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Abstract—Under-performance of solar PV systems is an im-
portant issue that increases risks for stakeholders, including
developers, investors and operators. Recently some attention
has focused on underestimation of inverter clipping losses as
a possible source of over-prediction where sub-hourly solar
variability is high. Several models and data sets have been
analyzed over the past few years, with the aim of quantifying,
predicting, and correcting underestimated clipping loss errors
for systems with high DC/AC ratio and solar variability. In this
research, we apply a machine learning model developed at NREL
to two physical PV systems, to correct for subhourly clipping
losses. For each system, we compare overall AC power output for
the model taken at 1-minute intervals to AC power output taken
at 1-hour intervals with the addition of the subhourly clipping
correction. Our findings consistently show that the addition of
the clipping loss correction lead to a reduction in mean bias
error of 0.8% and 1.2% for systems A and B, respectively,
with no additional filtering applied. When examining high solar
variability periods where clipping is more pronounced, system
A and B experienced a 1.8% and 2.7% reduction in mean bias
error, respectively, when the clipping correction was applied.

Index Terms—inverter, clipping, solar, irradiance, variability,
performance, modeling, TMY

I. INTRODUCTION

In its report "2020 Solar Risk Assessment" [1], kWh
Analytics warned that systematic underproduction across the
industry exposes investors to increased risk. DNV found that
a sample of 39 projects from 2019 were under-performing
compared to their pre-construction energy assessments by 3%
on average, as shown in Fig. 1. NextEra estimates that sub-
hourly solar resource variability can affect actual energy pro-
duction by approximately 1-4% [2]. Cormode, et al., explained
that energy assessments based on hourly weather, like typical
meteorological year (TMY) data sets, underestimate inverter
clipping losses by up to 5% for projects at an annual level
with intra-hourly solar variability, especially for high DC/AC
ratios [3]. Allen, et al., used measured 1-minute weather data
to model clipping loss underestimation from using hourly data,
in the Southeast US [4] and at ten sites across the country [5],
for a range of DC/AC ratios and, for a subset of sites, across
multiple years. They estimated similar errors, with some sites
seeing errors of 2 to over 4% for DC/AC ratios of 1.4 to
2.0, respectively. This is demonstrated in Fig. 2, which shows
irradiance and power output simulated at 1-minute and 1-
hour resolution in the top and bottom panels, respectively. On

July 10th, there is little intra-hour variability, indicative of a
mostly clear day where hourly and sub-hourly simulations are
in close agreement. In contrast, July 13th has much higher
solar variability, but no clipping is observed in the 1-hour
output. However, the 1-minute resolution shows intermittent
clipping all day long, indicating that not all of the available
irradiance is used by the system, and the hourly simulations
underestimate inverter clipping [6].

Fig. 1. Project-average validation results for solar energy assessments. Each
project-year was adjusted for interannual variability by scaling production by
the ratio of TGY to historical monthly insolation.

Several methods have been proposed to correct clipping loss
error in hourly predictions [2], [3], [6]–[9], but only NextEra
validated their method with operational power data [2].

In this report, we adapt the NREL machine learning-based
model [7] to predict clipping loss corrections and apply these
corrections to hourly energy assessments. The adjusted energy
assessment is then validated against operational data from the
same system and we report on the average and distribution of
validation errors. We have obtained data from two operating
PV systems in the southeast US, with DC/AC ratios around
1.4. In this paper, we will outline our method and present
model validation results for these two systems.

II. METHODS

A. Model

The machine learning (ML) model developed at NREL
has already been described in detail [7]. This model was
adapted for the purpose of this research. A black-box XGBoost
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Fig. 2. Irradiance input from the NIST test-bed weather station in Gaithers-
burg, MD, and predicted energy output using SolarFarmer at time-resolution
of 1-minute, top panel, and 1-hour, bottom panel. The black dashed line in
both panels shows the inverter-rated power, 260-kW.

model was generated, with satellite data inputs, as well as
features derived from these fields. In an extension of the model
described in [7], system DC/AC ratio and AC power outputs
from the associated SAM model were added as continuous
variable features. Specific model input parameters included
the following:

• Min-max normalized POA, GHI, clearsky POA, clearsky
GHI, and cell temperature

• First-order differenced normalized POA
• Difference between Clearsky POA and POA
• System DC/AC ratio
• Modeled AC power (taken from the SAM simulation)

The model was trained using high quality irradiance mea-
surements from data sources including SURFRAD, SOLRAD,
UOSRML, MIDC, and BSRN [10] [11] and 1-minute to 30-
minute clipping loss errors predicted using SAM [12]. The
resulting trained model was then used to make predictions at
the operational systems.

B. Systems

For the validation, two operational systems in Georgia were
chosen. The system parameters of the two solar systems
used for validation are provided in Table I. These systems
were selected for their high DC/AC ratio and 1-minute data
sampling frequency.

C. Validation

A challenge in validating the clipping loss correction model
is the lack of quality high-frequency irradiance measurements

TABLE I
SYSTEM PARAMETERS

System A System B
Array type Tracking Tracking

Array axis azimuth 180◦ 180◦

DC capacity 27 MW 43 MW
AC capacity 19 MW 30 MW

DC/AC Ratio 1.42 1.43
Ground coverage ratio 0.3 0.3

that are co-located with operational PV systems. Therefore
this model differs from traditional approaches for model
training and validation because it relies on high-quality ground
station data measurements and SAM-simulated data to train
the model, but uses operational data from different systems for
validation. So no holdout methods are required in validating
this model because the training and validation data sets are
already independent. The downside of this method is that any
systematic biases in SAM are introduced into the clipping
loss correction model. In future work, if a large population of
high-frequency irradiance and co-located operational data are
obtained, the model can be retrained holding out a subset of
the data for validation. This procedure would have the benefit
of incorporating any physical effects that are not captured by
SAM.

Quality of operational datasets is vital to avoid disruption
of validation. Data points in the operational dataset related
to plant sub-performance instances due to sources other than
subhourly clipping error are considered to be outliers from
the validation’s standpoint and need to be removed. However,
detecting sub-performance from inverter output is challenging.
For this validation effort, the bias change is presented for both
unfiltered and filtered data points. For filtering, data points that
met the following criteria were retained:

• The difference between the measured, on-site POA and
the modeled POA calculated using the NSRDB [13] data
is less than 5%

• The difference between actual power and simulated
power of a particular timestep is less than 25%.

For system A and system B, 60.5% and 55.1% of the data is
retained after applying the data filter, respectively.

In addition, high clipping errors occur during periods where
the plant observes DC clipping (usually corresponding to
higher irradiance), and high fluctuations in the irradiance. For
the purpose of this validation, the fluctuations are quantified by
calculating the variability index based on [14]. The variability
index is normally defined on GHI. However, since only on-
site measured POA was available, the variability index for this
study was calculated and aggregated at 30-min intervals using
the on-site POA measured at a 1-min frequency. The clearsky
POA was calculated using the Perez implementation avaiable
in pvlib [15]. Since the ML model should be correcting only
those periods with high fluctuations, the change is split into
sets of low and high variability index. Periods are divided into
three sets based on their variability index value:
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• Low variability index (≤ 10)
• Medium variability index (> 10 & ≤ 50).
• High variability index (> 50)

Table. II shows the composition of the on-site data based on
the variability index. For this validation, two complete years
of operational data from system A are used, and one complete
year of operational data from system B is used.

TABLE II
COMPOSITION OF UNFILTERED DATA BASED ON VARIABILITY INDEX

System A System B
Low variability index (≤ 10) 62% 63%

Medium variability index (> 10 & ≤ 50) 21% 20%
High variability index (> 50) 17% 17%

The bias in model results is used to measure the reduction
in clipping loss errors from the hourly energy assessment,
and to identify if there are any unknown factors that are
systematically affecting the results. Bias and mean bias error
(MBE), the two metrics used to evaluate model performance
in this study, are described in detail below.

• Bias: Delta between the corrected energy assessment
predictions and the measured operational data. Positive
bias means over-predicted energy output:

∆E = Epredicted − Emeasured (1)

where E is the energy output.
• Mean bias error (MBE): Average of the bias:

MBE =

∑N
n=1 ∆En

N
(2)

Where n is a single timestep, and N is the total number
of time intervals. Please note that a low MBE might hide
seasonal or diurnal bias

III. RESULTS

30-minute NSRDB data from each system was fed into the
ML model to make clipping error predictions. Model input
parameters are previously described in the Methods section.

Time steps with a higher variability index should have
higher clipping errors. Our results, shown in Fig. 3, support
this statement. Fig. 3 displays a heat map of average variability
index, as well as the average clipping loss error correction
predicted for system A. Generally, higher variability periods
coincide with higher clipping loss corrections, usually occur-
ring around the middle of the day, and during summer months.

Fig. 4 shows the actual power of an inverter against the
actual POA. At a higher variability index, the power is lower
and corresponds to higher model bias.

For the energy model, 30-minute NSRDB data was used
to generate a time series of energy estimates for system A
and system B. Then, these energy estimates were corrected
using the clipping loss error corrections predicted by the ML
model. Table. III summarizes the mean bias errors in the
energy models before and after applying the correction, for
systems A and B respectively. The overall shift in the bias

Fig. 3. The first sub-figure shows the average variability index calculated
at system A. The variability index is calculated and aggregated at a 30-min
interval using on-site POA measured at a 1-min time resolution. In the second
sub-figure, the average clipping error correction calculated for system A using
the ML model is shown. The model predicts the clipping error correction
factor for each 30-min interval.

Fig. 4. Inverter power and bias in modeled power for a 1000 kW rated inverter
at system A. Lower power and higher model bias are observed at a higher
variability index.
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is small for each time series. As indicated by Fig. 3 and
Fig. 4, the magnitude of the clipping loss error correction
should be high during time steps with a high variability
index and low during time steps with a low variability index.
Hence, the bias is explored based on the low, medium and
high variability index categories described in the Validation
section. Part (A) of Fig. 5 and Fig. 6 shows the cumulative
distribution of the overall bias before and after correction.
Part (B) of these figures shows the bias broken down by
the variability index. Bias is high for the points with a high
variability index, and low for points with a low variability
index. Promisingly, applying the clipping correction factor for
high solar variability periods where clipping is most prominent
results in the largest reduction in MBE. For unfiltered system
A high VI data, applying the clipping correction factor results
in a 1.8% reduction in MBE; similarly, applying the clipping
correction factor for the associated system B data results in a
2.7% reduction in MBE.

TABLE III
RESULTS SUMMARY BY SYSTEM

System Metric Before After Change
correction correction [%]

System A Overall MBE 5.4% 4.6% -0.8
System A MBE (High VI) 10.7% 8.9% -1.8
System A MBE (Medium VI) 4.3% 3.3% -1.0
System A MBE (Low VI) 4.4% 3.9% -0.5
System B Overall MBE 7.8% 6.6% -1.2
System B MBE (High VI) 10.4% 7.7% -2.7
System B MBE (Medium VI) 7.7% 6.1% -1.6
System B MBE (Low VI) 7.1% 6.4% -0.7

Fig. 5. CDF of Model bias for system A before data filtering

Fig. 6. CDF of Model bias for system B before data filtering

The overall model bias in Fig. 5 and Fig. 6 can be attributed
to many reasons. Factors like the difference in the resource
measured on-site and in the NSRDB dataset, system-specific
sub-performance, incorrect loss assumptions in the energy
model, etc., impact the bias along with the clipping loss errors.
However, for a given data point, it is unrealistic to have a bias
of greater than 25% in power when the bias in POA is less than
5%. Consequently, points fitting this logic are removed and the
bias change is recalculated. Table. IV summarizes the mean
bias errors in the filtered data points of the energy models
before and after applying the correction, for systems A and
B respectively. Fig. 7 and Fig. 8 show the bias before and
after the correction for this filtered dataset. Compared to the
CDFs plotted for the unfiltered dataset, these plots show a
much tighter distribution as the outliers are removed.

Results for the filtered data mirror the unfiltered data results,
except with lower overall mean bias error values. Interestingly,
the drop in mean bias error after applying the clipping error
correction is generally consistent for both filtered and unfil-
tered data (see the "% Change" field in Tables III and IV
for comparison). For example, the drop in overall MBE for
unfiltered data is 0.8% vs. 0.5% for filtered data for system
A. Similarly the overall MBE difference is 1.2% for unfiltered
data and 0.8% for filtered data for system B.

IV. CONCLUSIONS

Over-prediction occurs in typical energy assessments that
use hourly data if the systems have sub-hourly solar variability
and high DC/AC, because clipping losses are underestimated.
These errors have been quantified using a machine-learning
model trained on high-frequency solar irradiance data and
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Fig. 7. CDF of Model bias for system A after data filtering

Fig. 8. CDF of Model bias for system B after data filtering

TABLE IV
RESULTS SUMMARY BY SYSTEM, AFTER FILTERING

System Metric Before After Change
Correction Correction [%]

System A Overall MBE 2.3% 1.8% -0.5
System A MBE (High VI) 10.7% 9.0% -1.7
System A MBE (Medium VI) 3.1% 2.2% -0.9
System A MBE (Low VI) 1.1% 0.8% -0.3
System B Overall MBE 3.6% 2.8% -0.8
System B MBE (High VI) 8.7% 5.9% -2.8
System B MBE (Medium VI) 4.4% 2.9% -1.5
System B MBE (Low VI) 2.8% 2.3% -0.5

simulated operational data to create clipping loss error correc-
tions. The corrections were applied to a typical hourly energy
assessment of an existing operational system and compared to
the measured output from the same system. Model bias was
calculated before and after the clipping correction was applied,
and the difference in MBE values was compared. Overall,
the clipping correction outputs from the model reduced bias
in the energy assessments by 0.8% and 1.2% for systems A
and B, respectively, with no additional data filters applied.
However, these bias reductions should be interpreted with two
points in consideration: first, clipping loss error decreases with
decreasing simulation timestep, so the corrections in this 30-
minute validation are somewhat smaller than they would be in
an hourly context; and second, based on the CDF comparisons,
it seems likely that the model corrections do not fully eliminate
the bias. Thus, the bias reductions reported in this paper likely
underestimate the bias of a typical energy model. For high
solar variability periods where clipping is most pronounced,
the difference in MBE before and after applying the clipping
correction is more pronounced. For unfiltered data with a high
VI index, the MBE difference after applying the correction was
1.8% and 2.7% for systems A and B, respectively.
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