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A B S T R A C T   

Open-source energy models are becoming more widely used for electric power systems planning. The solutions 
for these models are often computed using commercial optimization solvers, which require licensing fees that can 
be a potential barrier for certain organizations and researchers. This study explores the ability of the open-source 
COIN-OR linear programming (CLP) solver to compute solutions for the Regional Energy Deployment System 
(ReEDS) model—a large-scale, open-access electricity system planning model for the United States developed by 
the National Renewable Energy Laboratory (NREL). We find that open-source solvers, such as CLP, require some 
reduction of model size and detail. Although the solutions for reduced-form models may differ from full-featured 
models, we demonstrate that reduced-form solutions for ReEDS can still provide useful insight about drivers of 
power sector evolution. This research can help the modeling community better understand how open-source 
solvers can be applied to large-scale planning tools, and the potential steps that may be required to imple-
ment them.   

1. Introduction 

Energy system models are essential for informing researchers, utility 
owners, and policy makers. These tools vary by, among other aspects, 
sectoral coverage, spatial and temporal scales, and application. Until 
recently, most energy-system models available—even those of which the 
underlying code was made freely available—required licensing of 
commercial solvers. In the case of the Network-Enabled Optimization 
Server (NEOS) server, an open-source server with several solvers 
available, anyone can access the tool, but only for non-commercial 
purpose. More recently, a handful of research organizations have 
developed similar, more accessible tools that provide not just the model 
code freely, but were also developed to use open-source or open-access 
solvers [1–3]. 

The Open-Source Initiative, which aims to promote and protect 
open-source software, defines open-source software as that which can be 
developed and distributed by many people in a way that “grants all the 

rights to use, study, change, and share the software in modified and 
unmodified form” [4]. The essential component of open-source software 
is to “enable community development”. Within open-source software 
initiatives, there are efforts focused specifically on energy system 
modeling. Open energy modeling applies the same principles as open 
software: “source code that can be studied, changed, and improved as 
well as freely available energy system data” [5]. Regardless of the 
application of “open”, the idea to provide accessible products and 
platforms for collaborative development for all remains consistent [6]. 
In this study, we consider open-source solvers. 

There are many advantages to open-source resources and software. 
Providing access to a tool can increase the sustainability of the project, 
promote collaboration, and further development of the tool. There are 
also possible disadvantages, including the possibility of low-quality end- 
user documentation, the constant evolution of software with no guar-
antee of cohesiveness across versions, potential security violations, and 
loss of competitive advantage [6]. Another potential drawback of 
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open-source or open-access software, particularly open-source solvers, 
are their solving capabilities relative to similar, commercial alternatives. 

Optimization solver software is essential to computing solutions for 
energy system modeling tools. A barrier to entry of some commercial 
software is the licensing cost, although some commercial solvers are 
available for free or at low cost to academic communities [7]. Organi-
zations or researchers with limited budgets, however, may not be able to 
afford commercial solvers. Therefore, it is of interest to identify 
open-source solvers that can produce robust results. Past efforts have 
evaluated open-source solvers for linear programming problems. A 
study from 2008 applies three different solvers for electricity spot 
market problems [8]. Another study from 2013 applies the same three 
solvers for a cell suppression problem [9]. The fastest solver is different 
for each study due to the inherent difference in the problem structures. 

In this paper, we compare the capability of open-source and com-
mercial linear programming solvers to compute solutions for a large- 
scale energy model. We evaluate solver performance when applied to 
problem instances of the Regional Energy Deployment System (ReEDS) 
model developed by the National Renewable Energy Laboratory (NREL) 
[10]. First, we introduce the ReEDS model (Section 2). We then compare 
the merits of several open-source linear programming solvers to select a 
candidate to apply to ReEDS and explore methods for improving the 
solvability and speed of ReEDS (Section 3). Next, we summarize the 
performance of an open-source solver applied to several reduced-form 
versions of ReEDS and examine the model outputs (Section 4). Finally, 
we propose next steps for future research (Section 5). 

2. Model background 

As previously mentioned, “open-source” is a form of software 
available for development and distribution by any interested party. 
Although ReEDS is available for distribution through an NREL form, 
users are not permitted to redistribute to third parties [11]. To access the 
ReEDS repository, follow the link in SI-1. The usage of ReEDS also re-
quires paid licenses such as General Algebraic Modeling System (GAMS). 
This means that although ReEDS does not fit the definition of “open--
source” it does have a level of openness. 

The ReEDS model is a long-term planning model for the electric 
power sector. Given assumptions about future conditions (e.g., tech-
nology costs and performance, fuel prices, policy), the model determines 
the least-cost mix of generation, transmission, and storage resources 
necessary to meet physical constraints and policy requirements. The 
model is populated by several parameters including annual capital ex-
penditures, levelized costs of energy, and capacity factors, many of 
which are housed within the Annual Technology Baseline [12]. The 
model was first developed for the conterminous United States but has 
since been extended to Canada, Mexico, and India [13–15]. The core of 
ReEDS is a linear program (LP) that minimizes the net present value of 
electric power sector costs subject to a suite of constraints governing the 
investment and operation of supply-side resources on a substate reso-
lution. The constraints include balancing supply and demand for elec-
tricity, meeting reliability requirements for planning and operating 
reserves, abiding by physical operational constraints, transmission 
flows, and compliance with state and federal policies. 

ReEDS is typically solved myopically with limited foresight about 
future conditions to inform investment decisions. As the model steps 
forward in time, new information about the future is revealed, and new 
decisions are made. In this sequential solve procedure, investments 
made in prior years affect decisions in future years. 

ReEDS has a modular structure. Information is passed between 
modules to optimize or calculate various outcomes of the long-term 
planning process. A sequential ReEDS model solve begins with a sup-
ply module being provided inputs from previous model years. The so-
lution and outputs are passed to a variable renewable energy and storage 
module to calculate the capacity values and curtailment rates of variable 
renewable generation technologies and storage technologies using 

hourly chronological data. These values are then given to the supply 
module to solve the next model year. This process continues until the 
end of the time horizon is reached (which is typically 2050) [10]. 

Another characteristic of ReEDS is how it treats historical years 
differently than present and future years. For example, new investments 
are limited to the exogenous capacity prescriptions in the years 
2010–2018. Endogenous investments and endogenous retirements are 
enabled in 2020 and 2024, respectively. These years are updated as 
current years become historical years. Because historical plants are 
tracked separately from new plants, this results in an increase in the 
number of generation and storage resources within the model results 
and increases the size of the model A-matrix (number of rows, columns, 
and nonzeros). The ReEDS model has been used by various researchers 
for a variety of research questions [16–20]. Therefore, ReEDS is a 
valuable starting point to understand the ability of open-source solvers 
to solve the linear program. 

3. Methods 

3.1. Evaluation of linear programing solvers for ReEDS 

With a basic understanding of the ReEDS model, we began looking at 
different linear programming solvers to identify the best one to test. 
From literature, we compiled a list of candidate open-source solvers for 
ReEDS, identified available linear program solution algorithms with 
each solver, classified the solvers’ compatibility with ReEDS, and 
examined their solve time performance for standardized model in-
stances from benchmark studies. Based on these criteria, we selected one 
candidate open-source solver to test on ReEDS. 

The ReEDS linear program is written in the GAMS mathematical 
programming software and is typically solved using the CPLEX com-
mercial solver, applying the interior point method plus crossover to 
obtain a basic feasible solution. Therefore, candidate open-source 
solvers for ReEDS should be compatible with GAMS and should 
contain the interior point method. 

In one 2020 study of energy system optimization model perfor-
mance, Scholz et al. (2021) note that the interior point method usually 
outperforms both the primal and dual simplex methods for solving large- 
scale LPs of the electricity system [21]. Based on the experience of 
practitioners at NREL, the interior point method is faster than the sim-
plex method for solving common ReEDS instances [22]. Klotz and 
Newman offer insights into the potential performance of these two 
methods based on the A-matrix characteristics of a difficult linear pro-
gram problem instance [23]. 

For this study, we considered the following solvers as potential 
lower-cost alternatives to CPLEX for the ReEDS model:  

• Brook, Drud, and Meeraus Linear Program solver (BDMLP) [24] 
– Linear programming solver managed by GAMS. The solver is not 
open source, but it is available with the purchase of a GAMS license. 
BDMLP has been dropped from the GAMS distribution as of GAMS 
version 34.  

• COIN-OR Linear Programming (CLP) [25,26] – Free, open-source 
linear programming solver made available through the COIN-OR 
project. A link between GAMS to CLP is available with the pur-
chase of a GAMS license.  

• GNU Linear Programming Kit (GLPK) [27] – Free, open-source 
linear programming package. GLPK is no longer part of the GAMS 
distribution.  

• Interior Point Optimizer (IPOPT) [28] – Free, open-source suite of 
interior point solvers for linear and nonlinear optimization problems 
available through the COIN-OR project. A link between GAMS and 
IPOPT is available with the purchase of a GAMS license.  

• LP Solve [29] – Not commonly used for GAMS models, but examples 
of links between GAMS and LP Solve exist. There are examples of LP 
Solve being used for models developed in R programming language. 
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• Modular In-core Nonlinear Optimization System (MINOS) [30, 
31] – Commercial software with discounted academic licenses and 
government licenses. A GAMS/MINOS-Link is not offered to GAMS 
customers, so an organization such as a government-based research 
institution, would have to pay the standard rate for a GAMS/MINOS 
license.  

• Parallel Interior Points Solver (PIPS) [32] – Free, open-source 
suite of parallel optimization solvers developed by Argonne Na-
tional Laboratory. A PIPS-IPM solver link for GAMS was developed 
for the BEAM-ME Project [33], but the link is not publicly available. 

• Sequential Object-oriented simPLEX (SOPLEX) [34,35] – Com-
mercial optimization package for linear programming problems. 
Free versions are available for noncommercial and academic in-
stitutions and links to GAMS are available with the purchase of a 
GAMS license. 

Table 1 summarizes the criteria we used to evaluate the eight solvers 
listed above for use with ReEDS, but this table can also reflect solver 
compatibility with other programming platforms dependent on the en-
ergy model in question. We gave priority to solvers that: (1) are open- 
source, (2) include the interior point method—the recommended solu-
tion method for ReEDS is interior point with crossover, (3) are 
compatible with GAMS—the ReEDS formulation is written in GAMS, (4) 
performed well in past benchmark studies, and (5) are available at low 
or no cost—software fees are an important factor for organizations with 
limited budgets. The execution of the ReEDS model requires a fee-based 
license for GAMS, so the additional cost for a commercial solver like 
CPLEX increases the cost burden. If all other criteria are met, then we 
used the benchmark performance as a deciding factor for which solver 
may exhibit superior performance for ReEDS. 

The benchmark performance metrics provide insights into how the 
solvers compare with each other. A 2013 report from Sandia National 
Laboratories compares the solvability and solve time of CPLEX and a 
variety of open-source solvers (CLP, GLPK, LP Solve, MINOS) on a suite 
of 180 standardized linear programing problem instances of varying 
sizes (rows, columns, and nonzeros) [38]. The largest problem tested on 

these solvers has more than 1.9 million rows and more than 0.64 million 
columns. For reference, this problem is larger than the largest ReEDS 
problem size after the CPLEX presolve that occurs in the final year of the 
modeling horizon, in this case the year 2050, which has 0.44 million 
rows and 0.52 million columns. 

The authors find the CLP solver can solve the tested problems faster 
than any of the other open-source solvers tested, but CPLEX is superior 
across all test problem instances. Among the open-source solvers tested 
on the 180 problem instances, CLP was able to solve the most problems 
out of the open-source solvers tested. Within the Hans Mittleman 
“Benchmarks for Optimization Software,” CLP generally yielded faster 
solve times compared to other open-source linear program solvers [39]. 
Finally, a 2006 study found that CLP outperformed GLPK and LP Solve 
for electricity spot market optimization problems [8]. While the elec-
tricity spot market problem does not consider investment 
decision-making, the problem includes many of the same types of 
operational variables and constraints as ReEDS. 

Based on Table 1, we excluded solvers that:  

• Are not open source (BDMLP, PIPS, and SOPLEX)  
• Are not free or are not low-cost for nonacademic use (SOPLEX; 

MINOS)  
• Do not use the interior point method (BDMLP; SOPLEX; MINOS; LP 

Solve)  
• Are not directly accessible in GAMS (PIPS; GLPK; LP Solve)  
• Are not tested in past benchmark studies (BDMLP; IPOPT; PIPS; 

SOPLEX). 

The CLP solver is the only open-source solver to satisfy all our criteria 
for use with the ReEDS model and was therefore selected for further 
characterization. Although IPOPT is not represented in the benchmark 
studies, it satisfies every other requirement. In an initial test, we found 
IPOPT produces solutions that are not compatible with the ReEDS 
sequential-solve algorithmic structure [11]. For example, after solving 
one model year, IPOPT would include nonzero values for variables not 
considered in the model. These nonzero values would create issues when 

Table 1 
Candidate solver options for ReEDS.  

Solver Open 
Source? 

Solver Cost [29,30,36] LP Solution 
Algorithms 

Compatibility with GAMS [37] Performance benchmarks 
in [38] 

Performance 
benchmarks in [39] 

BDMLP No Only available through 
commercial software  

• Simplex Managed by GAMS and available with the GAMS 
Base Module License 

Not included Not included 

CLP Yes Free  • Simplex  
• Interior Point 

GAMS solver link available with the GAMS Base 
Module License  

• Successfully solved 180/ 
180 problems  

• Aggregate solve time 213 
times slower than CPLEX 

Successfully solved 
40/40 problems 

GLPK Yes Free  • Simplex  
• Interior Point 

No longer part of the GAMS distribution  • Successfully solved 138/ 
180 problems  

• Aggregate solve time 459 
times slower than CPLEX 

Successfully solved 
36/40 problems 

IPOPT Yes Free  • Interior Point  
• (no 

crossover) 

GAMS solver link available with the GAMS Base 
Module License 

Not included Not included 

LP 
Solve 

Yes Free  • Simplex Not commonly used for GAMS models and no 
formal GAMS solver link is available  

• Successfully solved 150/ 
180 problems  

• Aggregate solve time 510 
times slower than CPLEX 

Not included 

MINOS No  • $936 – academica and 
government  

• $25,000 – 
commercialb  

• Simplex GAMS solver link does not exist, accessible with a 
GAMS\MINOS license  

• Successfully solved 151/ 
180 problems  

• Aggregate solve time 613 
times slower than CPLEX 

Not included 

PIPS Yes Free  • Simplex  
• Interior Point 

Open-source solver, GAMS solver link is not 
publicly available. 

Not included Not included 

SOPLEX No  • Free – academic  
• High – commercial  

• Simplex GAMS solver link: available with the GAMS Base 
Module License (Academic Only), also accessible 
with a GAMS/SCIP license 

Not included Successfully solved 
36/40 problems  

a University-wide license. 
b Company-wide license. 
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solving later model years. This is explained in greater detail in SI-2. 

3.2. Improving the solvability of the ReEDS reference case on CLP 

We tested CLP on the ReEDS “reference case” for two spatial extents: 
(1) the Electric Reliability Council of Texas (ERCOT); and (2) the 
conterminous United States (CONUS). CLP was able to solve the ERCOT 
model instance but failed to solve the CONUS model instance for the full 
model planning horizon within the 10,000 s (~2 h 47 min), our default 
solver time limit for this study. 

Excessive run time can be indicative of a large problem size that is 
cumbersome for the solver and/or a problem instance with numerical 
issues [23]. Numerical issues, such as inaccuracies from round off errors 
that occur with floating point calculations (ex. a poorly scaled A-matrix 
with coefficients that have a large difference in their orders of magni-
tude), will hinder the performance of any solver, but more so for free 
solvers that have less sophisticated algorithms to abate these numerical 
issues. Although CLP could theoretically solve a ReEDS model instance 
given sufficient time, it is not time efficient. It is also important to 
consider the impact the CPLEX presolve algorithms might have on model 
tractability when compared to those of CLP and how that may affect the 
solve time of the model. 

By reducing the problem size or simplifying the model formulation of 
linear programs, solve time can be reduced [21]. Klotz and Newman as 
well as Scholz et al. offer guidelines for improving the solve times of 
linear programs [21,23]. Some of these guidelines are specific to CPLEX, 
while others are solver agnostic. 

We identify several methods to improve the solvability of a large 
model on open-source solvers (Table 2). The following sections will 
provide more details on each technique employed for the ReEDS model 
in this study. 

3.3. Improving the A-matrix 

To identify possible areas for avoiding numerical issues, we inspect 
the A-matrix, b-vector, and c-vector through a mathematical program-
ming system (MPS) file. All of these values are accessible through solver 
output. As a standardized format for storing linear programming prob-
lems, MPS files include the coefficients we aim to stabilize. MPS files are 
also organized by variable and constraint for easy classification of un-
stable constraints or areas for improvement. An example of the code we 
used to manipulate our MPS files can be found in SI-3. 

3.3.1. Round matrix coefficients 
The first method attempted to improve the stability of the A-matrix 

was to round specific coefficients. Many of the coefficients, regardless of 
their scaling, had excessive and unrealistic precision (e.g., 40.0000001). 
Rounding should be performed with caution and should only be applied 
to input data. To reduce this source of instability, the ReEDS model code 
was edited to round the coefficients more effectively. An example of 

when this might be necessary and useful is when a 100-MW photovoltaic 
system with a capacity factor of 0.00005 produces 0.003 MW-hours of 
energy in an hour. In such a situation, it would be reasonable to round 
the capacity factor to zero and assume the PV system does not produce 
any energy during the period in question. 

3.3.2. Scale matrix coefficients 
The second method for improving stability was to adjust the scaling 

factors. Throughout the ReEDS formulation, there are instances of 
poorly scaled A-matrix coefficients. By improving the scaling of the A- 
matrix coefficients and moving them closer to unity, solve time can be 
reduced. The best practice is for the maximum difference between the 
smallest and largest coefficient orders of magnitude to be 12 (e.g., 1e-6 
to 1e+6), but with smaller spreads resulting in better scaling [23]. By 
inspecting the matrix, we can round coefficients to reduce instances of 
very small coefficients, adjust scaling factors, and remove variables 
and/or constraints causing numerical issues while keeping in mind the 
impact on the solution. 

There are a few options for scaling the coefficients in the A-matrix. 
The first is indicating scaling preferences within the solver options. For 
this study, both solvers with GAMS compatibility had a unique set of 
options [37]. Alternatively, manual scaling was possible with 
user-defined scaling factors. In this study, we adjusted the ReEDS scaling 
factor applied to emissions constraints because we identified them as a 
source of the poor scaling within the A-matrix. The ReEDS emissions 
constraints are responsible for maintaining emissions levels within the 
required emission limits. In the original problem formulation, the 
parameter is in units of megatons across the three pollutants considered 
in the model (CO2, SOx, and NOx). Because power sector CO2 emissions 
were orders of magnitude larger than SOx and NOx emissions, poor 
scaling ensued. To test whether scaling of the A-matrix coefficients 
might improve model tractability and solver solve time, we conducted a 
run where the emission scaling parameter was adjusted to be specific to 
each pollutant type [40]. 

3.4. Remove variables and constraints 

The third method explored for improving solver performance was 
removing select sets of variables and constraints. Problematic variables 
and constraints, such as those with numerical issues, can be identified by 
filtering the MPS file, as necessary. We determined which variables and 
constraints to remove by (1) excluding features that may not have a 
strong impact on the solution, (2) excluding advanced features, and (3) 
reducing the model dimensionality. Within ReEDS, many of the relevant 
variables and constraints were those dictating emissions policies. These 
constraints, among a few others, were removed to understand if and how 
these changes would affect the solve time. A complete list of the various 
model features turned off throughout this study is shown in Table 3. 

Model dimensionality is typically categorized by space, time, and the 
technologies represented. Across space, the number of regions is defined 
based on the spatial extent and the size of the regions. The spatial 
dimension can be reduced by limiting an analysis to a small number of 
regions and/or by clustering regions into larger groups [41]. For this 
study, we tested a scenario focused on the ERCOT interconnection, 
which represents about 5% of the total number of regions in the full U.S. 
ReEDS model. 

In the time domain, models include both operation time periods (e. 
g., time slices) and investment time periods (e.g., years). Models need 
sufficient operational time periods to capture, for example, seasonal and 
diurnal patterns for load and renewable resource profiles. For invest-
ment time periods, some analyses focus on the year-to-year pathway 
from today to the future, whereas others focus on the system design for a 
single future year. For this study, we test a scenario with investment 
decisions made once in each decade versus the default of 2-year in-
vestment periods through 2030 and 5-year investment period thereafter. 

With respect to technologies, models can track generation capacity 

Table 2 
Techniques to improve solvability of large models on open-source solvers.  

Category Technique ReEDS examples from this study 

Reducing 
numerical issues 
in the A-matrix 

Round matrix 
coefficients 

Round emission rates 

Scale matrix coefficients Scale emissions variables 
Reducing the size 

of the A-matrix 
Remove variables and 
constraints for: (a) low- 
impact features 
(b) advanced features 

(a) Exclude variables and 
constraints for technologies that 
are unlikely to be deployed in a 
reference case 
(b) Do not allow endogenous 
retirements as a decision variable 

Reduce the model 
dimensions 

Reduce the spatial extent of the 
model to ERCOT 
Reduce the number of 
investment periods  
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as individual generators or clusters of generators. Clusters are typically 
defined based on the location, age, and performance of the generators. 
For this study we did not adjust the default assumptions of thgrammare 
technology representation. 

3.5. Establishing a baseline for solve time 

Before testing the above methods, we established baseline solve 
times for both CPLEX (the default solver used by NREL [10]) and CLP. 
All runs were performed on an Intel(R) Xeon(R) Gold 5120 machine 
with CPU speeds of 2.20 GHz along with 14 Cores, 28 Logical Processors, 
and 768 GB of memory [42]. 

The default, U.S. reference case for ReEDS Version 2020, was used 
for the baseline [22]. Fig. 1 reports the baseline solve times for the two 
solvers. Table 4 summarizes the problem size before and after the CPLEX 
presolve. CPLEX employs a presolve that reduces the original size of the 
model. This is shown in the GAMS log as “reduced LP size”. The CLP 
output in the GAMS log was not available by default but was applied and 
did impact the size of the LP. 

The recorded problem size was the same regardless of the solver 
used, so the values reported are from CPLEX output. Fig. 2 reports the 
model size as it increases throughout the solution time. Fig. 1, shows 
that the full ReEDS model can be solved by CPLEX, but after the year 
2022, the solver CLP times out after the default timeout of 10,000 s spent 
on one model year. Fig. 2 visualizes the problem size after presolve and 
highlights how the ReEDS problem size increases throughout the model 
horizon. The baseline values in Fig. 2 are the same for both the 

commercial and open-source solver and were used throughout the study 
to characterize the various methods employed to improve tractability 
and solve time. 

4. Results and discussion 

Table 5 summarizes the suite of ReEDS scenarios that we attempted 
to solve using CLP. These scenarios are modified versions of the default 
formulation of the ReEDS model using strategies described in Section 2, 
including rounding parameters, scaling parameters, removing variables 
and constraints, and reducing the model dimensions. 

4.1. Exploring the solvability of ReEDS using CLP 

Fig. 3 summarizes the solve times associated with different scenarios 
using CLP. To compare the performance of CLP versus CPLEX, we 
include the solve times for BASE, ERCOT, and DECADES using CPLEX. 

Fig. 3 shows that the removal of emissions constraints alone is not 
sufficient to enable CLP to solve additional model years within the cutoff 
time. The two scenarios with parameter modifications—Emit_rate and 
Emit_scale—were omitted from Fig. 3, because the modifications made 
to the model for these scenarios did not change the outcome relative to 
BASE. CLP was able to solve all model years (to 2050) for scenarios that 
removed combinations of variables and constraints, including emissions 
policies, capital stocks, RPS policies, reliability and carbon capture and 
storage (CAP TECH RPS OR, RPS OR, and ALL). The RPS OR scenario 
was solved by CLP for all model years with the fewest number of con-
straints turned off. This is important to note because fewer constraints 
turned off means fewer changes to the formulation, potentially resulting 
in the most comparable solutions to the BASE model. The implications of 
turning off these constraints on the ReEDS solution are explored in 
Section 3.2. The ALL scenario was solved by CLP for all model years with 
the fastest cumulative run time relative to other scenarios with variables 
and constraints removed. Although solve times for ReEDS scenarios 
using CLP were improved as more variables and constraints were 
removed, the removal of certain variables and constraints were more 
effective at accomplishing this goal. 

To understand the source of solve time improvement, we reviewed 
changes in problem size. In the ALL scenario, the number of rows, col-
umns, and nonzeros were all reduced from the full model, as seen in 

Table 3 
Sample list of model features that can be turned off in ReEDS.  

Model Feature Category Description 

RGGI (Regional 
Greenhouse Gas 
Initiative) 

Emissions 
(EMIS) 

Limit total CO2 emission for states 
participating in RGGI 

AB-32/SB-32 (Assembly 
Bill 32 and Senate Bill 
32) 

Emissions 
(EMIS) 

California CO2 cap and trade 
program 

CSAPR (Cross State Air 
Pollution Rule) 

Emissions 
(EMIS) 

SOx/NOx emission caps for specific 
states 

Endogenous retirements Capital stock 
(CAP) 

Endogenous decision for model 
plants to be retired prior to the end 
of their maximum lifetime 

Capacity refurbishments Capital stock 
(CAP) 

Endogenous decision to refurbish a 
technology after the end of its 
lifetime 

Carbon capture and 
storage 

Technology 
(TECH) 

Represent CCS technology options 
for coal and natural gas 

State renewable portfolio 
standards (RPSs) 

State RPS (RPS) Enforce state-level RPSs, including 
constraints for renewable energy 
credit (REC) creation and REC 
trading 

Operating reserves Operating 
reserves (OR) 

Balance the supply and demand for 
operating reserves and limit which 
technologies can provide reserves  

Fig. 1. CLP and CPLEX baseline solve times for the unaltered ReEDS model.  

Table 4 
Baseline problem size in 2050.  

ReEDS Model Instance Rows Columns Nonzeros 

U.S. (2050) – CPLEX 3.0 million 4.5 million 23.3 million 
U.S. (2050) – after CPLEX presolve 0.44 million 0.52 million 2.4 million  

Fig. 2. Baseline problem size for full ReEDS model.  
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Fig. 4. As a result of the iterative sequential solving process in ReEDS, 
discussed previously in Section 1.1, the size of the problem increases 
significantly as the model progresses to years further into the future. In 
general, it was observed that a reduction in problem size helped the 
problem solve faster. 

4.1.1. Model output 
When a model formulation is adjusted to improve solvability of the 

model, the modified formulation may yield different results from the 
full-featured model. Past efforts in electricity system capacity expansion 
modeling have compared the trade-offs of model resolution, solve time, 
and outcomes [43,44]. 

Here we evaluate the impact of using reduced-form ReEDS problem 
instances on select model output metrics, including national CO2 emis-
sions, installed capacity, and system cost. We limit our inspection to 
scenarios that were solved by CLP for all model years (RPS OR; CAP 
TECH RPS OR; and ALL) and compare them to the BASE scenario solved 
by CPLEX (as the BASE scenario was not solved by CLP). 

Fig. 5 shows the deviations in CO2 emissions from the BASE scenario. 
The emissions deviations become more dramatic after 2022. This is in 
part due to how ReEDS treats historical years differently, as previously 
discussed. However, aside from that model characteristic, the RPS OR 
scenario deviates the least when compared to the other scenarios that 
also ran through 2050. A general observation can be made that when the 
renewable portfolio standards are omitted from the model scenarios, 
emissions increase significantly. This is confirmed by calculating the 
cumulative emissions over the entire modeling horizon and weighting 
each year to account for the step size (e.g., 2030 represents 2 years; 2045 
represents 5 years). We find that the corresponding increases in cumu-
lative CO2 emissions from BASE for runs ALL, CAP TECH RPS OR, and 
RPS OR are approximately 5.9%, 5.7%, and 1.7%, respectively. This is 
an indicator that while CLP can solve a modified ReEDS scenario, it 
cannot solve high renewable energy and/or low carbon scenarios within 
10,000 s per solve year on the machine tested. 

To mitigate the effects of excluding the state RPS constraints, a 
practitioner could apply a renewable production incentive within the 
objective function to serve as a proxy for REC payments to renewable 
energy sources. Ultimately, practitioners must decide which sacrifices in 
model features are most appropriate given the analysis questions of in-
terest. In a high-penetration renewable electricity future, state-specific 
RPS policies may no longer be binding. However, the regionality of 
RPS policies may have implications on renewable energy deployment in 
the near-term planning horizon, and thus the appropriate incentives 
should be captured in the model even if they are simplified. 

Fig. 6 summarizes the deviations in national capacity from the BASE 
scenario for select technologies that experienced the most significant 
fluctuations, including coal, combined cycle natural gas, offshore wind, 
onshore wind, utility PV, and 4-h batteries. The RPS/OR scenario 
resulted in the least significant deviations except for the wind-offshore 
technology. For this technology, all scenarios responded with the same 
changes from BASE. 

Fig. 7 summarizes the deviations in the objective function from the 
BASE scenario. The cumulative percent differences in system cost from 
BASE for ALL, CAP TECH RPS OR, and RPS OR are 1.31%, 1.22%, and 
− 0.24%, respectively. The fuel cost increases are likely because of the 
increase in conventional generation in the system capacity due to the 
elimination of the RPS constraints. Across the different scenarios, the 

Table 5 
Summary of the ReEDS scenarios attempted using the CLP solver.  

Scenario 
Name 

Technique Description Impact on 2010 
solve time 
relative to CLP – 
BASEa 

Percent 
change in 
objective 
valueb 

BASE N/A Default U.S. 
model 

Timeout in 2024 N/A 

Emit_rate Rounding 
parameters 

Set the rounding 
of the emissions 
rate parameter to 
four decimal 
points 

No solve time 
improvement 
through 2022 
Timeout in 2024 

N/A 

Emit_scale Scaling 
parameters 

Scale the 
emissions 
variables and 
constraints using 
a scaling 
parameter that is 
specific to the 
pollutant type 

No solve time 
improvement 
through 2022 
Timeout in 2024 

N/A 

EMIS Removing 
variables 
and 
constraints 

Turn off all 
constraints 
associated with 
emissions 

Approximately 
the same 
problem size as 
BASE 
No solve time 
improvement 
through 2022 
Timeout in 2024 

N/A 

RPS OR Removing 
variables 
and 
constraints 

Turn off state 
RPS 
requirements and 
operating reserve 
requirements 

20x reduction in 
solve time 
through 2022 
Solves through 
2050 

- 0.44% 

CAP TECH 
RPS OR 

Removing 
variables 
and 
constraints 

Turn off 
constraints for 
capital stock such 
as endogenous 
retirements, 
technologies, 
state RPSs, and 
operating 
reserves 

20x reduction in 
solve time 
through 2022 
Solves through 
2050 

+0.73% 

ALL Removing 
variables 
and 
constraints 

Turn off all 
model features 
indicated in  
Table 3 

27x reduction in 
solve time 
through 2022 
Solves through 
2050 

+0.56% 

ERCOT Reducing 
the model 
dimensions 

Reduce the 
spatial extent to 
the ERCOT 
system 

30x reduction in 
solve time 
Solves through 
2050 

0% 

DECADES Reducing 
the model 
dimensions 

Original U.S. 
model solved 
only for 2010, 
2020, 2030, 
2040, and 2050 

Limited solve 
time 
improvement 
Solves through 
2020 

N/A  

a Because several runs did not run to completion, one model year was selected 
for comparison. 

b The percent change in the total system objective cost from CPLEX – BASE in 
the year 2050. 

Fig. 3. Solve time summary.  
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transmission cost experienced the most negative percent change from 
BASE. This can be explained by the fact that the model solution is relying 
on fewer renewable energy resources and more on centralized resources, 
therefore requiring less transmission infrastructure. Taken as an average 
across the different cost variables, the CAP TECH RPS OR scenario had 
the most significant percent change in magnitude from the BASE 
scenario. 

The ReEDS modeling results are mostly prescriptive through the 
2020 model year, as these are historical years, but we allow ReEDS to 
build combustion turbine gas technologies during these years as a slack 
variable for maintaining model feasibility in historical years. 

The graphs in Fig. 5 through Fig. 7 highlight deviations from the 
BASE run across different metrics. The magnitude of the deviations 
became more substantial beyond the year 2022. The scenarios with 

fewer constraints eliminated (i.e., fewer model formulation modifica-
tions) resulted in less significant deviations from the BASE scenario. As 
modelers attempt to improve the solvability of their chosen model on 
open-source solvers, they should stay mindful of the modifications that 
result in the fewest constraint eliminations to produce results closets to 
the original model formulation. 

5. Conclusions 

In this study, we examine the potential for an open-source solver to 
compute solutions for a large-scale capacity expansion model of the U.S. 
electric power system. We identify the CLP solver as the most viable 
option to use for the ReEDS model based on several evaluation criteria, 
including: (1) it is free or low-cost access for all users, (2) it is open- 

Fig. 4. Number of rows, columns, and nonzeros in the linear program ReEDS following formulation modifications.  

Fig. 5. Difference in national CO2 emissions from CPLEX – BASE, 2010–2050.  
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Fig. 6. Difference in national capacity from CPLEX – BASE by select technology, 2010–2050. (All three scenarios are depicted in each chart, however, in the instance 
of the coal graph, CLP – ALL is not visible. The CLP – ALL results align with those of the CLP – CAP TECH RPS OR run for coal. In the instance of the offshore wind 
graph, CLP – ALL and CLP – CAP TECH RPS OR results are not visible because they align with the results of the CLP – RPS OR result.) 

Fig. 7. Difference in system objective cost from CPLEX – BASE.  
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source or publicly available, (3) it includes the interior point method, (4) 
it is easily linked through GAMS, and (5) it is represented and performed 
well in past benchmark studies. Compared to other studies discussed in 
this paper, we conduct an analysis on solver performance for an energy 
model and determine methods for how the solver performance (i.e., 
solve time speed) can be improved through modifications to the energy 
model formulation. While we find CLP to be the best candidate open- 
source solver for ReEDS, CLP may not be the best option for all 
models. A limitation of our study is that only one model was tested. The 
ReEDS modeling community is not a complete representation of the 
energy system modeling community. Therefore, expanding this study to 
other large energy models would broaden the reach of this study’s 
findings to more energy modelers. The techniques applied in this study 
to investigate the utility of open-source solvers on ReEDS can be used by 
other researchers on their own models of interest. 

Although CLP was unable to solve the full-featured ReEDS model 
within the designated cutoff time of 10,000 s per solve year, it was able 
to solve reduced-form versions of ReEDS through the entire modeling 
horizon within the cutoff time. We reduce the problem size by excluding 
certain model features—regional emissions policies, endogenous re-
tirements, carbon capture and storage technologies, state RPS policies, 
and operational reliability requirements—and reducing the dimensions 
of the problem. For the reduction of dimensions, we only explore a 
smaller spatial extent and fewer number of years modeled, but other 
dimensions could be reduced, including spatial resolution, temporal 
resolution, and technologies represented. For the runs with reduced 
spatial extent (i.e., ERCOT), CLP was able to solve ReEDS for all model 
years with all options turned on. Reducing the dimensionality allows 
practitioners to maintain the model features at the expense of lower- 
resolution model outputs. We compare the national-level emission, 
generation capacity, and objective function values of the reduced-form 
model scenarios with those of the full feature model and find notice-
able differences in the results. The variation in the results will need to be 
considered by individual modelers in accordance with their project 
needs and goals. Some additional considerations for removing the con-
straints selected in this study are that a solution may not be compliant 
with state-specific renewable generation requirements without the state 
RPS constraint, and that a solution may not have sufficient capacity to 
meet unexpected changes in supply and demand without the OR 
constraint. Moving forward, since there will be instances of linear pro-
gram open-source solvers struggling to solve very large problems, 
additional work to improve the solvers themselves can make them more 
useful to model practitioners. 

Using open-source software to solve large energy system optimiza-
tion models can increase the accessibility of energy model tools. This 
study offers techniques that will help enable the use of open-source 
solvers for energy system modeling for modelers regardless of their 
budget or available solver resources. 

Funding 

This work was authored in part by the National Renewable Energy 
Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U. 
S. Department of Energy (DOE) under Contract No. DE-AC36- 
08GO28308. The views expressed in the article do not necessarily 
represent the views of the DOE or the U.S. Government. 

Credit author statement 

Madeline Macmillan: Methodology, Software, Validation, Formal 
analysis, Investigation, Resources, Data curation, Writing – original 
draft, Writing – review & editing, Supervision. Kelly Eurek: Conceptu-
alization, Methodology, Software, Validation, Resources, Data curation, 
Writing – original draft, Writing – review & editing, Supervision, Project 
administration, Funding acquisition. Wesley Cole: Project administra-
tion, Funding acquisition. Morgan D. Bazilian: Writing – review & 

editing, Supervision. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors would like to thank Daniel Steinberg, Alexandra New-
man, and Patrick Brown for their assistance with the writing of this 
paper. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.esr.2021.100755. 

References 
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