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Performance Comparison of Clipping Detection
Techniques in AC Power Time Series

Kirsten Perry1, Matthew Muller1, Kevin Anderson1

1 NREL, Golden, CO, USA

Abstract—In this research, a variety of methods were devel-
oped to detect clipping periods in AC power time series. AC
power data streams associated with 36 unique systems across
the United States were collected, and data points representing
clipping periods were manually labeled by experts. Using this
data set for training and validation, novel logic-based and
machine learning (ML) approaches were developed to classify
time series values as clipping or non-clipping. These approaches
were compared to the RdTools method for detecting clipping
periods. The logic-based and ML XGBoost approaches achieved
F-scores of 85.0 and 77.6, respectively, when cross-validated
against the manually labeled data, as compared to the current
RdTools approach (F-score of 56.4), indicating a significant
improvement at detecting clipping periods. Additionally, the
effects of each clipping filter when evaluating system degradation
rates were assessed, using 31 unique systems across the United
States. Results indicate that estimated system degradation rate
can vary based on the type of clipping filter used, by up to 0.6%
degradation rate for some cases.

Index Terms—machine learning, clipping, photovoltaic, solar,
modeling, rdtools

I. INTRODUCTION

Due to a significant decrease in solar module prices over the
past decade, developers have increased installations’ inverter
loading ratio (ILR), resulting in a higher DC-to-AC ratio.
By increasing a system’s DC-to-AC ratio, developers can
increase system output outside of peak irradiance windows.
Consequently, this design decision has led to an increase in
clipping in solar projects. Clipping prevents inverter overload
by operating the array in a reduced efficiency state when nor-
mal operation would exceed the inverter’s power conversion
limits. Generally, clipping signals manifest as a flat line at or
near the peak of an AC inverter’s production capacity. Clipping
thresholds can remain constant for an AC power time series,
or may vary. Some causes of variance include temperature
derating and dynamic plant control. Some example clipping
profiles, taken from physical AC power streams, are shown in
Fig. 1.

Best practices for PV degradation analysis include the
removal of clipped points from AC power or energy time series
[1]. A few approaches have been explored to mask clipping pe-
riods in AC inverter time series, which are described presently.

One approach, given in the RdTools Python package [2],
is to filter power or energy data using a percentile cutoff [1].
The default clipping filter in the RdTools package is set to
the 98th quantile, where any data in the AC power time series
greater than 99% of the 98th quantile is assumed as clipping,
and filtered out of the time series before running a degradation

Fig. 1. Example AC power time series data, taken from actual field PV
systems. Clipping periods are labeled in yellow and non-clipping periods are
labeled in blue.

analysis. Although this approach is simple and intuitive, it fails
to handle edge cases where the clipping cutoff threshold varies
over the course of the time series. Furthermore, this approach
filters out time series data during periods of peak irradiance,
where un-clipped systems may be performing optimally.

Another approach developed for clipping detection uses
fuzzy system logic [3], where features such as actual plant
power, the time series gradient mean, and the time series
gradient range are taken as inputs to evaluate the degree of
clipping in a solar plant. This method was validated using
labeled data from a PV plant located in Spain, and was
approximately 90% accurate. This research only explored
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algorithm performance at a single location; in contrast, our
work handles multiple configurations, data frequencies, and
locations, so it is more universally applicable when applied to
field data.

In this paper, we present a series of logic-based and ML
clipping filters and compare their performance to the RdTools
clipping filter performance using manually labeled and simu-
lated clipping validation data. We plan to publicly release these
algorithms via the RdTools package, as well as the manually
labeled data that we used during the validation process.

Additionally, we assess the effects of applying each clipping
filter when performing system degradation analysis, using
physical PV system data. By doing this, we demonstrate that
degradation estimates vary by clipping filter used.

II. METHODOLOGY

A. Datasets

Thirty-six AC power time series, representing 31 physical
PV systems and approximately 2.13 million rows of data, were
selected with the intent of building a training and validation
set. Data with a wide range of clipping behaviors was selected,
including varying clipping signal behavior (noisy vs. clean
signals), averaging interval (ranging from 1-minute to hourly),
and mounting configuration (single-axis tracking vs. fixed
tilt). Estimated clipping periods for each time series were
manually labeled by two experts with experience identifying
clipping signals in data. The datasets used for this study were
provided via the National Renewable Energy Laboratory’s
PV Fleet Performance Data Initiative [4]. A summary of
the manually labeled data set distribution by data averaging
interval and mounting configuration is provided in Tables I and
II, respectively. Predominantly, data streams are averaged at 1-
minute and 15-minute intervals, with one data stream averaged
at a 30-minute interval and two data streams averaged at a
60-minute interval. Fifteen of the data streams are associated
with single-axis tracking systems, and twenty-one of the data
streams are associated with fixed tilt systems.

A subset of the manually labeled data was selected and
artificial clipping signals were inserted into these time se-
ries. This simulated clipping data set was generated to test
algorithm performance during ideal clipping situations, where
all data are clipped at a constant AC power threshold. Two
different approaches were taken for inserting artificial clipping
signals. First, some data sets were down-sampled at different
frequencies, and time periods labeled as 100 percent clipping
were marked as clipping periods. For the second approach,
clipping at a variable threshold above the 70th percentile was
inserted in the time series, by setting all values greater than or
equal to the threshold as the associated threshold value. Each
time series could have up to 5 different clipping thresholds
across the series, with location and number of thresholds
randomly selected. A summary of the simulated clipping data,
broken down by averaging interval and mounting configura-
tion, is provided in Tables III and IV, respectively. Overall, the
simulated clipping data set consists of twenty-three individual
test cases, with the vast majority of the data sets averaged

TABLE I
DISTRIBUTION OF MANUALLY LABELED DATA, BY AVERAGING INTERVAL

Frequency (Minutes) Number Data Streams Number Readings

1 15 951387
15 18 1048464
30 1 64232
60 2 61364

TABLE II
DISTRIBUTION OF MANUALLY LABELED DATA, BY MOUNTING

CONFIGURATION

Mounting Configuration Number Data Streams Number Readings

Fixed Tilt 21 1237417
Single-Axis Tracking 15 888030

at 1-minute, 15-minute, and 30-minute intervals. Seventeen
of the test cases are associated with a fixed-tilt mounting
configuration, and six of the test cases are associated with
a single-axis tracking mounting configuration.

B. RdTools Approach

Each AC power time series described in the Datasets
subsection was run through the RdTools clipping filter. This
filter calculates the 98th quantile of the AC power time series,
and any values that are greater than 99% of the 98th quantile
are classified as clipping.

Any clipping periods identified by the RdTools clipping
filter were compared to the labeled training sets, to quantify
filter performance. Filter accuracy, precision, recall, and F-
score were calculated using the following three equations,
respectively:

accuracy =
TP + TN

TP + FP + TN + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F-score =
2 · recall · precision
recall + precision

(4)

where TP is the number of true positives, FP is the number
of false positives, FN is the number of false negatives, and
TN is the number of true negatives. Accuracy represents the
number of correctly classified data points divided by total data
points. Recall, or true positive rate (TPR), is the ability to
correctly detect positive cases. Precision, or positive prediction
value (PPV), is the fraction of correctly identified positives
given the total positive predictions. F-score is the harmonic
mean of precision and recall. The higher the F-score, the more
precise and robust the classifier.
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TABLE III
DISTRIBUTION OF DATA WITH SIMULATED CLIPPING PERIODS, BY

AVERAGING INTERVAL

Frequency (Minutes) Number Data Streams Number Readings

1 5 484783
5 1 199993

15 9 390142
30 6 203501
60 2 61322

TABLE IV
DISTRIBUTION OF DATA WITH SIMULATED CLIPPING PERIODS, BY

MOUNTING CONFIGURATION

Mounting Configuration Number Data Streams Number Readings

Fixed Tilt 17 1162365
Single-Axis Tracking 6 177376

C. Logic-Based Approach

A new logic-based filter was developed for detecting clip-
ping periods in time series. This filter identifies clipping
periods via the following steps:

1) The averaging interval of the power or energy time series
is determined. If the averaging interval is more frequent
than once every 10 minutes, then the time series is
aggregated to 15-minute intervals, using the mean.

2) The maximum and minimum readings are calculated
across a moving window for the time series. For tracked
systems with a data averaging interval more frequent
than once every 30 minutes, a window of 5 readings is
used. For all other systems, a window of 3 readings is
used.
Once the maximum and minimum moving values are
determined, the following equation is used to calculate
the maximum rolling range of each value:

rangemax =
xrollingmax − xrollingmin

xrolling max+xrolling min

2

∗ 100 (5)

where xrolling max is the rolling maximum over the past
n values, and xrolling min is the rolling minimum over the
past n values.

3) An initial boolean clipping mask is derived, where
values with a max rolling range (see (5)) of less than 0.2
are marked as clipping. When an individual data point is
determined as clipped per (5), all data points within the
given p-length rolling window are also set as clipped,
where p is 3 or 5 reading, as described in Step 2. The
value 0.2 is an empirically-derived cutoff.

4) Any high-frequency time series that were aggregated up
to 15-minute intervals are sampled back to their original
frequency. Clipping labels are forward-filled in the data.

5) Additional logic is added to address noise in high
frequency time series sets. For time series data sets with
a averaging interval of 10 minutes or more frequent, the
daily mean and standard deviation for labeled clipping

values is determined. A maximum and minimum daily
threshold for setting clipping values is derived as 2 stan-
dard deviations above and below the mean, respectively.
For time series data sets with a averaging interval less
frequent than every 10 minutes, the daily maximum and
minimum thresholds for clipping are set as the maximum
and minimum values where clipping is detected over the
course of that day, respectively.

6) Once the daily maximum and minimum clipping thresh-
olds are determined, all data values between these two
thresholds are updated as clipping periods.

7) An overall clipping threshold is applied to the data,
based on the classified clipping periods derived in the
previous steps. The following is calculated:

thresholdclipping =
xp99 − clippedxp99

xp99−clippedxp99

2

(6)

In addition to the previously identified clipping points,
all values in the time series greater than the overall
clipping threshold are classified as clipping.

8) Accuracy, precision, recall, and F-score, described in
(1)-(4), are calculated, where the logic-based model
predictions are compared to the ground truth labels in
the training and validation data set.

D. Supervised Machine Learning Approach

The labeled time series data described in the Datasets
section are used to train a series of black-box ML models
to classify clipping periods. For each individual data stream,
the data is min-max normalized, via the following equation:

xscaled =
x−min(x)

max(x)−min(x)
(7)

By performing min-max normalization, data streams with
different units and clipping thresholds can be compared si-
multaneously. Features are then derived from the min-max
normalized data. Features used in the model include:

• The min-max normalized AC power time series
• The simple moving average of the time series, where a

5 reading-window is used when the averaging interval is
more frequent than once every 10 minutes, a 3 reading-
window is used when the averaging interval is between
10 minutes and an hour, and 2-reading window is used
otherwise

• The forward- and backward-calculated derivatives for the
min-max normalized values and the rolling average

• The maximum rolling range of the min-max normalized
values, as shown in Equation 5

• The mounting configuration (fixed tilt vs. single axis
tracking), converted to a categorical variable

• The mode, or most common, time series sampling fre-
quency

• The daily maximum of the time series, as well as the
percent of the daily max each individual reading is

• After generating classifier predictions for a data set,
additional override logic is introduced. Specifically, all
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values between the maximum and minimum predicted
clipping periods for each day are set as clipping, where
predicted clipping periods must be 80 percent or greater
of the associated daily maximum value.

A random forest classifier model and an extreme gradient
boosting, or XGBoost, classifier model were used to train
the model. Python’s open-source scikit-learn [5] package was
used to build the random forest model, and the open-source
XGBoost package [6] was used to build the XGBoost model.

Cross-validation was used when evaluating model perfor-
mance. For each individual data stream, the model was re-
trained with the data stream omitted from the training set,
and model performance was evaluated on the omitted data
stream. In all, the model was regenerated 59 times, for each
of the 59 data streams (manually labeled and simulated data).
After the model had generated clipping classifications for each
data stream, the overall accuracy, precision, recall, and F-score
were calculated.

E. Applying Algorithms to Field Data

The degradation rates of 31 different systems in the PV
Fleets Initiative were calculated using the RdTools sensor-
based methodology [4]. Systems comprised a series of dif-
ferent solar fleet owners, as well as diverse geographic loca-
tions, sampling frequencies, and system configurations. When
performing the degradation analysis, all parameters remained
constant, except the clipping filter used on the data. Five differ-
ent experiments were run to assess the role the clipping filter
has on degradation results: no clipping filter applied to the
data (the placebo); the RdTools filter applied; the logic-based
algorithm applied; the Random Forest algorithm applied; and
the XGBoost algorithm applied. Once the RdTools sensor-
based degradation methodology was run on the systems, the
results for each experiment were compared.

III. RESULTS

A. Algorithm Performance on the Training and Validation Set

Table V displays the accuracy, precision, recall, and F-
score for each of the different clipping algorithms, based on
performance on the manually-labeled data set and simulated
clipping data set, respectively.

Using F-score as a benchmark since it accounts for both
classifier precision and robustness, the best overall perfor-
mance on the manually labeled data set was achieved by the
logic-based clipping filter, followed by the Random Forest
and XGBoost clipping filters, respectively. All ML and logic-
based filters performed better on the manually labeled data set,
compared to the standard RdTools clipping filter (F-score of
56.4). For the simulated data set, the Random Forest classifier
algorithm had the best overall performance with an F-score
of 93.6, followed by the RdTools filter (F-score of 92.8)
and the logic-based filter (F-score of 92.4), respectively. It is
unsurprising that the RdTools filter scores significantly better
on simulated data than on physical data. The simulated data
sets focus largely on ideal conditions where clipping occurs at
a consistent threshold at the time series maximum, which the

TABLE V
CLIPPING FILTER PERFORMANCE ON LABELED CLIPPING DATA

Label Algorithm Accuracy(%) Recall Precision F-Score

Manual RdTools 92.1 46.1 72.6 56.4
Manual Logic-based 96.5 89.4 81.0 85.0
Manual Random Forest 95.2 79.4 77.6 78.5
Manual XGBoost 94.8 81.4 74.1 77.6

Simulated RdTools 98.0 89.1 96.9 92.8
Simulated Logic-based 98.1 95.6 89.5 92.4
Simulated Random Forest 98.5 90.9 96.5 93.6
Simulated XGBoost 97.3 81.8 95.4 88.1

RdTools filter is constructed specifically to detect. However,
under field conditions, clipping signals do not necessarily
manifest this ideal behavior, as the clipping threshold may
vary over time and include noise. All of the algorithms perform
better on the simulated data than the manually labeled data,
likely because simulated data represents idealized clipping
behavior, in opposition to the real-world behavior present in
the manually labeled data set.

Table VI illustrates algorithm performance by mounting
configuration (fixed tilt vs. single-axis tracking), and Table VII
illustrates algorithm performance by data averaging interval,
for each of the data sets. In examining the results from
Table VI, algorithms generally perform similarly for fixed-
tilt systems and single-axis tracking systems, when F-score is
used as a benchmark. One notable exception is the RdTools
filter, which performs significantly better on fixed tilt data set
compared to single-axis tracking data set, for the manually
labeled data (an F-score of 67.7 vs. an F-score of 51.6,
respectively). AC power data for a tracking system manifests
as a valley-like signal around maximum daily output, as shown
in Figure 2. Although this signal is distinct from a clipping
signal, it is likely to be confounded as a clipping signal using
the RdTools’ filter’s simple logic.

Algorithm performance varied across averaging interval
for the manually labeled data set. For 1-minute, 15-minute,
and 60-minute manually labeled data, the logic-based filter
had the best performance, with F-scores of 81.1, 90.1, and
90.3, respectively. The random forest algorithm had the best
performance on the 30-minute manually labeled data, with an
F-score of 90.6.

B. Degradation Variability for Physical Systems, based on
Clipping Algorithm Used

In total, 31 systems, representing multiple fleet owners
across the NREL PV Fleets initiative, were evaluated using
the RdTools methodology to determine sensor-based degra-
dation rates [4]. Systems represented a wide geographic area
across the United States, with multiple configurations, module
technologies, and data sampling frequencies. Particularly, we
focused on how estimated degradation rates varied for each
system, based on which clipping filter was used. Fig. 3 shows
the difference in sensor-based degradation rates, where the
results that used the logic-based, XGBoost, and RdTools filters
are subtracted from the results where no filter was used, for
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Fig. 2. Tracking system behavior vs. fixed tilt system behavior, respectively,
where clipping periods are labeled in yellow and non-clipping periods are
labeled in blue.

each respective system. Data is color-coded by system, and
system degradation rate is calculated as the mean degradation
across all AC power inverters associated with the system.
Based on these results, the type of filter affects degradation
estimates; in some systems, this can be up to 0.6%/year.

Figure 4 displays the individual distributions of the clipping
filter variation, where the system degradation rate with each
respective filter applied is subtracted from the system degra-
dation rate when no filter is applied. The median difference
in degradation estimates for the XGBoost, Random Forest,
Logic-Based, and RdTools filters was 0.05%, 0.05%, 0.04%,
and 0.06%, respectively. Likewise, the standard deviation of
the differences for the XGBoost, Random Forest, Logic-
Based, and RdTools filters was 0.11%, 0.12%, 0.10%, and
0.20%, respectively. These results indicate that the degradation
distributions for the XGBoost, Random Forest, and logic-based
filters are similar, with a tighter distribution than the RdTools
degradation results.

IV. FUTURE WORK

In addition to performing degradation analysis on physical
systems, we plan to the same process on simulated data with

TABLE VI
CLIPPING FILTER PERFORMANCE BY MOUNTING CONFIGURATION

Labeling Mounting Algorithm Accuracy (%) F-Score

Manual Fixed Tilt RdTools 97.0 67.7
Manual Fixed Tilt Logic-based 98.3 82.2
Manual Fixed Tilt Random Forest 97.9 76.6
Manual Fixed Tilt XGBoost 97.8 76.9
Manual Single-Axis Tracking RdTools 85.3 51.6
Manual Single-Axis Tracking Logic-based 93.7 83.1
Manual Single-Axis Tracking Random Forest 91.5 79.1
Manual Single-Axis Tracking XGBoost 90.6 77.9

Simulated Fixed Tilt RdTools 98.1 92.6
Simulated Fixed Tilt Logic-based 98.1 90.8
Simulated Fixed Tilt Random Forest 98.6 92.2
Simulated Fixed Tilt XGBoost 97.2 83.7
Simulated Single-Axis Tracking RdTools 96.6 94.0
Simulated Single-Axis Tracking Logic-based 98.2 96.6
Simulated Single-Axis Tracking Random Forest 98.2 96.7
Simulated Single-Axis Tracking XGBoost 98.2 96.8

TABLE VII
CLIPPING FILTER PERFORMANCE BY AVERAGING INTERVAL

Labeling Frequency (min) Algorithm Accuracy (%) F-Score

Manual 1 RdTools 85.3 49.8
Manual 1 Logic-based 92.9 81.1
Manual 1 Random Forest 90.6 76.7
Manual 1 XGBoost 89.7 75.5
Manual 15 RdTools 97.8 76.4
Manual 15 Logic-based 99.3 90.1
Manual 15 Random Forest 98.9 85.8
Manual 15 XGBoost 99.0 86.8
Manual 30 RdTools 98.7 63.2
Manual 30 Logic-based 99.4 73.1
Manual 30 Random Forest 99.8 90.6
Manual 30 XGBoost 99.7 89.6
Manual 60 RdTools 94.0 43.5
Manual 60 Logic-based 98.7 90.3
Manual 60 Random Forest 98.5 88.4
Manual 60 XGBoost 98.3 87.2

Simulated 1 RdTools 97.5 93.2
Simulated 1 Logic-based 96.8 92.0
Simulated 1 Random Forest 98.8 96.9
Simulated 1 XGBoost 96.1 89.7
Simulated 15 RdTools 97.1 88.7
Simulated 15 Logic-based 99.5 98.2
Simulated 15 Random Forest 96.7 81.7
Simulated 15 XGBoost 96.0 77.1
Simulated 30 RdTools 99.3 96.8
Simulated 30 Logic-based 99.7 98.5
Simulated 30 Random Forest 99.7 94.7
Simulated 30 XGBoost 99.5 91.6
Simulated 60 RdTools 91.3 76.5
Simulated 60 Logic-based 99.2 98.1
Simulated 60 Random Forest 99.5 98.8
Simulated 60 XGBoost 99.4 98.6

known degradation rates, to evaluate degradation accuracy
when each of the four treatment types was used. By doing this,
we can further demonstrate that improving clipping filtering on
AC power data streams results in more accurate degradation
estimates for a system.

V. CONCLUSIONS

This research presents a series of new filters that can be
used to successfully detect clipping periods in AC power time
series data from solar installations. These filters, which will be
released in the RdTools Python package, allow solar analysts
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Fig. 3. Scatterplot of the difference in sensor-based degradation rates when no
filter is used vs. when each respective filter is used, color-coded by individual
system

Fig. 4. CDF of the difference in degradation rates when no filter is used vs.
when each respective filter is used

to automatically and consistently identify and remove clipping
periods from their time series data. All filters developed in
this research show a significant improvement at detecting
individual clipping periods in time series, when compared to
the current RdTools method, with the logic-based filter having
the best performance overall (F-score of 85.0 on manually
labeled data vs. RdTools F-score of 56.4 on manually labeled
data). Each filter’s performance was tested on a diverse set of
physical AC power streams, including manually labeled and
simulated clipping periods. This labeled, anonymized data will
be released publicly on NREL’s DuraMAT DataHub.

In the second part of this paper, we demonstrate that esti-
mated system degradation varies when different clipping filters

are used to mask AC power time series data. In our analysis of
31 physical systems, we show that sensor-based degradation
rates vary based on the clipping filter used on a system-by-
system basis, in some cases by up to 0.6%. Additionally,
system results show that the degradation distributions for
the newly developed XGBoost, Random Forest, and logic-
based filters are similar, with a tighter distribution than the
RdTools degradation results. We plan to further investigate if
improving clipping filter performance leads to more accurate
system degradation results, using simulated data with known
degradation rates.

ACKNOWLEDGMENT

This work was authored by Alliance for Sustainable Energy,
LLC, the manager and operator of the National Renewable
Energy Laboratory for the U.S. Department of Energy (DOE)
under Contract No. DE-AC36-08GO28308. Funding provided
by the U.S. Department of Energy’s Office of Energy Effi-
ciency and Renewable Energy (EERE) under Solar Energy
Technologies Office (SETO) Agreement Numbers 34348. The
views expressed in the article do not necessarily represent
the views of the DOE or the U.S. Government. The U.S.
Government retains and the publisher, by accepting the ar-
ticle for publication, acknowledges that the U.S. Government
retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this work, or
allow others to do so, for U.S. Government purposes.

REFERENCES

[1] D. C. Jordan, C. Deline, S. R. Kurtz, G. M. Kimball, and M. Anderson,
“Robust PV degradation methodology and application,” IEEE Journal
of Photovoltaics, vol. 8, no. 2, pp. 525–531, Mar. 2018. [Online].
Available: https://doi.org/10.1109/jphotov.2017.2779779

[2] M. Deceglie et al., “NREL/rdtools: Version 2.1.0-beta.1,” 2020. [Online].
Available: https://doi.org/10.5281/ZENODO.4307010
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