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ABSTRACT 
Residential buildings, accounting for 37% of the total 

electricity consumption in the United States, are suitable for 
demand-side management (DSM) programs to support effective 
and economical operation of the power system. A home energy 
management system (HEMS) enables residential buildings to 
participate in such programs. It is important to account for 
occupant preferences in HEMS to ensure occupant satisfaction 
while participating in DSM programs. For example, people who 
prefer a higher thermal comfort level are likely to consume more 
energy. In this study, we used foresee™, a HEMS developed by 
the National Renewable Energy Lab (NREL), to perform a 
sensitivity analysis of occupant preferences with the following 
objectives: minimize utility cost, minimize carbon footprint, and 
maximize thermal comfort. To incorporate the preferences into 
the HEMS, the SMARTER method was used to derive a set of 
weighting factors for each objective. We performed week-long 
building energy simulations using a model of a home in Fort 
Collins, Colorado, where there is mandatory time-of-use 
electricity rate structure. The foreseeTM HEMS was used to 
control the home with six different sets of occupant preferences. 
The study shows that occupant preferences can have a significant 
impact and is important to consider when modeling residential 
buildings. Results show that the HEMS could achieve energy 
reduction ranging from 3% to 21%,  cost savings ranging from 
5% to 24%, and carbon emission reduction ranging from 3% to 
21%, while maintaining a low thermal discomfort level ranging 
from 0.78 K-hour to 6.47 K-hour in a one-week period during 
winter. These outcomes quantify the impact of varying occupant 
preferences and will be useful for controlling the electrical grid 
and developing HEMS solutions. 

Keywords: Occupant preferences; HEMS; energy efficiency; 
residential buildings; cost savings; carbon footprint; thermal 
comfort; optimization; sensitivity analysis, demand response, 
transactive energy 

1. INTRODUCTION 
The U.S. Federal Energy Regulatory Commission defines 

demand response as changes in normal energy consumption 
patterns to respond to changes in the price of electricity over 
time, or “to incentive payments designed to induce lower 
electricity use at times of high wholesale market prices or when 
system reliability is jeopardized” [1].  Demand response (DR) 
can shift energy use from high to low which can reduce the cost 
of generation and it can improve the reliability of the grid by 
maintaining system frequency and supply-demand balance.  
Power systems have become more complicated since demand 
response programs were implemented.  For example, global 
variable renewable energy deployment has increased rapidly, 
with double-digit annual growth rates over the last few decades 
[2]. Smart devices are also being implemented in homes to 
control the home equipment to save energy [3]. To accommodate 
for these advancements, a new framework is needed to operate 
the grid more efficiently: transactive energy. 

The GridWise® Architecture Council defines 
transactive energy as, “a system of economic and control 
mechanisms that allows the dynamic balance of supply and 
demand across the entire electrical infrastructure using value as 
a key operational parameter” [4]. Transactive energy extends the 
concept of demand response to both the supply side and demand 
side, and aims to balance supply and demand in a real-time, 
autonomous, and decentralized manner.  Transactive energy has 
been described as the “eBay of electricity” [5].  There have been 
many approaches towards integrating transactive energy in the 
real world such as proposing a coalitional game-based model [6], 
an energy trading framework [7], and a multi agent based 
framework [8].  An important step in testing these approaches is 
being able to control home equipment and participate in 
DR/transactive energy. 

Home energy management systems (HEMS) allow 
users to more effectively control the equipment in their homes 
by participating in demand response programs. For example, 
simple rule-based HEMS [9] are often used but lack the ability 
of predictive controls. Other HEMS can take information from 
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the electrical grid in the form of demand response or incentive 
[10,11]. These more advanced systems use optimization 
techniques that sometimes require substantial computing power 
that would usually not be available in the typical house, thus 
making the HEMS impractical.  While more advanced HEMS 
can be effective, there are more issues that need to be addressed. 
Many DR programs require full control of building equipment, 
which could lead to discomfort for the user. But, on the other 
hand, some users are very tolerant of discomfort and would 
prefer to increase the financial benefits by reducing loads more 
aggressively [10]. In [12] a HEMS that is aimed at low-cost 
residential buildings for low-income occupants. In [13] 
electricity cost savings and comfort are maximized while 
minimizing curtailed energy. 

One important factor to consider when modelling 
residential buildings is the variability in energy consumption 
because it has a significant impact that will affect the 
demand/supply of energy between homes. For example, it is 
important for the grid to know that a house with more efficient 
HVAC and solar panels has a surplus of PV generation while 
another house needs more electricity to keep the space cool.  In 
this case, some of the surplus can be given to the other house, in 
turn reducing the stress on the grid. While it is important to 
consider the different types of houses and home equipment, it is 
also important to consider the occupant preferences. For 
example, people who prefer a higher thermal comfort level are 
likely to consume more energy and have less utility bill savings. 
Many efforts to develop advanced HEMS in residential buildings 
have been made, but many fail to account for occupant 
preferences.  [14] performs a sensitivity analysis of thermal 
comfort in commercial buildings. Even though some existing 
work includes occupant preferences as an element in their 
HEMS, few have a systematic approach to “determine the 
relative weights of different objectives, such as cost savings, 
thermal comfort, user inconvenience, and so on” [10]. 

At the National Renewable Energy Laboratory 
(NREL), foresee™, a HEMS that incorporates occupant 
preferences by assigning weights to different objectives using the 
SMARTER (Simple Multi-Attribute Rating Technique 
Exploiting Risks)  [15] method has been developed. While there 
are other objectives and capabilities that can be implemented 
with foresee™, this paper considers occupant preferences to 
determine weights for the following objectives: economic 
savings, thermal comfort (for both air and water temperature), 
and carbon emission reduction. Many case studies have already 
been performed showing that foresee™ is effective [10]. For 
example, energy efficiency mode can increase energy savings 
significantly when compared to traditional “dead-band” 
controllers [10]. This paper performs a sensitivity analysis of 
different occupant preferences by ranking economic savings, 
thermal comfort, and carbon emission reduction by importance. 
When the rankings are changed, the weights of each objective 
are also changed. By analyzing the cost savings, thermal 
comfort, and carbon emissions, we will gain a better 
understanding of how the occupant preferences affect energy 
consumption in residential buildings.  It is important to show that 

occupant preferences have a significant impact and should be 
considered when modelling residential homes.  Accurate 
modeling of occupant preference would ensure the continued 
participation of the residents in DR/transactive programs to 
provide the necessary grid services. The main contributions of 
this work are presented below:  

1. Systematic approach of determining the relative 
weights of different objectives. 

2. Senstivity analysis with different user preference to 
demonstrate the impact of variation of user preference.  

3. Detailed case study demonstrating impact of user 
preference on utility bill savings, user discomfort, and 
carbon emission. 

2. MATERIALS AND METHODS 
A more detailed explanation of the objectives in foresee™ 

helps explain how to account for occupant preferences.  To find 
an optimized schedule, foresee™ creates an overall objective 
function which is the sum of all the individual objective 
functions (in this study: economic savings, thermal comfort (for 
air and water temperature), and carbon emission reduction).  
Equation (1) shows the overall objective function, J, where H is 
the number of time steps in the horizon, β is a vector of occupant 
preference weightings, and Ф is a vector of normalized 
individual objective functions.  The details on the constraints of 
the optimization can be found in previous work [10] and the 
individual objective functions are discussed later in TABLE 1. 

 
𝐽𝐽 =  ∑ 𝛽𝛽Ф𝐻𝐻−1

𝑡𝑡=0                              (1) 

To create the overall objective function, foresee™ loads the 
information required for each individual objective function over 
the horizon (4hrs ahead in this study).  For example, foresee™ 
loads the next 4hrs of utility rates to predict the economic cost 
and the next 4hrs of MOER (Marginal Operating Emissions 
Rate) data to predict carbon emissions.   

Thermal comfort is more difficult to measure, a survey 
has shown that as the temperature increases/decreases from the 
desired temperature, the user discomfort varies similarly to the 
square of the difference from the desired temperature [10]. To 
create an individual objective function for thermal comfort, 
instead foresee™ creates a penalty for thermal discomfort, which 
is calculated as the square of the difference between the 
heating/cooling setpoint (depending on if the system is heating 
or cooling) and the indoor temperature.  Rather than using one 
temperature value as the desired temperature, foresee™ adds a 
“comfort band” around the heating/cooling setpoint that does not 
increase the penalty (for the sensitivity analysis this comfort 
band was ±1℃).  Finally, foresee™ minimizes this overall 
objective function using a convex optimizer to create the optimal 
schedule over the horizon. 

2.1 Normalization of individual objective functions 
One of the most important steps needed to make sure 

foresee™ can equally compare economic savings, carbon 
emission reduction, and thermal comfort is normalization of the 
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objective functions.  There are many methods of normalization 
but the intention for this study is to normalize the objective 
functions so that they vary between 0 and 1.  By accomplishing 
this, the optimization will consider economic savings, carbon 
emission reduction, and thermal comfort with equal importance.  
The method of normalization that this study implemented into 
foresee™ is shown in equation 2.  𝑋𝑋� is the normalized value, 
𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 is the current value, 𝑋𝑋𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 is the minimum values, 
and 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 is the maximum value. 

𝑋𝑋� = 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑋𝑋𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚

                      (2) 
More specifically, this method had to be properly applied to 

all the objectives in foresee™ so that the optimization was 
possible. Previously, there were cases where the normalized 
objective functions would not range between 0 and 1 and cause 
problems when the net energy consumption was negative. The 
normalization method in Equation 2 solved this issue. Table 1 
shows the normalization for each individual objective function. 
‘P’ represents power, ‘rate’ represents utility rate, ‘MOER’ 
represents carbon emission data, ‘T’ represents temperature, 
‘horizon’ represents number of hours foresee™ is optimizing for, 
and ‘timestep’ represents the number of timesteps in an hour.  
Finally, to optimize the controls, foresee™ takes the sum of each 
time step in the horizon for each individual objective function 
(Ф), adds the appropriate weighting factors (В), and finally 
minimizes the sum of the individual objective functions (J) (refer 
back to Equation 1). Because the individual objectives are 
summed over the horizon, the normalizations also need to be 
summed.  For air and water temperature maximum values of 4 
and 36 ℃2 were chosen to normalize the objectives. 

TABLE 1: SUMMARY OF NORMALIZATION FOR EACH 
INDIVIDUAL OBJECTIVE FUNCTION.  

Objective 
Function 

Normalization 

Utility Cost ∑[(P − Pmin) x rate]
∑[(Pmax − Pmin) x rate] 

Carbon 
Emissions 

∑[(P − Pmin) x MOER]
∑[(Pmax − Pmin) x MOER] 

Air 
Temperature 

∑[[max�(T − Tmax), 0�]2 + [min�(T − Tmin), 0�]2]
4 x horizon x 60 ÷ timestep  

Water 
Temperature 

∑[[max�(T − Tmax), 0�]2 + [min�(T − Tmin), 0�]2]
36 x horizon x 60 ÷ timestep  

2.2 Occupant preference cases and house model 
Now that each objective is properly normalized between 0 

and 1, appropriate weighting factors can be added to each 
individual objectives to account for occupant preferences.  To 
determine the proper weighting values for each objective, 
foresee™ uses the SMARTER (Simple Multi-Attribute Rating 
Technique Exploiting Risks) method which requires users to 
rank the different objectives in order of importance (economic 
savings, carbon emission reduction, thermal comfort (air), and 

thermal comfort (water)). The values in table 2 show the 
weighting values when there are four different objectives. [15]  

TABLE 2: OCCUPANT PREFERENCE WEIGHTING (β) VALUES 
BASED ON SMARTER METHOD. 

Ranking Occupant Preference 
Weighting Value (β) 

1 0.4180 
2 0.2986 
3 0.1912 
4 0.0922 

Finally, this study considered 6 different cases where 
economic cost, carbon emission reduction, and thermal comfort 
are ranked differently (see  TABLE 3).  Each case represents a 
different user.  For example, a low-income user who prioritizes 
comfort over environmental awareness might fall under Cost 
Savings Priority Case 1.  Another example that falls under the 
Thermal Comfort Priority Case 4 is a user who has a high income 
and is willing to spend more to be comfortable but also reduce 
their carbon footprint. 

TABLE 3: RANK OF SIX DIFFERENT USER PREFERENCES ON 
ECONOMIC SAVINGS, THERMAL COMFORT, AND CARBON 
EMISSION REDUCTION FOR THE SENSITIVITY ANALYSIS. 

Objective Cost 
Savings 
Priority 
Case 1 

Cost 
Savings  
Priority 
Case 2 

Thermal 
Comfort 
Priority  
Case 3 

Thermal 
Comfort 
Priority  
Case 4 

Carbon 
Emission 
Priority  
Case 5 

Carbon 
Emission 
Priority  
Case 6 

Utility Cost  1 1 3 4 4 2 

Air Temp  2 3 1 1 2 3 

Water Temp  3 4 2 2 3 4 

Carbon 
Emission 

4 2 4 3 1 1 

NREL’s Object-oriented Controllable High-resolution 
Residential Energy (COHRE) model was used to run the 
simulations in this study [16]. OCHRE is a residential building 
model that incorporates controllable devices such as HVAC 
equipment, water heaters, electric vehicles, photovoltaic 
systems, and batteries. The simulations used a building model 
for an all-electric new construction single family home located 
in Fort Collins, CO where there is mandatory time-of-use 
electricity rate structure. The building includes an air source heat 
pump, a heat pump water heater, a 15 kW PV system, a 
6kWh/3kW battery, and other typical energy consuming 
equipment. 

3. RESULTS AND DISCUSSION 
To investigate the sensitivity of different occupant 

preferences, this study compared the total energy consumption, 
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utility cost, carbon emissions, and thermal comfort of each of the 
cases.  We found that the annual results of a building model with 
PV generation in Fort Collins, CO using a mandatory time-of-
use electricity rate structure and past MOER data was able to 
follow the correct trends if the averages of the economic savings 
cases, thermal comfort cases, and carbon emission reduction 
cases are used for comparison.  A qualitative analysis of the 
annual results in FIGURE 1 shows that cases with economic 
savings as the priority have the lowest utility cost, cases with 
thermal comfort priority have the lowest thermal discomfort, and 
cases with carbon emission reduction as the priority have the 
lowest carbon emissions. The maximum and minimum refer to 
the values from the 3 averages (Economic Savings Priority Case 
1 & 2, Thermal Comfort Priority Case 3 & 4, and Carbon 
Emission Priority Cases 5 & 6). 

 

FIGURE 1: QUALITATIVE COMPARISON OF ANNUAL COST, 
CARBON EMISSION, THERMAL DISCOMFORT, TOTAL ENEGY 
CONSUMPTION FOR AVERAGE OF CASES 1 & 2 (ECONOMIC 
SAVINGS PRIORITY), 3 & 4 (THERMAL COMFORT PRIORITY), 
AND 5 & 6 (CARBON EMISSION REDUCTION PRIORITY) 

While the averages are able to follow the correct trends, 
there are outliers among the individual cases.  One of the outliers 
was carbon emission reduction case 6 which had a lower utility 
cost than both economic savings cases. Another interesting 
outcome from the simulations was that some cases using 
foresee™ to optimize the objectives, worsened the results 
compared to controlling the house with no HEMS (for example 
thermal comfort case 3 is worse than the no HEMS case in every 
category).  The no HEMS case just maintains the temperature 
between the heating and cooling setpoint. A potential issue was 
that the net energy consumption for all cases was significantly 
below zero.  This is why the utility cost and carbon emissions are 
negative. 

TABLE 4: ANNUAL SIMULATION DATA FOR A HOUSE MODEL 
WITH PV GENERATION.  THE DATA IS GIVEN AS A 
PERCENTAGE DIFFRERENCE FROM THE “NO HEMS” CASE. 
THE SYMBOLS IN THE PARENTHESES REPRESENT THE 
RANKING OF OCCUPANT PREFERENCE. $ = COST SAVINGS, T 
= THERMAL COMFORT, AND C = CARBON EMISSION. 

Case # Total 
Electric 
Energy 
Usage 

Utility 
Price 

Carbon 
Emission 

Total 
Discomfort 
[K·hr] 

Baseline (No 
HEMS)  

-11520 
kWh 

-$940 -23,594 lbs CO2 0 

1 ($,T,C) -0.2% 2.7% -1.4% 24.7 

2 ($,C,T) 0.5% 9.7% 5.1% 46.2 

3 (T,$,C) -0.5% -2.1% -4.4% 14.9 

4 (T,C,$) -0.3% -9.3% -3.3% 16.9 

5 (C,$,T) 0.2% -7.8% 1.8% 33.3 

6 (C,T,$) 0.6% 10.2% 6.3% 50.3 

The results in TABLE 4 suggest that the PV generation for the 
house model was too large because the negative energy 
consumption of the baseline case means that more energy was 
generated than used.  In other words, the house is net positive.  
To investigate this issue, this study performed a simulation of the 
same house model without PV generation. To better understand 
the results, weekly simulations during winter (heating season) 
and summer (cooling season) were performed and analyzed. 
There are still small deviations where for example, a carbon 
emissions reduction priority case may have more cost savings 
than an economic savings priority case, but now every case has 
more favorable results than the no HEMS case.  Thermal 
discomfort may be increased but energy consumption, utility 
cost, and carbon emissions are always reduced (shown in TABLE 5 
and TABLE 6). 

TABLE 5: WEEK LONG WINTER SIMULATION DATA FOR A 
HOUSE MODEL WITH NO PV GENERATION.  THE DATA IS 
GIVEN AS A PERCENTAGE DIFFRERENCE FROM THE “NO 
HEMS” CASE. THE SYMBOLS IN THE PARENTHESES 
REPRESENT THE RANKING OF OCCUPANT PREFERENCE. $ = 
COST SAVINGS, T = THERMAL COMFORT, AND C = CARBON 
EMISSION. 

Case # Total 
Electric 
Energy 
Usage 

Utility 
Price 

Carbon 
Emission 

Total 
Discomfort 
[K·hr] 

Baseline (No 
HEMS)  

335 kWh $28.62 679 lbs CO2 
0 

1 ($,T,C) -8% -13% -8% 2.33 
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Case # Total 
Electric 
Energy 
Usage 

Utility 
Price 

Carbon 
Emission 

Total 
Discomfort 
[K·hr] 

2 ($,C,T) -20% -23% -19% 5.95 

3 (T,$,C) -3% -6% -3% 0.78 

4 (T,C,$) -4% -5% -4% 0.88 

5 (C,$,T) -10% -11% -10% 3.10 

6 (C,T,$) -21% -24% -21% 6.47 

TABLE 6: WEEK LONG SUMMER SIMULATION DATA FOR A 
HOUSE MODEL WITH NO PV GENERATION.  THE DATA IS 
GIVEN AS A PERCENTAGE DIFFRERENCE FROM THE “NO 
HEMS” CASE. THE SYMBOLS IN THE PARENTHESES 
REPRESENT THE RANKING OF OCCUPANT PREFERENCE. $ = 
COST SAVINGS, T = THERMAL COMFORT, AND C = CARBON 
EMISSION. 

Case # Total 
Electric 
Energy 
Usage 

Utility 
Price 

Carbon 
Emission 

Total 
Discomfort 
[K·hr] 

Baseline (No 
HEMS)  177 kWh $17.63 355 lbs CO2 

0 

1 ($,T,C) -9% -14% -9% 1.4 

2 ($,C,T) -19% -25% -19% 2.9 

3 (T,$,C) -4% -7% -4% 0.53 

4 (T,C,$) -5% -6% -5% 0.57 

5 (C,$,T) -12% -14% -12% 1.83 

6 (C,T,$) -20% -26% -20% 3.08 

Results from this sensitivity analysis show that occupant 
preferences have a significant effect on energy consumption in 
residential buildings. For a single week in winter there is up to 
an 18% difference in energy consumption for the same house 
model among the six occupant preferences. Another interesting 
observation from the results is that utility price and carbon 
emissions were closely correlated. This happened because the 
peak time-of-use prices often coincided with the highest rate of 
carbon emissions and so optimizing carbon emissions and 
optimizing utility price were practically the same.  A potential 
problem is that each individual objective (thermal comfort, 
utility cost, and carbon emissions) is in different units (K2, $, lbs. 
CO2).   

4. CONCLUSION 
This work shows that occupant preferences have a 

substantial impact on energy consumption and needs to be 

accounted for in residential buildings.  By using appropriate 
weighting values for individual objectives such as economic 
savings, thermal comfort, and carbon emission reduction, 
foresee can optimize the controls of a home to achieve greater 
energy efficiency while also accommodating occupant 
preferences.  Based on a house simulation in Fort Collins, CO 
the energy consumption can vary by up to 18% in a single week.   

There is still further research that can build on the results of 
this study. One way is to determine a method to differentiate 
carbon emissions and utility cost by converting all the objectives 
into a common unit. This will potentially solve the utility cost 
and carbon emission correlation issue.  Another way to validate 
this work is to run simulations with different house models in 
different locations using various pricing strategies and carbon 
emission data. The results of this study are useful because they 
not only show that occupant preferences have a significant 
impact, but they also show that foresee™ is a valid tool that can 
account for occupant preferences.   
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of Energy Office of Energy Efficiency and Renewable Energy 
Building Technologies Office. The views expressed in the article 
do not necessarily represent the views of the DOE or the U.S. 
Government. The U.S. Government retains and the publisher, by 
accepting the article for publication, acknowledges that the U.S. 
Government retains a nonexclusive, paid-up, irrevocable, 
worldwide license to publish or reproduce the published form of 
this work, or allow others to do so, for U.S. Government 
purposes. 
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