
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Conference Paper
NREL/CP-2C00-80232
February 2022

Improving the Performance of DGEMM
with MoA and Cache-Blocking
Preprint
Stephen Thomas,1 Lenore Mullin,2 and
Katarzyna Swirydowicz3

1 National Renewable Energy Laboratory
2 University of Albany
3 Pacific Northwest National Laboratory

Presented at ARRAY ’21
June 20–26, 2021

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov

Conference Paper
NREL/CP-2C00-80232
February 2022

Improving the Performance of DGEMM
with MoA and Cache-Blocking
Preprint
Stephen Thomas,1 Lenore Mullin,2 and
Katarzyna Swirydowicz3

1 National Renewable Energy Laboratory
2 University of Albany
3 Pacific Northwest National Laboratory

Suggested Citation
Thomas, Stephen, Lenore Mullin, and Katarzyna Swirydowicz. 2022. Improving the
Performance of DGEMM with MoA and Cache-BlockingTitle: Preprint. Golden, CO:
National Renewable Energy Laboratory. NREL/CP-2C00-80232.
https://www.nrel.gov/docs/fy22osti/80232.pdf.

https://www.nrel.gov/docs/fy22osti/80232.pdf

NOTICE

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding
provided by the U.S. Department of Energy Office of Science, Advanced Scientific Computing Research. The views
expressed herein do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government
retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains
a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or
allow others to do so, for U.S. Government purposes.

This report is available at no cost from the National Renewable
Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available
free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,
NREL 46526.

NREL prints on paper that contains recycled content.

http://www.nrel.gov/publications
http://www.osti.gov/

Improving the Performance of DGEMM with MoA and
Cache-Blocking

Stephen Thomas
Stephen.Thomas@nrel.gov

National Renewable Energy Lab
Golden, Colorado, USA

Lenore Mullin
lenore@albany.edu
University of Albany
Albany, New York

USAlenore@albany.edu

Katarzyna Świrydowicz
kasia.swirydowicz@pnnl.gov
Pacific Northwest National
Laboratory, Richland, WA
Richland, Washington, USA

ABSTRACT
The goal of this paper is to demonstrate performance enhancements
of the high performance dense linear algebra matrix-matrix multi-
ply DGEMM kernel, widely implemented by vendors in the basic
linear algebra subroutine BLAS library. The mathematics of arrays
(MoA) paradigm due to Mullin (1988) results in contiguous memory
accesses in combination with Church-Rosser complete language
constructs optimized for target processor architectures [3]. Our
performance studies demonstrate that the MoA implementation of
DGEMM combined with optimal cache-blocking strategies results
in at least a 25% performance gain on both Intel Xeon Skylake and
IBM Power-9 processors over the vendor supplied Intel MKL and
IBM ESSL basic linear algebra libraries. Results are presented for
the NREL Eagle and ORNL Summit supercomputers.

KEYWORDS
Mathematics of Arrays, contiguous memory, cache-blocking
ACM Reference Format:
Stephen Thomas, Lenore Mullin, and Katarzyna Świrydowicz. 2021. Improv-
ing the Performance of DGEMM with MoA and Cache-Blocking . In ARRAY
’21: ACM Symposium on Array Programming, 20 – 26 June, 2021, Virtual.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The DGEMM kernel is critical for both dense and sparse linear
solver stacks and Exascale physics simulations. Both the Hypre
and Trilinos DOE solver frameworks include low synchronization
Krylov iterations for linear solvers [9], together with algebraic
multigrid preconditioners that rely on BLAS kernels. Sparse di-
rect solvers such as SuperLU employ multi-frontal factorizations
that lead to small dense matrices that require a DGEMM kernel
[6]. Numerical linear algebra computations in general require fast
matrix multiplication for a variety of algorithms. These include op-
timization, data compression and stochastic gradient descent (SGD)
for the acceleration of training algorithms in AI. More recently,
lower precision FP-16 tensor-core processors are being provided by
graphics processing unit (GPU) vendors such as NVIDIA and our

next goal is to extend our approach to these many-core architec-
tures. In the present study the focus is on improving the sustained
performance of DGEMM in FP-64 on the Intel Xeon Skylake and
IBM Power-9 CPUs.

A recent paper by Antz et. al. [2] reviews mixed precision algo-
rithms for numerical linear algebra, including both direct and itera-
tive (Krylov) solvers. The direct solvers rely on 𝐿𝑈 , 𝐿𝐷𝐿𝑇 and 𝑄𝑅
matrix factorizations, whereas Krylov solvers are based on Gram-
Schmidt orthogonalization algorithms. The most widely known
iterative Krylov solver algorithms are the symmetric Lanczos and
non-symmetric Arnoldi-QR iterations. Dense matrix-matrix multi-
plication is also required for so-called 𝑠-step and block variants of
these iterative solvers. In this case the matrices are tall and skinny
rather than square with dimensions 𝑁 × 𝑁 . All of these solvers
would directly benefit from fast matrix-vector and matrix-matrix
multiplication kernels.

Mathematics of Arrays (MoA) is a way of describing and repre-
senting arrays, of any dimension, and is a collection of algebraic
operations on arrays [8]. MoA is based on the Psi calculus developed
by Mullin in [8]. Psi calculus is, simply, a calculus of indexing and
shapes. MoA has several advantages that make it attractive. First, it
is domain agnostic. Second, no matter what the array dimensions
are, MoA accesses the arrays in a contiguous fashion. This makes
it very memory, and cache-friendly. The overall performance of a
program based on MoA is predictable. Third, the steps from the
high-level description of the problem to program generation can be
fully automated due to linear and multi-linear transformations [3].

The mathematics of arrays paradigm results in contiguous mem-
ory accesses in combination with Church-Rosser complete lan-
guage constructs optimized for target processor architectures. We
demonstrate that the MoA implementation of matrix-matrix mul-
tiply (DGEMM) combined with cache-blocking strategies results
in at least a 25% performance gain on both Intel Xeon Skylake
and IBM Power-9 processors over the vendor supplied Intel MKL
and IBM ESSL basic linear algebra, which contain optimized imple-
mentations of the BLAS and LaPACK libraries. Modern processor
architectures such as these provide SIMD vector arithmetic units
with fused multiply-add instructions. In the case of the IBM Power-
9 the SMT vector units are reconfigurable. The Power-9 core comes
in two variants, a four-way multi-threaded SMT-4 and an eight-
way SMT-8. These can be utilized in slices for vector processing
with a 12-stage pipeline. Similar gains are anticipated on NVIDIA
and AMD GPUs that implement single-instruction multiple thread
SIMT architectures. In addition, these arewell-suited to tensor based
mathematics on 2 × 2 and 4 × 4 matrix-multiplication tensor-core
hardware with low-precision FP-16 arithmetic [1, 5].

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

1

https://doi.org/10.1145/1122445.1122456

2 MATRIX MULTIPLICATION
A basic linear algebra kernel (BLAS) is matrix-matrix multiplication,
known as DGEMM in double precision floating point arithmetic and
available in numerical linear algebra libraries provided by vendors
such as the IBM ESSL and Intel MKL. For matrices 𝐴 and 𝐵 with
conforming dimensions 𝑛 × 𝑝 and 𝑝 × 𝑚, the resulting matrix 𝐶 =
𝐴 × 𝐵 has dimensions 𝑛 × 𝑚. Because the DGEMM is such an
important component in many applications, much effort is devoted
to achieving the highest possible execution rates on current micro-
processor and many-core architectures such as GPUs. In the present
study our focus is on single-processor performance on the Intel
Xeon SkyLake and IBM Power-9 processors.

An example code will be derived below for matrix multiplica-
tion. Consider square matrices with dimensions 𝑁 × 𝑁 . Given two
matrices 𝐴 and 𝐵 with elements 𝑎𝑖, 𝑗 and 𝑏𝑖, 𝑗 with 0 ≤ 𝑖, 𝑗 < 𝑁 their
product is

(𝐴𝐵)𝑖, 𝑗 =
𝑁−1∑
𝑘=0

𝑎𝑖,𝑘 𝑏𝑘,𝑗 = 𝑎𝑖,1𝑏1, 𝑗 +𝑎𝑖,2𝑏2, 𝑗 , + · · · +𝑎𝑖,(𝑁−1) 𝑏 (𝑁−1), 𝑗

A straight-forward ‘C’ implementation of this algorithm is given
below: The two input matrices are mul1 and mul2. The result matrix
res is assumed to be initialized to all zeroes. It is a nice and simple
implementation. While mul1 is accessed sequentially, the inner loop
advances the row number for mul2. The memory access pattern for
the matrix is not stride-1 and leads to slow execution rates because
of cache misses. There is one possible remedy one can easily try.
Because each element in the matrices is accessed multiple times it
might be worthwhile to rearrange or “transpose" the second matrix
mul2 before using it.

(𝐴𝐵)𝑖, 𝑗 =
𝑁−1∑
𝑘=0

𝑎𝑖,𝑘 𝑏
𝑇
𝑗,𝑘

= 𝑎𝑖,1𝑏
𝑇
𝑗,1 +𝑎𝑖,2 𝑏

𝑇
𝑗,2 + · · · +𝑎𝑖,(𝑁−1) 𝑏

𝑇
𝑗,(𝑁−1)

After the transposition, both matrices are accessed sequentially.
The corresponding ‘C’ code is given below.

1 double tmp[N][N];

2

3 for (i = 0; i < N; ++i)

4 for (j = 0; j < N; ++j)

5 tmp[i][j] = mul2[j][i];

6

7 for (i = 0; i < N; ++i)

8 for (j = 0; j < N; ++j)

9 for (k = 0; k < N; ++k)

10 res[i][j] += mul1[i][k] * tmp[j][k];

A temporary variable contains the transposed matrix. This re-
quires touching additional memory, but this cost is, hopefully, re-
covered because the 𝑁 non-sequential accesses per column are
more expensive (at least on modern hardware). The search for an
alternative implementation should start with a close examination
of the math involved and the operations performed by the original
implementation. Our linear algebra knowledge allows us to see
that the order in which the additions for each element of the result
matrix are performed is irrelevant as long as each addend appears
exactly once. This understanding allows us to look for solutions

which reorder the additions performed in the inner loop of the
original code.

At the algorithmic level, the matrix multiplication is expressed
as the product

𝐶 = 𝐴 × 𝐵

which is the inner product of arrays 𝐴 and 𝐵 to produce the re-
sult array 𝐶 . This high-level representation is transformed, using
Psi-calculus operations on shapes, to a Denotational Normal Form
(DNF), requiring the least amount of computation and memory ac-
cess. The following equation gives a DNF for matrix multiplication
of 𝐴 and 𝐵.

#»
𝑖 𝜓 (𝐴 · 𝐵) ≡ (((#»

𝑖 #
#»

𝑘) 𝜓 𝐴) × (𝑘𝜓 𝐵)

Vector #»
𝑖 means an entire row of the product matrix (𝐴 · 𝐵) is

accessed. 𝜓 is an index function and the entire row is the result
of addition reduction operation of the product of elements of 𝐴,
accessed through a concatenation (symbol #) of vectors #»

𝑖 (access-
ing rows) and

#»

𝑘 accessing columns from 𝐵. A detailed discussion
of DNF forms can be found in [8]. The DNF notation makes no
assumptions about the layout of the arrays in the memory. The
next step is to translate this DNF into Operational Normal Form
(ONF). In ONF form, the arrays are flattened and accessed linearly
using, start, stop, and stride arguments. The ONF shows the details
of the array layout and how to generate the addresses. The ONF
form can be adjusted to use any hardware features such as vectors,
and threads. An example implementation of a transformation to
the DNF, is Python-MoA .

The last step relates the ONF to the available hardware using
dimension lifting of the arrays indices. For example, with double
precision floating arrays on a machine with 128-bit vector instruc-
tions, then elements are processed two at a time. Therefore, indices
have to be adjusted.

A simple example of a 2 × 2 matrix multiplication using the
classical and MoA formulations illustrates how MoA accesses both
matrices linearly, in a contiguous manner [7]. The traditional inner
product form is given by[

0 1
2 3

]
×
[
4 5
6 7

]
=

[
0 × 4 + 1 × 6 0 × 5 + 1 × 7
2 × 4 + 3 × 6 2 × 5 + 3 × 7

]
whereas the MoA formulation is expressed as follows[

0 × (4, 5) + 1 × (6, 7)
2 × (4, 5) + 3 × (6, 7)

]
=[

(0 × 4 0 × 5) + (1 × 6 3 × 7)
(2 × 4 2 × 5) + (3 × 6 3 × 7)

]
MoA differentiates between the DNF, which describes the arrays by
their shapes and uses a function𝜓 to define indices, and between
the ONF which takes into account the arrays layout in memory
which is row-major. The resulting ‘C’ code is given below with
a linear array for storage. The inner-most loop employs stride-1
accesses for mul1.

1 for (i = 0; i < N; i++)

2 for (j = 0; j < N; j++)

3 for (k = 0; k < N; k++)

4 res[i*N+j] += mul1[i*N+k] * mul2[k*N+j];

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

2

3 CACHE BLOCKING
The memory hierarchy and cache blocking strategies have a direct
impact on the execution rate of matrix-matrix multiply. Our analysis
of the memory hierarchy is based on Draper [4]. The cache prefetch
strategy and ‘C’ code presented in this earlier work can be improved
by modifications to the inner-most loop pointer arithmetic and
array indexing. These changes and the resulting execution rates
are presented below.

Let 𝑁 = 1000 and let us examine the actual problem in the
execution of the original code. The order in which the elements
of mul2 are accessed is: (0, 0), (1, 0), . . . , (𝑁 − 1, 0), (0, 1), (1, 1),
The elements (0, 0) and (0, 1) are in the same cache line but, by
the time the inner loop completes one round, this cache line has
long been evicted. For this example, each round of the inner loop
requires, for each of the three matrices, 1000 cache lines (with 64
bytes for the Intel Xeon processor). This adds up to much more
than the 32k of L1d data cache available.

However, consider when two iterations of the middle loop are
combined while executing the inner loop. In this case, two double
values from the cache line are used, which is guaranteed to be in
the L1d data cache. Thus, the L1d data cache miss rate is cut in half.
That is certainly an improvement, however, depending on the cache
line size, it still might not be optimal. The Intel Xeon processor has
a L1d data cache line size of 64 bytes.

With sizeof(double) being 8 this means that, to fully utilize the
cache line, the middle loop should be unrolled 8 times. Continuing
this analysis, to effectively use the res matrix as well, i.e. to write
8 results at the same time, unroll the outer loop 8 times as well.
Assume here cache lines of size 64 but the code works also well
on systems with 32 byte cache lines since both cache lines are also
100% utilized. In general it is best to hard-code cache line sizes at
compile time.

If the binaries are supposed to be generic, the largest cache line
size should be employed. With very small L1d data caches this might
mean that not all the data fits into the cache but such processors
are not suitable for high-performance programs in any case. The
resulting code is given below:

1 define SM (CLS / sizeof (double))

2

3 for (i = 0; i < N; i += SM)

4 for (j = 0; j < N; j += SM)

5 for (k = 0; k < N; k += SM)

6 for (i2 = 0, rres = &res[i][j],

7 rmul1 = &mul1[i][k]; i2 < SM;

8 ++i2, rres += N, rmul1 += N)

9 for (k2 = 0, rmul2 = &mul2[k][j];

10 k2 < SM; ++k2 , rmul2 += N)

11 for (j2 = 0; j2 < SM; ++j2)

12 rres[j2] += rmul1[k2] * rmul2[j2];

This code appears to be quite complex. To some extent it is, how-
ever, only because it incorporates some tricks that can be expressed
in MoA e.g. contiguous array access. The most visible change is
that now there are six nested loops. The outer loops iterate with
intervals of SM (the cache line size divided by sizeof(double)).
This breaks up the multiplication into several smaller problems
which exhibit better cache locality. The inner loops iterate over
the missing indices of the outer loops. There are, once again, three
loops. The only difficulty here is that the k2 and j2 loops are in

a different order. This is done because, in the actual computation,
only one expression depends on k2 but two depend on j2.

The rest of the complication here results from the fact that com-
pilers are not proficient when it comes to optimizing array indexing.
The introduction of the additional variables rres, rmul1, and rmul2
optimizes the code by pulling common expressions out of the inner
loops, as far down as possible. The default aliasing rules of the C
and C++ languages do not help the compiler making these decisions
(unless restrict is used, all pointer accesses are potential sources
of aliasing).

The input matrices can be arbitrarily large as long as the result
matrix fits into memory as well. This is a requirement for a more
general solution which has now been achieved. Most modern pro-
cessors include special support for vectorization. Pipelined vector
instructions allow processing of 2, 4, 8, or more values at the same
time. These are SIMD (Single Instruction, Multiple Data) operations,
augmented by others to get the data in the right form. The SSE2
instructions provided by Intel processors can handle two double
values in one operation. The instruction reference manual lists the
intrinsic functions which provide access to these SSE2 instructions.
Advanced vector extensions AVX-2 instructions process four 64-bit
double-precision floating point numbers. AVX-2 instructions uti-
lize 256-bit registers for the vectors, which can be streamed to the
vector units.

The matrix multiplication has been optimized through the use of
the loaded cache lines. All bytes of a cache line are always used and
they are accessed before the cache line is evacuated. It should be
noted that, in the last version of the code, there are still cache prob-
lems with mul2; prefetching may not work. However this cannot
be solved without transposing the matrix. Perhaps the cache pre-
fetching units will improve and recognize the access patterns, then
no additional change would be needed. An alternative approach is
discussed below for the Intel Xeon processor.

The latest generation Intel Xeon and IBM Power-9 processors
provide vector instructions. For example, the AVX-2 vector instruc-
tions from Intel. These generally work with vectors stored as cache
lines or special registers and are employed in our experiments
reported in the sequel.

4 INTEL MKL DGEMM ON XEON SKYLAKE
Our performance on the Intel Xeon SkyLake processor was further
improved by treating the mul2 array differently in the code given
below. In particular, this array is not addressed using pointer arith-
metic but rather with array indexing as in the inner-most loops
for the other arrays. The restrict keyword in ‘C’ is employed to
indicate to the compiler that aliasing will not occur.

In order to load the Intel icc compiler and associated libraries
along with the lapack library and BLAS, the following commands
were employed

1 module load intel -parallel -studio/cluster .2019.1

2 module load netlib -lapack /3.8.0

Cache pre-fetching was enabled in our code with the pragma
prefetch. In addition, the inner-most loop was unrolled to a depth
of 16, which is twice the recommended value for this architecture.
Furthermore, our cache line size parameter SMwas set to 16 doubles.
Both of these choices lead to higher execution rates from the AVX-2

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

3

vector instructions associated with the inner-most loop of our MoA
based matrix-multiply kernel. The Intel icc compiler options are
given below and the resulting executable was run on the NREL Eagle
Supercomputer. Note that vector SSE and AVX-2 instructions were
enabled for these tests. The restrict flag informs the compiler to
avoid cache aliasing. These parameters are meant to ensure that
the majority of memory references are within the current L1d data
cache line.

1 icc -restrict -Ofast -xSSE4.2 -axAVX ,CORE -AVX2 -o

transpose transpose.c

Intel provides a fast CBLAS DGEMM matrix multiply kernel
in the math kernel library (MKL). For comparison, a driver for
the Intel MKL DGEMM was compiled and compared against our
implementation on square matrices ranging in size up to 𝑁 = 2500.
The compile options were specified as given below.

1 icc -Ofast geMMlapack.c `pkg -config --libs --cflags mkl -

dynamic -ilp64 -seq` -Ofast -o geMMlapack

The computational complexity of the matrix multiply is O(𝑁 3)
for square matrices, with two floating-point operations (flops) ap-
pearing in the inner-most loop as a multiply-add. The results of
our comparison are displayed in Figure 1, where our cache-blocked
MoA based code achieves a 25% faster execution rate versus the Intel
MKL DGEMM. The execution rate increases up to 15 GigaFlops/sec,
at which point the curve flattens. Further analysis would likely
indicate that the available memory bandwidth on the Eagle nodes
with two 18-core sockets has been reached.

1 #define SM 16 // 16 (64 / sizeof (double))

2 #define L2 32 // 32 (64 / sizeof (double))

3 #define L3 8 // 8 (64 / sizeof (double))

4

5

6 int main(int argc , char** argv)

7 {

8 long long int i, i2, j, j2, k, k2;

9 long long int ii, ij;

10

11 long long int N = atoi(argv [1]);

12 double res[2*N*N] __attribute__ ((aligned (64)));

13 double mul1 [2*N*N] __attribute__ ((aligned (64)));

14 double mul2 [2*N*N] __attribute__ ((aligned (64)));

15

16 double *__restrict__ rres;

17 double *__restrict__ rmul1;

18 double *__restrict__ rmul2;

19

20 for (i = 0; i < N; i += L2)

21 for (j = 0; j < N; j += SM)

22 for (k = 0; k < N; k += L3)

23 for (i2 = 0, rres = &res[i*N+j],

24 rmul1 = &mul1[i*N+k];

25 i2 < L2; ++i2 , rres += N, rmul1 += N)

26 for (k2 = 0; k2 < L3; ++k2)

27 #pragma prefetch

28 #pragma ivdep

29 #pragma unroll (16)

30 for (j2 = 0; j2 < SM; ++j2)

31 rres[j2] += rmul1[k2] *

32 mul2[k*N+j+j2];

33 }

5 IBM ESSL DGEMM ON POWER-9
The Power-9 core comes in two variants, a four-way multi-threaded
SMT-4 and an eight-way SMT-8. The SMT-4 and SMT-8 cores are
similar, in that they consist of a number of so-called slices fed by
common schedulers. A slice is a rudimentary 64-bit single-threaded
processing core with load store unit (LSU), integer unit (ALU) and
a vector scalar unit (VSU, doing SIMD floating point). A super-slice
is the combination of two slices. An SMT-4core consists of a 32 KB
L1 cache (1 KB = 1024 bytes), a 32 KB L1d data cache, an instruction
fetch unit (IFU) and an instruction sequencing unit (ISU) which
feeds two super-slices. An SMT-8 core has two sets of L1 caches
and, IFUs and ISUs to feed four super-slices. The result is that the
12-core and 24-core versions of the Power-9 each consist of the
same number of slices (96 each) and the same amount of L1d cache.

A Power-9 core, whether SMT-4 or SMT-8, has a 12-stage pipeline
(five stages shorter than its predecessor, the Power-8), but aims to
retain the clock frequency of around 4 GHz. It is the first processor
to incorporate elements of the Power ISA v.3.0 that was released in
December 2015, including the VSX-3 instructions.

The IBM xlc compiler and associated libraries along with the
lapack library and BLAS, are loaded using the following commands

1 module load essl /6.2.1 -0

2 module load xl/16.1.1 -4

3 module load netlib -lapack /3.8.0

The IBM xlc compiler options are given below and the resulting
MoA DGEMM executable was run on the ORNL Summit Super-
computer. Vector instructions were enabled for these tests. The
restrict flag informs the compiler to avoid cache aliasing.

1 cc -O3 -qalias=restrict -qarch=pwr9 -mcpu=power9

2 -qhot -qsimd -qprefetch=aggressive

3 -qtune=pwr9 -o transpose transpose.c

IBM provides a fast DGEMM matrix multiply kernel in the ESSL
library. For comparison, a driver for the IBM ESSL DGEMM was
compiled and compared against our implementation on square
matrices ranging in size up to 𝑁 = 2500. The compile options were
specified as given below.

1 cc -Ofast -mcpu=power9 -mtune=power9 -qarch=pwr9

2 -qhot -qprefetch=aggressive

3 -qsimd -qtune=pwr9 -qalias=restrict

4 -o geMMlapack geMMlapack.c

5 -DUSE_MASS -lessl -L$OLCF_ESSL_ROOT/lib64

The performance on the IBM Power-9 processor was improved
significantly by using array indexing instead of pointer arithmetic
within the inner-most loop in the code given below. Another dif-
ference between the IBM and Intel implementations is the smaller
cache line size specified as 𝑆𝑀 = 8 for the Power-9. Loop unrolling
was applied once again, however, only to a depth of eight on this
machine. The restrict keyword in ‘C’ is employed once again to
indicate to the compiler that aliasing should not occur.

The execution rates achieved on the ORNL Summit Supercom-
puter are plotted in Figure 2. A single processor core was employed
within one of the Summit nodes. Each node of Summit has two 22-
core IBM Power-9 CPUs and six NVIDIA Volta 100 GPUs. The per-
formance increases rapidly as the matrix dimensions are increased
and then plateau as the maximum acheivable memory bandwidth
is reached on a Summit node.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

4

1 #define SM 8

2 #define L2 8

3 #define L3 8

4

5

6 int main(int argc , char** argv)

7 {

8 // ... Initialize mul1 and mul2

9 long long int i, i2, j, j2, k, k2;

10 long long int ii, ij;

11

12 long long int N = atoi(argv [1]);

13 double *__restrict__ res ;

14 double *__restrict__ mul1 ;

15 double *__restrict__ mul2 ;

16

17 res = malloc(N*N*sizeof(double));

18 mul1 = malloc(N*N*sizeof(double));

19 mul2 = malloc(N*N*sizeof(double));

20

21 double *__restrict__ rres;

22 double *__restrict__ rmul1;

23 double *__restrict__ rmul2;

24

25 for (i = 0; i < N; i += L2)

26 for (j = 0; j < N; j += SM)

27 for (k = 0; k < N; k += L3)

28 for (i2 = 0; i2 < L2; ++i2)

29 for (k2 = 0; k2 < L3; ++k2)

30 #pragma prefetch

31 #pragma ivdep

32 #pragma unroll (8)

33 for (j2 = 0; j2 < SM; ++j2)

34 res[i*N+j+j2] +=

35 mul1[i*N+k+k2] * mul2[k*N+j+j2];

36 }

6 CONCLUSIONS
In this paper, the mathematics of arrays paradigmwas applied to the
BLAS DGEMM matrix multiplication kernel. DGEMM is a widely
used algorithm and plays a centrol role in numerical linear algebra
and AI/ML applications. With the advent of low-precision FP-16
tensor-cores, mixed-precision algorithms can now achieve higher
speeds with the same level of accuracy.

For both the Intel Xeon and IBM Power-9 architectures, cache-
blocking strategies were combined with vector instructions to
achieve significant performance improvement. For example, the
sustained execution rates were at least 25% faster than the Intel
MKL DGEMM on the NREL Eagle Supercomputer. Differences in
the ‘C’ implementations were notable. A mixture of pointer arith-
metic and array indexing was best for the Intel, whereas pure array
indexing performed best on the IBM Power-9 CPU. Presumably,
this is related to the compiler and also the vector instructions.

We have identified a core algorithm that is important in numer-
ical linear algebra, especially for iterative and direct solvers. Our
studies to accelerate these algorithms will continue and include
many-core architectures such as GPUs. It is notable that the MoA
inner-product matrix-multiply in 2D, is defined using the outer
product. That said, our methodology also supports the Kronecker
product, and this is useful for AI and machine learning and thus
requires further investigation.

Figure 1: MoA versus Intel MKL DGEMM. NREL Eagle Xeon
Skylake

Figure 2:MoAversus IBMESSLDGEMM.ORNL Summit IBM
Power-9

REFERENCES
[1] 2009. Future Drections in Tensor-Based Computation and Modeling. DOI:

10.13140/2.1.4040.4807.
[2] Ahmad Abdelfattah and Hartwig Anzt et. al. 2021. A Survey of Numerical Linear

Algebra Methods Utilizing Mixed Precision Arithmetic. International Journal of
High-Performance Computing and Applications (2021).

[3] A. Church. 1941. The Calculi of Lambda-Conversion. Princeton University Press.
[4] U. Draper. 2007. What every programmer should know about memory. (2007).

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
[5] John L. Gustafson and Lenore M. Restifo Mullin. 2017. Tensors Come of Age: Why

the AI Revolution will help HPC. CoRR abs/1709.09108 (2017). arXiv:1709.09108
http://arxiv.org/abs/1709.09108

[6] Xiaoye S. Li. 2005. AnOverview of SuperLU: Algorithms, Implementation, and User
Interface. 31, 3 (Sept. 2005), 302–325. https://doi.org/10.1145/1089014.1089017

[7] L. Mullin and M. Zahran. 2020. A case for hardware support for mathematics of
arrays. IEEE Computer Architecture Letters (2020), 1–4.

[8] L. M. R. Mullin. 1988. A Mathematics of Arrays. Ph.D. Dissertation. Syracuse
University.

[9] Kasia Świrydowicz, Julien Langou, Shreyas Ananthan, Ulrike Yang, and Stephen
Thomas. 2020. Low synchronization Gram-Schmidt and generalized minimal
residual algorithms. Numerical Linear Algebra with Applications 28 (2020), 1–20.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

5

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://arxiv.org/abs/1709.09108
http://arxiv.org/abs/1709.09108
https://doi.org/10.1145/1089014.1089017

