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ABSTRACT This paper develops a robust dynamic mode decomposition (RDMD) method endowed with
statistical and numerical robustness. Statistical robustness ensures estimation efficiency at the Gaussian
and non-Gaussian probability distributions, including heavy-tailed distributions. The proposed RDMD is
statistically robust because the outliers in the data set are flagged via projection statistics and suppressed
using a Schweppe-type Huber generalized maximum-likelihood estimator that minimizes a convex Huber
cost function. The latter is solved using the iteratively reweighted least-squares algorithm that is known
to exhibit an excellent convergence property and numerical stability than the Newton algorithms. Several
numerical simulations using canonical models of dynamical systems demonstrate the excellent performance
of the proposed RDMDmethod. The results reveal that it outperforms several other methods proposed in the
literature.

INDEX TERMS Dynamic mode decomposition, outlier detection, robust estimation, robust statistics, robust
regression.

I. INTRODUCTION
The sustained growth of data acquisition across all areas
of human activity is a crucial driver for the research and
development of data science methods [1], [2]. This fact
especially applies to complex dynamical systems for which
first-principles models are challenging to obtain while a large
amount of data are available.

A wealth of data science methods have been developed
by researchers and made available to practitioners. Dynamic
mode decomposition (DMD) stands out because of its con-
nection with the Koopman operator theory [3], which rec-
onciles data analysis and the mathematical knowledge of
dynamical systems; the reader is referred to [4], [5] for
more details. Since the publication of the paper authored
by Schmid and Sesterhenn [6], [7], DMD has become the
mainstream method for data-driven modeling of dynamical
systems,mainly applied to fluidmechanics [3], electric power
grids [8], neuroscience [9], finance [10], climate science [11],
and transportation [12], to name a few.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hassen Ouakad .

The original DMD [6], [7] and most of its variants that are
tailored to specific classes of dynamical systems make use of
a least-squares estimator. Examples of these variants include
but are not limited to multiresolution DMD [11], DMD with
control [13], Hankel DMD [14], and tensor-based DMD [15].
Section II-B briefly introduces the original DMD and makes
explicit the least-squares estimator. The latter is of particular
interest in this paper, as discussed next.

In the classic literature in robust statistics [16], [17], one
defines robustness as insensitivity to deviations from the
assumptions. In this sense, the least-squares estimator is not
robust. Two cases of deviations from the assumptions are
of particular concern. The first case arises when the prob-
ability distribution of the observations is not Gaussian. The
least-squares estimator quickly loses its statistical efficiency
(that is, accuracy) when the tails of the probability distri-
bution of the observations become slightly thicker than the
Gaussian distribution or when the probability distribution of
the observations becomes slightly asymmetric. The second
case arises when the probability distribution of the majority
of the observations is Gaussian except for a few observa-
tions, which may take arbitrary values. In this respect, one
defines an outlier as a data point that violates the underlying
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assumptions—in other words, it is a data point that is distant
from the majority of the point cloud [18]. The least-squares
estimator produces strongly biased results in the presence of
a single outlier in the data set [19]. Both cases of deviations
from the assumptions often occur in practice—for example,
when the probability distribution of the observations is not
known while being assumed to be Gaussian or when outliers
arise because of instrumentation and communications errors
or a poor experimental setup. This fact precludes the DMD
from being applied to practical settings, especially for control
purposes where pre-cleaning the data set is not an option.

It turns out that overcoming the sensitivity of the DMD
to deviations from the assumptions made about the data
set is a challenging task [20]. This sensitivity is due to
the vulnerability of the DMD-based least-squares estimator
to non-Gaussian noise and outliers, which is a great con-
cern to practitioners. This fact motivated several indepen-
dent investigations to assess the accuracy of the DMD in
capturing the underlying system dynamics directly from the
data set [21]–[24]. For instance, Dawson et al. [25] and
Hemati et al. [26] address, respectively, the bias introduced
by Gaussian noise and the bias resultant from asymmetrically
processing snapshots. In Section IV of this paper, numeri-
cal experiments confirm that the DMD variant proposed by
Hemati et al. [26] has excellent performance in the presence
of Gaussian noise. This is achieved thanks to a reformulation
of the DMD using a total least-squares estimator [27]; how-
ever, this estimator is still vulnerable to outliers.

The vulnerability of the least-squares estimator to outliers
is not directly solvable without data preprocessing; therefore,
Askham et al. [28] reformulate DMD as an optimization
problem and make use of a least trimmed squares (LTS) esti-
mator, specifically the trimmed M-estimator introduced by
Rousseeuw [29]. To the best of the authors’ knowledge, [28]
is the only formulation of DMD that makes use of a robust
estimator. In particular, the LTS estimator has a high break-
down point [29]—that is, this estimator is very robust from a
statistical standpoint; however, the formulation in [28] lacks
a mechanism to identify outliers. Indeed, identifying outliers
without access to a systemmodel is challenging but necessary
in DMD. The formulation in [28] circumvents this challenge
by making a blanket assumption that the time-series data can
be represented ‘‘by the outer product of a matrix of exponen-
tials, representing Fourier-like time dynamics, and amatrix of
coefficients, representing spatial structures.’’ Consequently,
nonexponential dynamics in the data set are, therefore, clas-
sified as outliers. This fact precludes the application of the
method proposed in [28] to dynamical systems that present
nonexponential dynamics.

To this point, the discussion centers around the limita-
tion of the DMD concerning statistical robustness; how-
ever, numerical robustness, also referred to as numerical
sensitivity [30], is equally important. Numerical robust-
ness has severe implications for the stability and conver-
gence of numerical methods. Compared to the original DMD
method [6], [7], the DMD reformulation as an optimization

problem proposed by Chen et al. [30] is less numerically sen-
sitive to deviations from the assumptions. Other researchers
have also exploited this approach [31]. From a statistical
standpoint, although these methods [30], [31] provide supe-
rior numerical performance than the original DMD method,
they are not robust to outliers; therefore, an alternative DMD
method that is robust—from both the statistical and numerical
standpoints—and is generally applicable to dynamical sys-
tems is of great interest to practitioners.

This paper develops an efficient numerical algorithm that
makes DMD robust to outliers, even in a position of lever-
age. Leverage points are measurements whose projections on
the factor space are outliers [18], [32]. Therefore, the pro-
posed robust dynamic mode decomposition (RDMD)method
extends the Schweppe-type Huber generalized maximum-
likelihood estimator [33] to matrix regression problems. The
RDMD method minimizes a convex Huber loss function
that incorporates weights calculated via projection statistics.
Thus, it can bound the influence of the outliers while main-
taining good statistical efficiency at the Gaussian and thick-
tailed distributions. Simulations revealed that the RDMD
exhibits excellent performance on a collection of canonical
models of dynamical systems, including the Van der Pol
oscillator and a family of slow-manifold nonlinear systems,
under various cases of deviation from the Gaussian assump-
tion. Furthermore, it demonstrates high statistical efficiency
under Gaussian and non-Gaussian probability distributions
in addition to robustness to outliers. Finally, a numerical
comparison against several other methods [26], [28], [31]
showcases the performance of the proposed RDMD method.

The paper proceeds as follows. Section II briefly estab-
lishes the connection between the Koopman operator and
DMD; two numerical procedures for DMD [7], [34] are
outlined. Section III develops the proposed RDMD method,
which is the main contribution of this paper. Section IV dis-
cusses the numerical results, and Section V concludes the
paper.

II. PRELIMINARIES
A. KOOPMAN OPERATOR
Consider an autonomous dynamical system evolving on a
finite, n-dimensional manifold X given by

x[k] = F(x[k − 1]), for discrete-time k ∈ Z, (1)

where x ∈ X is the state, and F : X → X is a nonlinear
vector-valuedmap. Next, we introduce theKoopman operator
for discrete-time dynamical systems.

Let g(x) be a scalar-valued function defined in X, such
that g : X → R. The function g is referred to as the
observable function. Let the space of observable functions be
F ⊆ C0, where C0 denotes all continuous functions [35].
The Koopman operator, K, is a linear, infinite-dimensional
operator [36] that acts on g as follows:

K g := g ◦ F, (2)
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where ◦ denotes the function composition. Formally, we have

Kg
(
x[k]

)
= g

(
F(x[k − 1])

)
. (3)

The interpretation of (2) is as follows. Instead of focus-
ing on the evolution of the state, x, one shifts the focus to
the observables, g(x). The advantage is that the observables
evolve linearly with time without neglecting the nonlinear
dynamics of the underlying dynamical system given by (1).

B. DYNAMIC MODE DECOMPOSITION
For simplicity of notation, define

yk := g
(
x[k]

)
, (4)

where yk ∈ Rm is a vector of m measurements on (1) at time
k . Note that, in principle, anymeasurement is a function of the
state, x. In some applications, the measurement set is the state
itself, such that yk = xk , andm = n. In this paper, we consider
the more general case defined in (4), where m 6= n.

Suppose that one collects sampled measurements of (1) at
time instances k = {0, 1, . . . ,N }. Define the data matrices as
follows:

Y := [y0 y1 . . . yN−1], Y ′ := [y1 y2 . . . yN ],

(5)

where Y , Y ′ ∈ Rm×N . For a sufficiently large N , one gets [7]

Y ′ ≈ A · Y , (6)

where A ∈ Rm×m. Note that the operator A in (6) pushes the
measurement set one step forward in time. For this reason,
A is a finite-dimensional approximation to the Koopman
operator, K. This connection to the Koopman operator gives
the DMD method a theoretical support based on the math-
ematical knowledge of the dynamical systems. Let us now
focus on the DMD method.

In the original derivation of the DMD [6], [7], A takes the
form of a companion matrix. As discussed in [7], however,
a practical implementation based on the companion matrix
yields an ill-conditioned algorithm. Instead, the following
procedure is suggested in [7]: First, compute a reduced sin-
gular value decomposition of Y as follows:

Y = U6V , (7)

where U ∈ Cm×c, 6 ∈ Cc×c, V ∈ CN×c, and c is the rank of
Y . Then, compute

Ã = UYV6−1. (8)

The numerical procedure goes on with an eigendecompo-
sition of Ã but, for this paper, the outlined steps suffice.
As explained in [7], (8) amounts to a projection of the linear
operator A onto a proper orthogonal decomposition basis.
The method proposed in [7] is known as the standard DMD
method.

In addition to the standard DMD method, the modified
DMD proposed by Tu et al. [34] is widely used. It consists
of the following steps. Let

Y ′ = A · Y . (9)

Post-multiply both sides of (9) by YT to get

Y ′YT
= AYYT. (10)

Then, obtain an estimate of A as follows:

Â = Y ′YT
(
YYT

)−1
. (11)

Note that YT
(
YYT

)−1
in (11) is the Moore-Penrose inverse

Y† of a matrix Y , and the matrix
(
YYT

)
is invertible as long

as Y has linearly independent rows. Given an estimate Â,
it is straightforward to compute the approximations to the
Koopman eigenvalues and Koopman modes [3].

Now, let the residual (column) vector at time k be defined
as

rk := yk+1 − Ayk , (12)

and let the ith element of rk be given by

r [i]k = y[i]k+1 − aT
i yk , (13)

where aT
i denotes the ith row of A. It can be shown that (11)

is the solution to a classic linear least-squares regression
problem—that is,

minimize
N−1∑
k=0

m∑
i=1

ρ`s

(
r [i]k
)
, (14)

where the least-squares loss function ρ`s
(
r [i]k
)
=

1
2

(
r [i]k
)2
.

Lemma 1. The estimate Â in (11) is the least-squares solu-
tion to (6).

Proof: Define

J`s(ai) : =
N−1∑
k=0

m∑
i=1

1
2

(
y[i]k+1 − aT

i yk
) (

y[i]k+1 − aT
i yk
)

=

N−1∑
k=0

m∑
i=1

1
2

(
r [i]k
)2
=

N−1∑
k=0

m∑
i=1

ρ`s

(
r [i]k
)
. (15)

To minimize J`s(ai), one takes its partial derivative with
respect to ai and sets it equal to zero. Formally, we have

∂J`s(ai)
∂ai

=

N−1∑
k=0

m∑
i=1

∂ρ`s

(
r [i]k
)

∂r [i]k
·
∂r [i]k
∂ai

= −

N−1∑
k=0

m∑
i=1

ψ`s

(
r [i]k
)
yk = 0m, (16)

where 0m denotes a column vector of dimensionm, which has
all elements equal to zero, and

ψ`s

(
r [i]k
)
= r [i]k (17)
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is the least-squares ψ−function, also known as the score
function. From (16), one has
N−1∑
k=0

rkyTk =
N−1∑
k=0

(
yk+1 − Ayk

)
yTk =

N−1∑
k=0

yk+1y
T
k − Ayky

T
k

= Y ′YT
− AYYT

= 0mm, (18)

where 0mm denotes a square matrix of dimension m, which
has all elements equal to zero. Finally, from (18), we have

A = Y ′YT
(
YYT

)−1
, (19)

and the proof is complete.
Remark 1. In statistics, the score function is the gradient
of the log-likelihood function with respect to the parameter
vector. Evaluated at a particular point of the parameter
vector, the score indicates the steepness of the log-likelihood
function and thereby the sensitivity to infinitesimal changes
to the parameter values. If the log-likelihood function is
continuous over the parameter space, then the score will
vanish at a local maximum orminimum; this fact is used in the
maximum-likelihood estimation to find the parameter values
that maximize the likelihood function.
Remark 2. A bounded influence function, which is propor-
tional to the score function, is a necessary condition for a
robust estimator. From (17), it is clear that the least-squares
score function is unbounded, and, therefore, the least-squares
estimator is not robust.

Hence, it is expected that a least-squares estimator provides
strongly biased results when the samples contained in the
data matrices Y and Y ′ are contaminated with outliers. As a
result, in the presence of outliers, the modified DMD has
an unbounded bias. Moreover, it can be shown that singular
value decomposition is also based on a least-squares estima-
tor; therefore, in the presence of outliers, the standard DMD
method has also an unbounded bias.

III. ROBUST DYNAMIC MODE DECOMPOSITION
It is advisable to replace the standard and modified DMD
method with a statistically robust DMD method. To this end,
we first identify outliers using projection statistics. Then,
we derive weights over the interval [0, 1] that are used to
bound the influence of outliers. Specifically, the farther an
outlier is from the center of the data cloud, the smaller its
assigned weight. All remaining data points not identified as
outliers receive a weight equal to 1. These weights are incor-
porated into the Huber loss function to bound the influence of
outliers in the estimation process. The details are presented
next.

A. MULTIDIMENSIONAL OUTLIER DETECTION
The detection and identification of outliers are key steps in
robust statistics. In statistical analysis, several methods have
been proposed to detect an outlier based on its distance from
the majority of the data point cloud, as explained next.

Let a univariate data set, P ⊆ R, be {p1, . . . , pN }. A mea-
sure of the distance between a data point, pk ∈ P, and the

center of the data cloud is given by pk−̂̀
ŝ , where ̂̀denotes

an estimator of location, and ŝ denotes an estimator of scale.
A classic measure of distance in the univariate case is pro-
vided by

d(pk ) =
pk − µ̂P
σ̂P

, (20)

where the sample mean of the data points in P, µ̂P, is used
as an estimator of location and the sample standard deviation
of the data points in P, σ̂P, is used as an estimator of scale.
Note that d(pk ) is often referred to as the z-score of the
data point pk . The classic measure of distance given by (20)
is generalized to the multivariate case by the Mahalanobis
distance.
Definition 1 (Mahalanobis Distance). Let a multivariate
data set, P ⊆ Rm, be {p1, . . . , pN }. The Mahalanobis dis-
tance between a data point, pk , and the data cloud comprising
all data points in P is defined as

dM (pk ) :=
[(
pk − µ̂

)T Ŝ−1 (pk − µ̂)]1/2 , (21)

where µ̂ = (µ̂1, . . . , µ̂N )
T and Ŝ are, respectively, the

sample mean and the sample covariance matrix of the data
points in P.

By comparing (20) and (21), note that the sample standard
deviation used in the univariate case is replaced by the sample
covariance matrix in the multivariate case.

It can be shown (see [18]) that for a scalar b ∈ R, the
set of data points for which d2M < b lies inside an ellipsoid
with the center at µ̂. Moreover, if the data points in P ⊆ Rm

follow a multivariate normal distribution, then the values
of d2M follow a chi-square distribution with m degrees of
freedom, χ2

m; hence, there is a probability of 1 − α that a
data point pk such that d2M ≤ χ2

m,1−α is located within an
ellipsoid given by d2M = χ2

m,1−α that is centered at µ̂. This
provides the rationale used to tag outliers—that is, an out-
lier is any data point for which the Mahalanobis distance is

larger than a threshold, e.g.,
(
χ2
m,0.975

)1/2
. But because dM

is calculated via non-robust estimators of location and scale,
it is vulnerable to the masking effect of multiple outliers,
especially when the latter appear in clusters [37]. In other
words, the corresponding ellipsoid is inflated to the point that
it encompasses outliers, which can no longer be identified.
To gain robustness, one can replace the sample mean and
the sample covariance matrix in (21) by robust estimators of
location and scale, respectively. This is discussed next.
Definition 2 (Median Absolute Deviation From Median in

the Case of A Univariate Data Set): Let a univariate data set,
P ⊆ R, be {p1, . . . , pN }. A very robust estimator of scale [38]
is the median absolute deviation from the median, which is
defined as

madP := 1.4826 ·median
∣∣∣pk −median

(
pT
)∣∣∣ (22)

for k = {1, . . . ,N }, where pT
= [p1 p2 . . . pN ], and

the constant 1.4826 makes the estimator consistent at normal
distributions.
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In the univariate case, a robust distance between pk and the
center of the data cloud is given by:

dr (pk ) =

∣∣pk −median
(
pT)∣∣

madP
. (23)

Definition 3 (Median Absolute Deviation From the
Median in the Case of a Multivariate Data Set): Let a
multivariate data set, P ⊆ Rm, be {p1, . . . , pN }. The median
absolute deviation from the median is defined as

ŝ1 := 1.4826 ·mediank
( ∣∣∣pT

kv−medianj
(
pT
j v
)∣∣∣ ), (24)

for k, j = {1, 2, . . . ,N }, where v is the direction to which the
data points are projected.

In the multivariate case, however, it is challenging to align
all multivariate data points such that a meaningful measure of
distance can be obtained. A solution to this challenge stems
from the fact that the Mahalanobis distance can be written as
follows [39]:

dM (pk ) =
[(
pk − µ̂

)T Ŝ−1 (pk − µ̂)]1/2
≡ max
|v|=1


∣∣∣pT
kv− ̂̀(pT

1v, . . . , p
T
N v
)∣∣∣

ŝ
(
pT
1v, . . . , p

T
N v
)

 , (25)

where ̂̀and ŝ denote, respectively, an estimator of location
and scale. Note that the maximization should be considered
on all possible directions v. To robustify (25), Donoho and
Gasko [40] suggest using the sample median as the estima-
tor of location and the median absolute deviation from the
median given by (24), ŝ1, as the estimator of scale. This
distance is referred to as the projection statistic, and it is
defined as

dps(pk ) = dps, k := max
|v|=1


∣∣∣pT
kv−medianj

(
pT
j v
)∣∣∣

ŝ1

 , (26)

where the sample median and ŝ1 are calculated on the direc-
tion of all feasible unit vectors v. Unfortunately, ŝ1 loses
statistical efficiency for asymmetric distributions. To address
this issue, Croux and Rousseeuw [38], [41] propose another
robust estimator of scale, which is statistically efficient for
asymmetric distributions, and it is defined as

ŝ2 := 1.1926 · lomedk ( lomedj6=k | pT
kv− p

T
j v | ) , (27)

for k, j = {1, . . . ,N }, where lomed denotes a low median—
that is, the

(
(N + 1)/2

)
-th order statistic of N data points.

Eq. (27) reads as follows: for each k , we compute the low
median of |pk − pj| for j = {1, . . . ,N }. This yields N
data points, the low median of which gives the final esti-
mate, ŝ2. The factor 1.1926 is for consistency at the normal
distribution.

Yet, another challenge encountered in calculating the pro-
jection statistics is that considering all possible directions of
v cannot be realized. To address this, Gasko and Donoho [42]
suggest considering only the directions that originate from the

coordinate-wise median vector, vmed, and that pass through
each data point pk , yielding

vk = pk − vmed, (28)

where

vmed =
[
medianj(xj1) medianj(xj2) . . . medianjxjm

]T
.

(29)

Thus, it is enough to investigate m directions. Moreover, it is
not necessary to consider v to be of unit length because ŝ1 and
ŝ2 are affine equivariant scale estimators.
As is the case for the Mahalanobis distance, the projected

statistics approximately follow a chi-square distribution with
m degrees of freedom when the data points follow a multi-
variate normal distribution [18]; hence, the projection statistic
of each data point, pk , is calculated, and if they exceed a
threshold, e.g., d2ps, k > χ2

2,0.975, then the associated data point
is tagged as an outlier. Note that in this paper, the data points,
pk , are the columns of the data matrices given by (5).
Next, we develop a mechanism to suppress the adverse

effect of the outliers on the estimation process. This is
achieved by defining weights, which are calculated via
projection statistics and incorporated into the Huber loss
function.

B. GENERALIZED MAXIMUM-LIKELIHOOD ROBUST
ESTIMATION
Definition 4 (Huber Loss Function). The Huber loss func-
tion is defined as:

ρH

(
r [i]k
)
:=


1
2

(
r [i]k
)2

for |r [i]k | ≤ δ,

δ|r [i]k | −
1
2
δ2 otherwise.

(30)

Note that ρH (·) is quadratic for |r [i]k | ≤ δ, and linear other-
wise. The quadratic and linear sections connect at the point
where |r [i]k | is equal to the scalar-valued parameter, δ, which
dictates the slope of the function. The parameter δ is usually
adjusted to have a numerical value between 1 and 3 to have
high statistical efficiency at the normal distribution [18].
In this work, we set δ = 1.5.

Now, let the Schweppe-type Huber generalized maximum-
likelihood estimator be defined such that it minimizes a con-
vex objective function given by

JH (ai) =
N−1∑
k=0

m∑
i=1

w2
k · ρH

(
r [i]ks
)
, (31)

where

r [i]ks =
r [i]k
s · wk

=
1

s · wk

(
y[i]k+1 − aT

i yk
)
, (32)

s = 1.4826 · bm ·median
∣∣∣rTk ∣∣∣ , (33)

wk = min

(
1,

b

d2ps, k

)
. (34)
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Here, s is a robust estimator of scale, bm is a correction
factor, b is set equal to 1.5 for best statistical efficiency and
to avoid large biases [18], and wi are weights determined via
projection statistics. The calculated weights play an essential
role in the development of the RDMD method. Note that ai
is the vector-valued variable being optimized, and the cost
function is convex with respect to the residuals r [i]k .
We stress that (31) is a convex objective function. This fact

offers a significant computational advantage over non-convex
approaches. Further, note that the Huber loss function (30) is
quadratic for small values of rk , and linear for large values.
This characteristic yields a bounded score function, despite
the loss function being convex. The latter is an advantage
over, e.g., the least-absolute value estimator, which is robust
but has a non-convex loss function, or the least-squares esti-
mator, which has a convex loss function but is not robust.

Having introduced a robust outlier detection algorithm
and a generalized maximum-likelihood estimator that can
suppress the bias introduced by the outliers, we now present
the main result of this paper.

C. ROBUST DYNAMIC MODE DECOMPOSITION
Let y′ = col(Y ′) = [yT1 . . . yTN ]

T, a = row(A) =
[aT

1 . . . aT
m]

T, andB = Im⊗YT, where Im denotes an identity
matrix of dimensionm, and⊗ denotes the Kronecker product.
The linear regression (9) can be rewritten as:

y′ = Ba =
(
Im ⊗ YT

)
a

= v


YT

YT

. . .

YT




a1
a2
...

am

 . (35)

A solution to (35) can be found by solving m subproblems
of the form given by

y′ = YTai, i = {1, 2, . . . ,m}. (36)

Hence, for each subproblem i, we seek a robust estimate,
âi, that is the solution to y′ = YTai. Note that the residues,
r [i]k , given by (13) naturally apply to each subproblem i.
Following (31), for each subproblem i, we minimize the cost
function defined as

JH (ai) =
N−1∑
k=0

w2
k · ρH

(
r [i]ks
)
, (37)

and the optimal solution to (37) satisfies

∂JH (ai)
ai

=

N−1∑
k=0

−
wkyk
s
· ψH

(
r [i]ks
)
= 0m, (38)

where ψH
(
r [i]ks
)
= ∂ρ

(
r [i]ks
)
/r [i]ks , and

ψH

(
r [i]ks
)
=

 r [i]ks for
∣∣∣r [i]k ∣∣∣ ≤ δ,

δ · sign
(
r [i]ks
)

otherwise,
(39)

FIGURE 1. Comparison between (a) least-squares estimator and
(b) generalized maximum-likelihood robust estimator based on the
Huber loss function.

is the Huber score function. An illustration of the
least-squares and the Huber loss and score functions is shown
in Fig. 1. We stress that having a bounded score function is
a necessary condition for an estimator to be robust. Finally,
a robust solution to (35) is given by solving (38) for i =
{1, 2, . . . ,m}, as follows. By multiplying and dividing the
Huber score function in (38) by r [i]ks , and by defining the scalar

weight function as q
(
r [i]ks
)
:= ψH

(
r [i]ks
)
/r [i]ks , (38) can be

expressed in matrix form, as follows:

YQ
(
y′ − YT̂ai

)
= 0, (40)

where Q = diag
(
q
(
r [i]ks
))

. Solving for the estimate âi using
the iteratively reweighted least squares (IRLS) algorithm
yields

â(υ+1)i =

(
YQ(υ)YT

)−1
YQ(υ)y′, (41)

where the superscript (υ) indicates the υ-th iteration. The
condition for convergence of the IRLS algorithm is adjusted
to meet ||̂a(υ+1)i − â(υ)i || ≤ 0.01. In what follows, the
numerical method in (35)–(41) is referred to as K-RDMD,
an allusion to the Kronecker product in (35). The computation
time of K-RDMD is expected to increase substantially as the
number of time instances, N , increases. This is addressed
next.

Let us redefine the objective function as follows:

JH (A) =
N−1∑
k=1

w2
k · ρH (rks) , (42)

where ρH (rks) is a modified Huber loss function, as follows:

ρH (rks) =


1
2
||rks||2 for ||rks|| ≤ δ,

δ · ||rks|| −
1
2
δ2 otherwise,

(43)

where rks = rk/ (s · wk); rk and δ are as defined before. The
optimal solution to (42) is given by

∂JH (A)
∂A

=

N−1∑
k=0

w2
k ·
∂ρH (rks)
∂||rks||2

·
∂||rks||2

∂||rk ||2
·
∂||rk ||2

∂A
, (44)

where
∂ρH (||rks||)
∂||rks||2

=
1

2||rks||
∂ρH (||rks||)
∂||rks||

=
ψH (||rks||)
2||rks||

, (45)
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∂||rks||2

∂||rk ||2
=

1

s2w2
k

, (46)

∂||rk ||2

∂A
= 2rkyTk . (47)

Thus, we have

∂JH (A)
∂A

=

N−1∑
k=0

w2
k
ψH (||rks||)
||rks||

(
yk+1 − Ayk

)
yTk

s2w2
k

= 0. (48)

By putting (48) in matrix form, we get

YQ
(
Y ′ − AY

)T
= 0, (49)

whereQ = diag (ψH (||rks||)/||rks||). Solving for the estimate
Â using the IRLS algorithm yields

Â(υ+1)
= Y ′Q(υ)YT

(
YQ(υ)YT

)−1
. (50)

The condition for convergence of the IRLS algorithm is set
to meet ||Â(υ+1)

− Â(υ)
||F ≤ 0.01. In what follows, the

numerical method in (42)–(50) is referred to as N-RDMD,
an allusion to the use of the norm of a residual vector. The
performance of the proposed RDMD methods—K-RDMD
and N-RDMD—is assessed in Section IV.

D. ROBUST STANDARD DYNAMIC MODE
DECOMPOSITION
The first steps of the standard DMD method are outlined in
Section II-B, where c denotes the rank of Y . Note that it is
common to assume c ≤ m < N for large data sets. Moreover,
particularly for model order reduction, one is interested in
a projection Ã ∈ Rc′×c′ , where c′ < c. In this case, one
disregards (c−c′) nonzero elements of6 and (c−c′) columns
of U and V . This changes the unitary property of U and V as
follows:

U∗U = Ic′ , UU∗ 6= IN , (51)

V∗V = Ic′ , VV∗ 6= Im. (52)

In this section, we discuss how to robustify the standard
DMD method, even for the most challenging case described
herein. Let A = TÃT†. Further, let T ∈ CN×c′ , such that
T†T = I ′c. Then, the eigenvalues of Ã are a subset of the
eigenvalues of A; hence, for a known transformation T , the
residues in (12) can be rewritten as

rk = yk+1 − TÃT
†yk . (53)

Thus, by taking the steps (44) to (48) we get

T†YQ
(
T†Y ′ − ÃT†Y

)T
= 0, (54)

yielding to the iterative formula given by

Ã(υ+1)
= T†Y ′Q(υ)YTT

(
T†YQ(υ)YTT

)−1
. (55)

Note that in (55), the weights calculated via the projection
statistics act on the matrix Q. Also note that if TT†

= IN ,

thenQ is canceled out from (55), leading to an ordinary least-
squares solution, Ã = Y ′Y†, and we loose robustness; there-
fore, to guarantee robustness, we should have TT†

6= IN .
To relax such a constraint on (55), we resort to the following
iterative procedure:

Ã(υ+1)
= T†Y ′Q(υ)YTT

(
T†YQ(υ)YTT + γ 2I

)−1
, (56)

This is known as the Tikhonov regularization, which is usu-
ally used to solve ill-posed regression problems [43]. In (56),
γ is a small positive constant. It also can avoid possible
numerical problems in calculating the inverse in (55).
Although the estimation of Ã from (55) is robust to outliers,

it is not guaranteed that it includes all the dominant modes in
the data. In other words, although each eigenvalue of Ã is also
an eigenvalue of the originalA, there is the possibility that the
dominant eigenvalues are not included. This is mainly deter-
mined by how one selects the reduction matrix, T . An option
is to choose T = U , as is done for the standard DMDmethod.
Note that as previously explained, U is not a unitary matrix;
therefore, robustness is ensured. On the other hand, because
there are outliers in the data matrix, Y , such a reduction might
not be able to cover all dominant modes. It is observed that
for a low percentage of outliers among the data points, this
selection captures the dominant eigenvalues. Another option
is to preprocess the data matrices before performing the
singular value decomposition. A comprehensive investigation
on the choice of the similarity transformation in RDMD will
be addressed in future research.

IV. NUMERICAL RESULTS
In what follows, the performance of the proposed RDMD
method is assessed by using a variety of canonical dynam-
ical systems. Furthermore, the performance of the proposed
RDMD method is compared to the performance of
• the modified DMD method proposed in [34];
• the total dynamicmode decomposition (TDMD)method
proposed in [26];

• the optimization-based dynamic mode decomposi-
tion (ODMD) method proposed in [31];

• the robust trimmed DMD proposed in [28].
. We start by comparing the performance of the two variations
of the RDMD method1 developed in Section III-C.

A. COMPARISON OF K-RDMD AND N-RDMD
Consider a network of s oscillators connected in a ring
topology. The differential equation describing the angular
displacement of the k-th oscillator is given by

θ̈k + `
T
kθ + dkθk = 0, (57)

where θk and dk are, respectively, the angle and the damping
coefficient of the k-th oscillator; `Tk denotes the k-th row of
the Laplacian matrix L; and θ = [θ1 θ2 . . . θs]T. Note that

1The MATLAB code is available at https://github.com/amasoumi60/
Robust-Dynamic-Mode-Decomposition.
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TABLE 1. Computation time (s) and cumulative errors of K-RDMD and
N-RDMD.

FIGURE 2. Ring network defined in (58) with s = 15 oscillators and
N = 500 snapshots. (a) Reconstruction of the angular velocity of the first
oscillator in the presence of outliers of magnitude 0.2 from t = 1 to
t = 1.1 seconds. (b) Cumulative error of the state reconstruction.

the number of states is m = 2 · s, and a ring topology with
s = 15 oscillators is considered. The state-space equations
are written as

θ̇ = ω,

ω̇ = −Lθ − Dθ , (58)

ω = [ω1 . . . ωs]T, and D = diag(d1, . . . , ds). The data are
collected with a sample time of 0.01 second. The damping,
dk , is set to 0.05 for all k .

Fig. 2 shows the performance of N-RDMD and K-RDMD
for the network of the coupled oscillators with 15 oscillators
and 500 snapshots. We observe that both methods are robust
to outliers. The reconstruction cumulative error that is defined
as
∑k

i=0 ||xi,reconstructed − xi,true|| is also depicted in Fig. 2.
A difference in performance is observed in the reconstruc-
tion of a state variable, i.e., N-RDMD performs better than
K-RDMD in reconstructing the state value. This difference is
further investigated under three different scenarios, which are
summarized in Table 1. One may expect that despite the high
computational effort by K-RDMD, it may perform better than
N-RDMD. However, as seen in Fig. 2 N-RDMD reconstructs
the data with smaller error. It is because K-RDMD solves
m separate robust estimation problems, for each row of the
matrix A, using the IRLS algorithm. Note that each IRLS
loop has an error threshold that overall leads to a larger error
in estimating the matrix A, whereas N-RDMD uses a single
IRLS loop using the Frobenius norm of the error matrix.

In what follows, the performance of the N-RDMD
is compared to other DMD methods available in the
literature; in this paper, it is referred to as RDMD.
We choose N-RDMD because it has a higher compu-
tational efficiency than the K-RDMD. We start by pre-
senting results on a simple linear dynamical system and
gradually move toward more complex nonlinear dynamical
systems.

TABLE 2. Eigenvalues of (59) calculated using various methods under
three different scenarios.

FIGURE 3. Reconstruction of x2 for the linear system in (59).
(a) Outlier-free case. (b) Case with outliers of magnitude 0.3 from t = 1 to
t = 1.05 seconds and from t = 2 to t = 2.05 seconds.

B. LINEAR SYSTEM
Consider the linear dynamical system governed by

ẋ1 = −x1 − 3x2,

ẋ2 = x1 + x2. (59)

We investigate three cases as follows:
1) the sampled data are free of outliers;
2) the sampled data are contaminated with outliers of

magnitude 0.3 from t = 1 to t = 1.05 seconds;
3) the sampled data are contaminated with outliers of

magnitude 0.3 from t = 1 to t = 1.05 seconds and
from t = 2 to t = 2.05 seconds.

Table 2 provides the eigenvalues of Â computed for each
case. Furthermore, the reconstruction of x2 in Cases 1 and
3 is depicted in Fig. 3. Table 2 shows that the accuracy of
the RDMD is slightly less than that of other DMD methods
in the outlier-free case. As discussed in previous sections,
the RDMD presents high statistical efficiency under ideal
scenarios while being robust to deviations from assumptions
about the data. Indeed, the RDMD performs best for higher
percentages of outliers.

C. NETWORK OF COUPLED OSCILLATORS
Next, we consider the network of coupled oscillators defined
in (58). Figs. 4 and 5 show the performance of the considered
DMD methods. Fig. 4 shows that all methods capture the
dominant eigenvalue of the system in an ideal case without
outliers. Further, all methods yield an accurate reconstruc-
tion of state x2 = ω2. Conversely, Fig. 5 shows that the
N-RDMD performs best when the sampled data are contam-
inated with outliers of magnitude 0.1 between t = 1 and
t = 1.05 seconds.

D. SLOW-MANIFOLD SYSTEM
Now, consider a slow-manifold system given by

ẋ1 = µx1,
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FIGURE 4. Network of coupled oscillators when the sampled data are
outlier free: (a) eigenvalues; (b) reconstruction of the state x2.

FIGURE 5. Network of coupled oscillators when the sampled data are
contaminated with outliers of magnitude 0.1 between t = 1 and
t = 1.05 seconds: (a) eigenvalues; (b) reconstruction of the state x2.

FIGURE 6. Slow-manifold system when the sampled data are
contaminated with outliers of magnitude 0.2 between t = 1 and
t = 1.05 seconds and between t = 2 and t = 2.05 seconds.
(a) Eigenvalues. (b) Reconstruction of state x2.

ẋ2 = λ (x2 − ρ(x1)) , (60)

with µ = −0.05, λ = −1, and ρ(x1) = x21 ( [44]). In (60),
the slow dynamics are dictated by the eigenvalue equal to
−0.05, whereas the second state x2 quickly approaches the
manifold x2 = ρ(x1). In this case, we simulate a case where
the sampled data are contaminated with outliers of magnitude
0.2 between t = 1 and t = 1.05 seconds and between
t = 2 and t = 2.05 seconds. Fig. 6 depicts the estimated
eigenvalues. We observe that the N-RDMD performs best in
capturing the eigenvalue equal to−0.05 and that corresponds
to the slow dynamics.

E. VAN DER POL OSCILLATOR
Finally, we consider the Van der Pol oscillator given by:

ẋ1 = x2,

ẋ2 = µ
(
1− x21

)
x2, (61)

and the results are depicted in Fig. 7. Note that for the
data collected from nonlinearly evolving signals, the approx-
imated DMD modes are reflecting the behavior of the most

FIGURE 7. Estimated eigenvalues and reconstruction of state x2 for the
Van der Pol oscillator in (61): (a), (b) outlier-free data; (c), (d) sampled
data contaminated with outliers of magnitude 0.3 from t = 1 to
t = 1.15 seconds and from t = 3 to t = 3.05 seconds.

dominant Koopman modes. As shown in Fig. 7, when there
is no outlier contamination within the data set, all considered
DMD methods calculate approximately the same dominant
eigenvalues, and a good response of x2 is reconstructed;
however, when there are some outliers among the data set,
only N-RDMD can capture the same eigenvalues as found
for the outlier-free data. In other words, the process of finding
eigenvalues has been made robust against outliers.

F. DYNAMIC MODE DECOMPOSITION OF LARGE DATA
SETS
Next, we assess the performance of the N-RDMD for larger
data sets. First, we consider a random linear system of the
form given by

ẋ(t) = 2x(t), (62)

where2 is a random matrix of the form randn(m,m)− hIm,
and h is chosen such that all eigenvalues reside in the left
half of the complex Cartesian plane. The data are collected
for N = 200 time samples. The order of the truncated
dynamics is considered to be c′ = 25 for all the simulated
DMD methods. Note that ODMD [31] is not included in this
case because no solution can be attained. Fig. 8 shows that
the modified DMD and TDMD methods perform best when
the data are outlier free; however, the N-RDMD outperforms
other methods when the data are contaminated with outliers.
Note that the TDMD estimates the eigenvalues with positive
real parts, indicating unstable dynamics; therefore, we do not
plot the TDMD response in Fig. 8(d).

As a second example, consider a generalized representa-
tion of a slow-manifold nonlinear system given by

ẋ1 = Wx1,

ẋ2 = 3 (x2 − P (x1)) , (63)
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FIGURE 8. Estimated eigenvalues and reconstruction of state x2 for the
random linear dynamical system in (62): (a), (b) outlier-free data;
(c), (d) sampled data contaminated with outliers of magnitude 0.2 from
t = 1 to t = 1.05 seconds.

TABLE 3. Computation time (s) of the tested DMD methods.

where x1, x2 ∈ Rm/2, W = diag
(
µ1, . . . , µm/2

)
, 3 =

diag
(
λ1, . . . , λm/2

)
, µi < 0, λi > 0, i = {1, . . . ,m/2}, and

P(x1) = [P1(x1) . . . Pm/2(x1)]T. Here, we chooseµi as neg-

ative random numbers, 3 = Im/2, P i(x1) =
(∑m/2

j=1 x1j
)2
,

and m = 500.
The results depicted in Fig. 9 demonstrate the ability of all

DMD methods to capture the dominant eigenvalues, located
at µi, and to reconstruct the state x2 when the data are outlier
free. Further, as shown in Fig. 9, the N-RDMD outperforms
the DMD and the TDMD when the sampled data are con-
taminated with outliers of magnitude 0.1 from t = 1 to
t = 1.05 seconds.

G. COMPUTATION TIME
A comparison of the computation time for all DMD methods
applied on the examples in sections IV-B to IV-F is provided
in Table 3. Compared to other methods, the N-RDMD has a
higher computation time, the vast majority of which is spent
computing projection statistics. This is essentially the price
to pay for having statistical robustness.

H. COMPARISON WITH ROBUST LEAST-TRIMMED
SQUARE DYNAMIC MODE DECOMPOSITION
As discussed, a numerical method that is statistically robust
was proposed in [28]. This method works based on an LTS
estimator; thus, we refer to it as LTS-RDMD. The discus-
sion on the efficiency and applicability of the LTS esti-
mators is given in the introduction. As stated, generalized
maximum-likelihood estimators are easier to implement and

FIGURE 9. Estimated eigenvalues and reconstruction of state x2 for the
generalized slow-manifold system in (63): (a), (b) outlier-free data;
(c), (d) Sampled data contaminated with outliers of magnitude 0.2 from
t = 1 to t = 1.05 seconds.

FIGURE 10. Calculation of eigenvalues by the RDMD and the LTS-RDMD
for the simple oscillator (64) in the following cases: (a) the measured
data with noise and spikes; (b) discovered eigenvalues for noise-free
data with spike levels µ = 1, p = 0.05; (c) discovered eigenvalues with
spike levels µ = 1, p = 0.05 and Gaussian noise level η = 10−4;
(d) discovered eigenvalues with spike levels µ = 1, p = 0.05 and
Gaussian noise level η = 10−3.

faster to calculate as compared to LTS estimators. Consider a
two-dimensional dynamical system governed by

ẋ (t) =
[
1 −2
1 −1

]
x (t) (64)

The measurement snapshots are contaminated with the addi-
tive deviation ηw (t) + µs (t), where w(t) is the Gaussian
noise. Also, the elements of the vector s(t) are obtained
by multiplying a Bernoulli trial with small expectation p
by a standard normal, which leads to a sparse noise; there-
fore, the snapshots are contaminated with a base Gaussian
noise and some spikes of size µ with firing rate p ( [28]).
The comparison between our RDMD and the LTS-RDMD to
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discover the eigenvalues of the system is given in Fig. 10.
Note that we repeated the simulations 200 times for each
method. Simulations are performed for fixed µ = 1 and
p = 0.05 and for two different Gaussian noises levels:
σ = 10−4 and σ = 10−3. It is observed that both
methods can efficiently discover the true eigenvalues when
the data are contaminated by the spikes (outliers). Also,
in a number of simulations, the LTS-RDMD finds some
erroneous eigenvalues, whereas the RDMD always finds
them near the true value. Moreover, Fig. 10 shows that the
LTS-RDMD method acts more precisely for higher levels of
the Gaussian noise. The price for such additive robustness is
the higher implementational and computational complexity
of the LTS-RDMDmethod. As stated in the previous subsec-
tion, the combination of the TDMD and the proposed RDMD
methods could further improve the robustness in cases of
more powerful Gaussian noise, and it will be addressed in
our future research.

V. CONCLUSION
The problem of making the DMD robust to outliers is inves-
tigated. By casting the DMD problem in the robust statistics
framework, it is solved by using a Schweppe-type Huber
generalized maximum-likelihood estimator. The numeri-
cal results demonstrated the effectiveness of the proposed
RDMD for a variety of dynamical systems when the sampled
data are contaminated with outliers. Further, the proposed
RDMD presented satisfactory performance in dealing with
non-Gaussian noises. Finally, we noticed that the numerical
results are significantly improved by considering the symme-
try of the problem; thus, we suggest the robustification of the
total least-squares method as a direction for future research.
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