:

- 1. Thermal Shock Temperature
- 2. Thermal Shock Exposure Time

*We will soak in Tetradecane (C₁₄H₃₀)

CENG Performance Parameters

Objective: Evaluate Effect of CENG Processing Parameters (Thermal Shock Temperature and Exposure) on CENG Performance Parameters

Example Ragone Plot:

- Energy Density: Energy Stored per unit Volume – Improved by maximizing the <u>% Volume of PCM</u>
- Power Density: Rate of Energy
 Transfer per unit Volume –
 Improved by maximizing the
 Thermal Conductivity

Saturation Experimental Procedure

CENG Bulk Density:

$$\delta = \frac{m_{CENG}}{V_{CENG}}$$

CENG Porosity:

$$\phi = 1 - \frac{\delta}{\rho_{CG}}$$

PCM Volume Fraction:

$$V_f = \frac{m_{PCM}}{\rho_{PCM} \cdot V_{CENG}}$$

% PCM Pore Saturation:

$$V_{f,PCM} = \frac{V_f}{\phi}$$

Exposure	Thermal shock temperatures (°C)			
Time (min)	300	400	500	700
5	Χ	X	X	X
30	X	Χ	X	X
60	X	Χ	X	X
120	X	X	X	X

- 1. Soak CENG in PCM
- 2. Remove at Time Interval
- 3. Dry and Weigh
- 4. Restart timer and soak to next interval: repeat

^{*}Manufacturer recommends min shock temp @ 290 C

Thermal Conductivity Experimental Procedure

Porosity (%)	Thermal shock temperatures (°C)			
	300	500	700	
65%	X	X	X	
75%	X	X	X	
83%	Χ	Χ	X	
90%	X	X	X	

- 1. Shock mass of CENG required to achieve desired volume and porosity
- 2. Compress CENG puck to required thickness based on instrument resistance range
- 3. Use guarded heat flow meter to measure conductivity

Thermal Shock Effect on PCM Saturation

95% Porous CENG

- -Increased shock temperature and exposure yield:
- Greater rate of saturation
- Greater max saturation
- -Shock exposure improves saturation, but has diminishing returns

^{*}Cause of low shock temperature plateau starting at 30 s – 1 min is unclear

10

Time (min)

10000

Thermal Shock Effect on PCM Saturation

65% Porous CENG

- -Increased shock temperature and exposure yield:
- Greater rate of saturation
- Greater max saturation
- -Shock exposure improves saturation, but has diminishing returns

Time (min)

10000

100000

10

^{*}Lower Saturation Rates at Lower Porosity

Thermal Shock Effect on Matrix Morphology

SEM Imaging of Expanded Graphite:

Greater Shock Temperature and Exposure Time Yield:

- More pores per unit length
- Partial oxidation at 700 C
 associated with larger pores
- More accessible pores (pore walls broken)

Effect of Thermal Shock and Porosity on Thermal Conductivity

Thermal Conductivity vs. Porosity Measured at 20 °C:

*Different Measurement Methods Between Studies

- No significant effect of shock temperature
- Similar local maximum conductivity around 80-83% porosity seen by Bonnisal et al.
- Higher pore density above 83% yields lowered conduction pathways
- Anisotropic layering under high compression at porosities below 83% increases resistance

Summary

- Low thermal conductivity PCMs are impregnated in conductive CENG matrices to improve power density
- Past studies had only evaluated effect of CENG porosity and not thermal shock temperature or exposure time
- Greater shock temperature yields improved rate of PCM saturation and total saturation, as well as greater pore density
- Greater shock exposure improved saturation rates up to a day below 500 C
- Shock conditions did not affect conductivity but effect of porosity was consistent with literature

Thank you! Questions?

Alex Bulk, Buildings and Thermal Sciences Center, The National Renewable Energy Laboratory, abulk@nrel.gov, +1-303-384-6358

NREL/PR-5500-78503

IMECE Paper 2020-57432

