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NEUMANN SERIES IN MGS-GMRES AND INNER-OUTER ITERATIONS

STEPHEN THOMAS∗, KATARZYNA ŚWIRYDOWICZ† , RUIPENG LI‡ , AND PAUL MULLOWNEY∗

Abstract. A low-synchronization MGS-GMRES Krylov solver employing a truncated Neumann series for the inverse
compact WY MGS correction matrix T is presented. A corollary to the backward stability result of Paige et al. [1]
establishes that T = I−Lk is sufficient for convergence of GMRES when ‖L‖pF = O(εp)κpF (B), p > 1 where B = [r0, AVm ]
with condition number κ(B). The columns of the strictly lower triangular matrix L are defined by matrix-vector products
of Krylov vectors V T

1:k−2vk−1. The preconditioner is the classical Rüge-Stuben AMG algorithm with compatible relaxation
and inner-outer Gauss-Seidel smoother. This smoother may also be expressed as a truncated Neumann series. Despite the
rapid convergence of GMRES-AMG, the cost of an elliptic pressure solver (e.g. for the Navier-Stokes equations), is still
substantial. Drop tolerances are applied to the strictly lower triangular matrices arising in the smoother in order to reduce
the number of non-zeros and accelerate the time to solution. The number of small matrix elements are found to increase
from fine to coarse levels and thus the efficiency gains are greater for large problems with many levels in the V -cycle. The
solver is applied to the pressure continuity equation for the incompressible Navier-Stokes equations. The pressure solve
time is reduced considerably without a change in the convergence rate.

1. Introduction. The generalized minimal residual (GMRES) Krylov subspace method [2] is often
employed to solve the large linear systems arising in high-resolution physics based simulations using the
incompressible Navier-Stokes equations in fluid mechanics. Świrydowicz et al. [3] recently improved the
parallel strong-scaling of the algorithm by reducing the associated communication requirements to a
minimum, while maintaining the numerical stability and robustness of the original algorithm. In order
to achieve fast convergence of an elliptic solver, such as the pressure continuity equation, the classical
Ruge-Stüben [4] algebraic multigrid (C-AMG) solver is employed as a preconditioner. Both the one-
reduce GMRES iteration and sequential Gauss-Seidel smoother employ triangular solves. The triangular
solve in MGS-GMRES is relatively small and local to each MPI rank. For Gauss-Seidel smoothers it is
much larger and requires global communication. Triangular solvers are, in general, difficult to implement
in parallel on many-core architectures. In this study, they are replaced with truncated Neumann series
expansions. They result in a highly efficient and stable approach for Exascale class computers based on
graphical processing units (GPUs).

Let A be an n×n real-valued matrix. In the present study, consider the solution of the linear system
Ax = b, with the MGS-GMRES [2] Krylov subspace method, using one V -cycle of the classical algebraic
multigrid C-AMG algorithm of Rüge-Stuben as the preconditioner. Inside MGS-GMRES, the Arnoldi
QR algorithm is applied to generate an orthonormal basis Vm for the Krylov subspace Km and the
Hessenberg matrix Hm+1,m in the Arnoldi expansion. The modified Gram-Schmidt algorithm produces
a QR factorization of the matrix B = [ b, AVm ]. The size of this basis is m� n.

The orthogonality of the basis, Vm, for the Krylov subspace Km(B) is desirable for convergence
of Krylov methods for linear system solvers. However, in finite-precision arithmetic, Vm may “lose”
orthogonality. The loss of orthogonality of the computed basis – as measured by ‖I − V TmVm‖F – may
deviate substantially from machine precision O(ε), (see Giraud et al. [5]). When linear independence
is completely lost, the Krylov iterations may fail to converge. For example, the GMRES iteration will
stall and fail to converge if linear independence of the Krylov vectors is completely lost. This is the case
when ‖S‖2 = 1 as described by Paige [6], where the matrix S was introduced in Paige et al. [1].

The development of low-synchronization Gram-Schmidt and generalized minimal residual algorithms
by Świrydowicz et al. [3] was largely driven by applications that need stable, yet scalable solvers. Both
the modified (MGS) and classical Gram-Schmidt (CGS2) with re-orthogonalization are stable algorithms
for a GMRES solver. Indeed, CGS2 produces an O(ε) loss of orthogonality, which suffices for GMRES to
converge. Paige et al. [1] show that, despite O(ε)κ(B) loss of orthogonality, MGS-GMRES is backward
stable for the solution of linear systems. Here, the condition number of the matrix B is given by
κ(B) = σmax(B)/σmin(B), where σi(B) are the singular values of the matrix B.

A one-reduce modified Gram-Schmidt QR factorization algorithm is presented in [3] and is based

∗National Renewable Energy Laboratory, Golden, Colorado
†Pacific Northwest National Laboratory, Richland, WA
‡Lawrence Livermore National Laboratory, Livermore CA

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

1



upon the application of a projector

P = I −Q T QT , T = (QTQ )−1

where Q is m× n, I is the identity, and T is an n× n correction matrix. To obtain a one-reduce MGS
algorithm, the normalization is delayed to the next iteration. The correction matrix T is obtained from
L = tril(QTQ, −1 ) (see Table 1 for notation reference), the strictly lower triangular part of QTQ. Note
that, because Q has almost orthonormal columns, the norm of L is small, and T is close to I.

A Neumann series expansion for the inverse of the lower triangular correction matrix T results in
the inverse compact WY representation of the projector P for the modified Gram-Schmidt factorization
of the Arnoldi matrix B,

P = I − Vk T V Tk , T = ( I + Lk )−1 = I − Lk + L2
k − · · ·+ Lpk,

where the columns of the strictly lower triangular matrix Lk are defined by the matrix-vector products
V Tk−2vk−1. The sum is finite because the strictly lower triangular matrix Lk is idempotent, as originally
noted by Ruhe [7]. Here, a corollary to the backward stability result of Paige et al. [1] demonstrates
that T = I−Lk is sufficient for convergence of MGS-GMRES when ‖Lk‖pF = O(εp)κpF (B), where p > 1.
A new formulation of GMRES based upon the truncated Neumann series for the correction matrix T
is presented here along with loss of orthogonality experiments. In particular, the loss of orthogonality
for the ICWY-MGS and original GMRES algorithms are compared. For the ill-conditioned matrices
examined by Greenbaum et al. [8], the convergence history of the truncated Neumann series version
of the algorithm is shown to be identical to the original algorithm introduced by Saad and Schultz
[2]. In particular, when the norm-wise relative backward error (NRBE) reaches machine precision, the
Krylov vectors lose linear independence and convergence stalls. For this reason, Paige and Strakoš [9]
recommended that the NBRE be applied as the stopping criterion.

Our proof of the corollary relies on the equivalence, in finite precision arithmetic, of the modified
Gram-Schmidt and Householder QR factorizations for an augmented matrix as discussed in Paige and
Björck [10]. Most notably, the inverse compact WY MGS projector derived in Świrydowicz et al. [3]
can be obtained from the (2, 2) block of the augmented Householder transformation matrix P and the
identities arising from the ‘correctly’ normalized matrices Ṽk defined by Paige et al. [1]. These augmented
results are also examined in Giraud et al. [11].

With respect to the C-AMG preconditioner, the two-stage, or inner-outer Gauss-Seidel precondi-
tioners and smoothers studied by Szyld [12–14] can also be expressed in terms of a degree-s Neumann
series expansion as described in the recent papers by Thomas et al. [15] and Mullowney et al. [16]. Given
the matrix splitting (note that the matrix L in Gauss-Seidel smoother is different from the L used in
Gram-Schmidt projection) A = M − N , A = D + L + U , M = D + L and N = −U , the two-stage
Gauss-Seidel iteration is given by

xk+1 := xk + (I +D−1L)−1 D−1rk = xk +
s∑
j=0

(−D−1L)jD−1rk

In the present study, the above iteration is applied as a smoother for C-AMG, which is applied as a 
preconditioner to accelerate the convergence of MGS-GMRES. For the matrix M arising in the matrix 
splitting employed by the smoother, small elements are dropped in order to reduce the number of non-
zeros at each level of the V -cycle, and thereby reduce the computation time, while maintaining the same 
convergence rate of the solver.

An additional contribution of our paper is to combine three different strategies to create fast and 
robust solvers. The time to solution is the most important metric versus the number of solver iterations 
taken in our fluid mechanics simulations. The low-synchronization MGS-GMRES may take a larger 
number of iterations at little or no extra cost if the preconditioner is less expensive. However, the sparse 
triangular solvers employed by smoothers are not efficient on multi-core architectures. This observation 
prompted the introduction of inner-outer AMG smoothers in [16], which significantly lowers the cost of 
the V -cycle. This cost can be further lowered by applying the dropping strategy proposed herein.

The paper is organized as follows. Low synchronization and generalized minimal residual algorithms 
are discussed in section 2. A corollary to Paige et al. [1] in Section 3 establishes that a truncated
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Neumann series T = I − Lk is sufficient for MGS-GMRES to converge. In section 4, a variant of MGS-
GMRES is derived that uses this T . Numerical experiments then illustrate the properties of the new
algorithm. The inner-outer Gauss-Seidel smoother is reviewed in Section 5 and it is shown how dropping
reduces the number of non-zeros per row in the smoother without a deterioration in the convergence
rate.

Symbol/expression/function Explanation
Lowercase bold letters, i.e., v a column vector
Uppercase letters, i.e., V , A, H, D a matrix
Lowercase letter with two subscripts, i.e., aij element of matrix A in row i and column j
Uppercase P projection operator
Uppercase T triangular correction matrix in MGS projector
Uppercase letter with subscript, i.e.,Vk matrix with k columns
Lowercase letter with subscript, i.e., vk k–th column of matrix V
Uppercase L strictly lower triangular matrix
Uppercase R and U upper triangular matrices
ε machine epsilon
Uppercase matrix Hk+1,k Hessenberg matrix H size (k + 1)× k
tril(A, -n) Lower triangular part of A, starting at n diagonals

below main diagonal
κ(A) condition number of matrix A

Table 1: Notation used in this paper for vectors, matrices and operators.

2. Low-Synchronization Gram-Schmidt Algorithms. As mentioned previously, Krylov linear
system solvers are often required for extreme scale physics simulations and implemented on parallel
(distributed memory) machines with many-core accelerators. Their strong-scaling is limited by the
number and frequency of global reductions in the form of MPI AllReduce. These communication patterns
are expensive [17]. Low-synchronization orthogonalization algorithms are designed such that they require
only one reduction per iteration to normalize each vector and apply projections.

A review of Gram Schmidt algorithms and their computational costs is given in [18]. The inverse
compact WY form for MGS is the lower triangular matrix T = (I + Lk)−1, analogous to Puglisi [19].
An upper triangular T for MGS which is constructed with recursive matrix products was introduced
Malard and Paige [20] and corresponds to the Schreiber and Van Loan compact WY Householder [21]
representation. This was recently generalized to block Gram-Schmidt algorithms by Barlow [22]. The
inverse compact WY form of MGS was derived in Świrydowicz et al. [3]. The ICWY-MGS algorithm
batches the projections together and computes one row of the strictly lower triangular matrix,

LTk−1,1:k−2 = V Tk−2 vk−1.

The resulting inverse compact WY projector P is given by

P = I − Vj−1 Tj−1 V Tj−1, Tj−1 = ( I + Lj−1 )−1

The implied triangular solve requires an additional (j − 1)2 flops at iteration j − 1 and thus leads to
a slightly higher operation count compared to the original MGS algorithm, the above matrix-vector
multiply increases ICWY MGS complexity by mn2 (3mn2 total) but reduces global reductions from
j − 1 at iteration j to only one when combined with the lagged normalization of a Krylov vector due to
Kim and Chronopoulos [23].

An alternative form exists for the correction matrix T , corresponding to the application of the
elementary projectors I − vj vTj in forward followed by backward order, and is expressed as

Tj−1 = ( I − Lj
T
−1 ) ( I − Lj−1 )

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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The forward-backward MGS algorithm is discussed in Leon et al. [18] and a backward-forward ordering
of projectors was employed by Thomas et al. [24] in the context of a mixed-precision implementation of
MGS-GMRES. It was also presented in the review article by Antz et al. [25]. This can be viewed as a
truncated form of the Neumann series associated with a symmetric form for the correction matrix Tj−1

P = I − Vj−1 Tj−1 V Tj−1, Tj−1 = ( I + Lj−1 + LTj−1 )−1

where
Tj−1 = I − Lj−1 − LTj−1 + LTj−1 Lj−1 + Lj−1 L

T
j−1

This series is generated by the block inverse of the symmetric matrix given below (see Appendix)

QTj−1 Qj−1 =

[
T−1j−2 QTj−2 qj−2

qTj−2 Qj−2 1

]
, T−1j−2 = I + Lj−2 + LTj−2

Block generalizations of the MGS and CGS2 algorithm are presented in Carson et al. [26]. The
authors present block algorithms with the more favorable communication patterns described herein.
An analysis of the backward stability of the these block Gram-Schmidt algorithms is also presented.
There exist several ways to implement a block MGS algorithm. The correction matrix T can be formed
recursively from a block triangular inverse, (see Appendix) as in the compact CWY MGS derived by
Björck [27]. Barlow [22] employs the inverse compact ICWY form of Puglusi [19]. However, a lagged
normalization is not applied and two reductions are required. These are summarized in [3].

3. Loss of Orthogonality. When the Krylov vectors are orthogonalized via the finite precision
MGS process, the loss of orthogonality is related in a straightforward way to the convergence of GMRES.
In particular, orthogonality among the Krylov vectors is effectively maintained until the norm-wise
relative error approaches the machine precision as discussed in Paige and Strakoš [9]. In this section, we
prove a corollary to Paige et al. [1] that allows us to establish that T = (I+Lk)−1 = I−Lk+O(ε2)κ2(B),
where B = [ r0, AVk ] for the inverse compact WY MGS formulation of the Arnoldi expansion.

Let A be an n×n real-valued matrix, and consider the Arnoldi factorization of the matrix B. After
k steps, in exact arithmetic, the algorithm produces the factorization

AVk = Vk+1 Hk+1,k, V Tk+1Vk+1 = Ik+1

where Hk+1,k is an upper Hessenberg matrix. When applied to the linear system Ax = b, assume
x0 = 0, r0 = b, ‖b‖2 = ρ and v1 = b/ρ. The Arnoldi algorithm produces an orthogonal basis for the
Krylov vectors as columns of the matrix Vk

Consider the computed matrix V̄k with Krylov vectors as columns. The strictly lower triangular
matrix L̄k is obtained from the loss of orthogonality relation, where V̄k denotes the computed matrix in
fixed-precision arithmetic

V̄ Tk V̄k = I + L̄k + L̄Tk

Let us first consider the lower triangular solution algorithm for T where we can clearly identify the
elements of Lk appearing in the correction matrix T , along with higher powers of the inner products in
the Neumann series. In order to bound the Frobenius norm of the matrix L̄k, the inverse compact WY
form of the MGS projector is obtained from the Householder transformation for an augmented matrix.

3.1. Householder and MGS Equivalence. Based on an idea from Sheffield, Björck and Paige
[10] demonstrated that the QR factorization produced by the product of Householder reflectors, repre-
sented by a transformation matrix P applied to an augmented matrix containing an m × n matrix A
and a zero block, is equivalent to the factorization produced by MGS applied to the augmented matrix
(backward error and loss of orthogonality)

PT
[

0
A

]
=

[
R
0

]
and here we demonstrate that the inverse compact WY projector for MGS can be obtained directly from 
the (2, 2) block of P T . The proof follows from Paige [28]. We note that Barlow (2019) employs the
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augmented form and PT – but then Barlow does not employ the inverse, and instead uses the Schreiber
and Van Loan [21] compact WY recursive form of the triangular matrix T for the MGS projector P .

From Paige et al. [1], the augmented and computed P̃k is

P̃k =

[
S̃k (I − S̃k)Ṽ Tk

Ṽk(I − S̃k) I − Ṽk(I − S̃k)Ṽ Tk

]
By forming the matrix product P̃kP̃

T
k = Ik, the authors prove the following identities in equations (5.4)

and (5.5) of their seminal paper [1]

( I − S̃k ) Ṽ Tk Ṽk( I − S̃k )T = I − S̃kS̃Tk
= ( I − S̃k ) ( I − S̃k )T + ( I − S̃k ) S̃Tk + S̃k ( I − S̃k )T

Ṽ Tk Ṽk = Ik + S̃Tk ( I − S̃k )−T + ( I − S̃k )−1 S̃k

Thus, the strictly upper triangular part of Ṽ Tk Ṽk is given by

Ũk = ( I − S̃k )−1 S̃k = S̃k ( I − S̃k )−1

For the augmented Householder matrix, P̃T is applied, and within the (2,2) block the MGS projector
is identified as, P̃ = I − Ṽk(I − S̃k)T Ṽ Tk and from Paige [28], eqn (2.2) and Corollary 5.1, it follows that

L̃k = ŨTk ,

I − S̃Tk = I − ŨTk ( I + ŨTk )−1

= I − L̃k ( I + L̃k )−1

= I − L̃k ( I − L̃k + L̃2
k − L̃3

k + · · · )
= I − L̃k + L̃2

k − L̃3
k + · · ·

= (I + L̃k)−1

T
k

T
1

Therefore, the augmented Householder transformation matrix naturally produces an ICWY MGS pro-
jector, given by:

P̃  = I − Ṽk(I + L̃k)−1Ṽk
T

with the lower triangular matrix T = (I + L̃k)−1. This MGS projector has previously appeared in the 
work of Paige and Wülling [29], on the bottom of their page 4, where they note it was first derived 
by Giraud et al. [5]. This represents a constructive proof for the existence of the ICWY MGS, and 
then from Björck [30], the lower triangular T is equivalent to the product of elementary projectors 
(applied in forward order, j = 1, 2, . . . k) for the A = QR factorization via modified Gram-Schmidt 
orthogonalization,

P = I − Qk T Qk
T = (I − qkq ) · · · (I − q1q )

For the block forms of MGS, Barlow [22] employs the augmented and upper triangular matrix T based 
on the compact WY representation of the projector with a backward ordering j = k, . . . , 1 of the rank-1 
projectors as presented in Malard and Paige [20]. The forward ordering is then obtained by using the 
transposed T T as was derived by (Björck [27], section 7). This requires matrix-matrix multiplies, related 
to the recursive form of block triangular matrix inverses (see appendix). Thus, a triangular solve is 
avoided and the computation remains backward stable.

3.2. Truncated Neumann series. A corollary to the MGS-GMRES backward stability results 
from Paige and Strakos [9], and Paige et al. [1] is now established, namely that the Neumann series for 
T may be truncated according to

T = ( I + L̃k )
−1 = I − L̃k + O(ε2)κ2(B)

The essential results will be based on the MGS factorization of the matrix

B = [ r0, AVk ] = Vk+1 [ e1ρ0, Hk+1,k ]
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From Paige and Strakos [9], they derive a bound on the loss-of-orthogonality given by

‖ I − Ṽ Tk+1Ṽk+1 ‖F ≤ κ( [ r0, AVk ] )O(ε)

The derivation of this result should allow us to find an upper bound for ‖L̃k‖pF
From equation (5.5) of [6], the upper triangular structure of the loss of orthogonality relation is

revealed to be

Ũm = ( I − S̃m )−1 S̃m = S̃m ( I − S̃m )−1

where Ũm = L̃Tm is the strictly upper triangular (sut) part of Ṽ T Ṽ . It then follows immediately, from
equation (5.6) of [6] that a bound on the loss of orthogonality is given by

√
2‖Ṽ Tm ṽm‖2 ≤ ‖I − Ṽ Tm Ṽm‖2 =

√
2‖( I − S̃m )−1S̃m ‖F ≤

4

3
(2m)1/2γ̂nκ̃F (B)

where

γ̂n =
c̃nε

1− c̃nε
, κ̃F (B) = min

diagD>0
‖AD‖F /σmin(AD)

The matrix D is defined in [1] to be any positive definite diagonal matrix. Therefore, it follows that

‖Ũk‖F = ‖L̃Tk ‖F ≤ O(ε)κ̃F (B), ‖L̃k‖pF ≤ O(εp)κ̃pF (B)

and thus the matrix inverse from the Neuman series, is expressed as

T = ( I + L̃k )−1 = I − L̃k + L̃2
k − L̃3

k + · · ·
= I − L̃k +O(ε2)κ2(B)

The growth of the condition number above is related to the norm-wise relative backward error

β(xk) =
‖rk‖2

‖b‖2 + ‖A‖‖xk‖2

and in particular, Paige and Strakos [9] prove that

β(xk)κ ([ r0, AVk ]) = O(1)

This implies that all powers of ‖L̃k‖pF remain O(ε) until convergence of MGS-GMRES when ‖S̃k‖2 → 1.
This matrix 2-norm can be used to track the loss of orthogonality as presented by Paige [6].

4. Low-synchronization MGS-GMRES. The MGS–GMRES orthogonalization algorithm can
be viewed as the Gram-Schmidt QR factorization of a matrix B formed by adding a new column to Vm
in each iteration [

r0, AVm
]

= Vm+1

[
‖r0‖e1, Hm+1,m

]
The algorithm was proven to be backward stable for the solution of linear systems Ax = b in [1] 

and orthogonality is maintained to O(ε)κ(B), depending upon the condition number of the matrix 
B = κ([r0, AVm]). For the inverse compact WY MGS-GMRES algorithm the normalization of the 
Krylov vector vi+1 at iteration i + 1 represents the delayed scaling of the vector vi+2 in the matrix-
vector product vi+2 = Avi+1. Therefore, an additional Step 8 is required in the one-reduce algorithm, 
r1:i+1,i+2 = r1:i+1,i+2/ri+1,i+1 and vi+1 = vi+1/ri+1,i+1. The diagonal element of the R matrix in the 
Arnoldi QR factorization of the matrix B corresponding to Hi, is updated after the MGS projection in 
Step 12.

Given the form for the ICWY MGS projector derived above, the one-reduce MGS-GMRES algorithm 
presented in Swirydowicz etal. [3] can be modified, with the inverse matrix replaced by the correction 
matrix T = ( I − Li+i ) in Step 11 of the algorithm.
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Algorithm 4.1 Truncated Neumann Series MGS-GMRES

Input: Matrix A; right-hand side vector b; initial guess vector x0

Output: Solution vector x
1: r0 = b−Ax0, v1 = r0.
2: v2 = Av1

3: ( V2, R, L2 ) = mgs ( V2, R, L1 )
4: for i = 1, 2, . . . do
5: vi+2 = Avi+1 . Matrix-vector product
6: [ LT:,i+1, ri+2 ] = V Ti+1[vi+1 vi+2] . Global synchronization
7: ri+1,i+1 = ‖vi+1‖2
8: vi+1 = vi+1/ri+1,i+1 . Lagged normalization
9: r1:i+1,i+2 = r1:i+1,i+2/ri+1,i+1 . Scale for Arnoldi

10: LT:,i+1 = LT:,i+1/ri+1,i+1

11: r1:i+1,i+2 = Ti+1 r1:i+1,i+2 . Projection Step
12: vi+2 = vi+2 − Vi+1 r1:i+1,i+2

13: Hi = ri+1

14: Apply Givens rotations to Hi

15: end for
16: ym = argmin‖(Hmym − ‖r0‖2e1 )‖2
17: x = x0 + Vmym

4.1. Backward Error and Stopping Criteria. The stopping criteria for MGS-GMRES is an
important consideration and is related to backward error for solving linear systems Ax = b. The most
common convergence criterion found in existing iterative solver frameworks is based upon the relative
residual, defined by

(4.1)
‖rk‖2
‖b‖2

=
‖b−Axk‖2
‖b‖2

< tol

However, when the columns of Vk become linearly dependent, as indicated by ‖Sk‖2 = 1, the orthogo-
nality of the Krylov vectors is completely lost. Then the convergence of MGS-GMRES flattens or stalls
at this iteration.

Due to the relationship with the backward error for solving linear systems Ax = b, elucidated by
Prager and Oettli [31] and Rigal and Gaches [32]. The backward stability anlysis of Paige et al. [1]
relies instead upon the norm-wise relative backwards error (NRBE) reaching machine precision as the
orthogonality is lost

(4.2)
‖rk‖2

‖b‖2 + ‖A‖∞‖x‖2
≈ O(ε)

which is achieved when ‖S‖2 = 1. This metric is also commonly applied to assess the backward error
for direct solvers.

For a sufficiently non-singular matrix

σmin(A) � n2ε‖A‖F

one can employ MGS-GMRES to solve Ax = b with the NBRE stopping criterion.

4.2. Numerical Experiments. In order to demonstrate that the Neumann series MGS-GMRES 
algorithm maintains the same convergence history as the original MGS-GMRES algorithm of Saad and 
Schultz [2], two systems of equations are solved without using a preconditioner. In all experiments 
b = e = ( 1, . . . , 1)T . The first system of equations has the coefficient matrix A given by impcol e from 
the matrix-market collection maintained by the national institute of standards (NIST). This problem was 
studied by Greenbaum et al. [8] in order to analyze the convergence of GMRES. Both the relative residual 
(4.1) and norm-wise relative backward error (4.2) are compared along with the loss of orthogonality as
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measured by ‖S‖2 We note that relative residual and norm-wise backward error at convergence are lower
than those achieved by the original MGS-GMRES algorithm.

The second linear system is based on the matrix F 183 6, as studied by Paige and Strakoš [9].
For the matrix F 183 6, the dimension is n = 183, ‖A‖2 = 1.2 × 109, and κ(A) ≈ 1.5 × 1011. The
convergence history is plotted in Figure 2 and achieves a lower NRBE when the symmetric form of the
correction matrix T is employed. In addition, the loss of orthogonality is more gradual. This form of
the T matrix leads to the lowest NRBE for highly non-normal and extremely ill-conditioned coefficient
matrices A such as F 183 6. Therefore, these empirical results suggest that the truncated Neumann
series and backward-forward T variants of MGS-GMRES can improve upon the loss of orthogonality
and norm-wise backward error of the original algorithm.

Fig. 1: Greenbaum, Rozložnik and Strakoš (1997). impcol e matrix. Convergence history.

5. Algebraic Multigrid Preconditioner. An overview of algebraic multigrid (AMG) is now
provided using the BoomerAMG library in Hypre. As discussed in [33], this is a particularly powerful
method for solving challenging systems of linear equations. AMG solvers [4, 34, 35] are also efficient
preconditioners for Krylov iterations applied to large-scale linear systems arising in physics-based simu-
lations due to their optimal complexity, rapid convergence and robustness [36].

AMG can in theory solve a linear system with n unknowns in O(n) operations. However, it is
now common practice to instead use AMG as a preconditioner to a Krylov method, even though it was
originally developed as a solver. An AMG method accelerates the solution of a linear system

(5.1) Ax = b

through error reduction by using a sequence of coarser matrices called a hierarchy. We will refer to the
sequence of matrices as Ak, where k = 0 . . .m, and A0 is the matrix from (5.1). Each Ak has dimensions
mk ×mk where mk > mk+1 for k < m. For the purposes of this paper, we will assume that

(5.2) Ak = RkAk−1Pk ,

for k > 0, where Pk is a rectangular matrix with dimensionsmk−1×mk. Pk is referred to as a prolongation
matrix or prolongator. Rk is the restriction matrix and Rk = PTk in the Galerkin formulation of AMG.
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Fig. 2: Paige and Strakoš (2002). f 183 6 matrix. Convergence history.

Associated with each Ak, k < m, is a solver called a smoother, which is usually an inexpensive iterative
method, e.g., Gauss-Seidel, polynomial, or incomplete factorization. The coarse solver used for Am (the
lowest level in the hierarchy) is often a direct solver, although it may be an iterative method if Am is
singular.

The setup phase of AMG is nontrivial for several reasons. Each prolongator Pk is developed alge-
braically from Ak−1 (hence the name of the method). Once the transfer matrices are determined, the
coarse-matrix representations are recursively computed from A through sparse matrix-matrix multipli-
cation.

5.1. Ruge–Stüben Classical AMG. We now give a brief overview of classic Ruge-Stüben AMG,
starting with some notation that will be used in the subsequent discussions. Point j is a neighbor of i
if and only if there is a non-zero element aij of the matrix A. Point j strongly influences i if and only if

(5.3) |aij | ≥ θmax
k 6=i
| aik | ,

where θ is the strength of connection threshold, 0 < θ ≤ 1. This strong influence relation is used to select 
coarse points. The selected coarse points are retained in the next coarser level, and the remaining fine 
points are dropped. Let Ck and Fk be the coarse and fine points selected at level k, and let mk be the 
number of grid points at level k (m0 = n). Then, mk = |Ck|+|Fk|, mk+1 = |Ck|, Ak is a mk ×mk matrix,
and Pk is a mk−1 × mk matrix. Here, the coarsening is performed row-wise by interpolating between 
coarse and fine points. The coarsening generally attempts to fulfill two contradictory criteria. In order to
ensure that a chosen interpolation scheme is well-defined and of good quality, some close neighborhood 
of each fine point must contain a sufficient amount of coarse points to interpolate from. Hence the set 
of coarse points must be rich enough. However, the set of coarse points should be sufficiently small in 
order to achieve a reasonable coarsening rate. The interpolation should lead to a reduction of roughly 
five times the number of non-zeros at each level of the V -cycle.

There has been extensive research on different variants of AMG since the development of the first 
AMG algorithms [4]. The original Ruge-Stüben interpolation based approach is now referred to as
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classical AMG. One of the drawbacks with the C-AMG method is that, despite rapid convergence, it
often generates excessive operator complexities, in particular for three-dimensional problems. This issue
is exacerbated for parallel implementations of AMG when the coarsening algorithm is applied within an
MPI rank (sub-domain) and the smoother is local. At the interface between MPI ranks the smoother is
a point-wise Jacobi iteration. Consequently, efforts were made to coarsen more aggressively to reduce
operator complexities [37]. More aggressive coarsening leads to often considerably reduced convergence
rates because it violates conditions required for classical interpolation. Convergence can be improved
again by combining more aggressive coarsening with long-distance interpolation [38]. Non-Galerkin
coarse grids, for which the coarse level operator does not satisfy the relationship Ak = PTk Ak−1Pk for
each level k, were introduced in [39].

5.2. AMG Setup. During the setup phase of AMG methods, a multilevel V -cycle hierarchy is
constructed that consists of linear systems with exponentially decreasing sizes on coarser levels. A
strength-of-connection matrix S, is typically first computed to indicate directions of algebraic smoothness
and applied in the coarsening algorithms. The construction of S may be performed efficiently on GPUs,
because each row of S is computed independently by selecting entries in the corresponding row of A with
a prescribed threshold value θ. BoomerAMG currently provides the parallel maximal independent set
(PMIS) coarsening [40] on GPUs, which is a modified from Luby’s algorithm [41] for finding maximal
independent sets using random numbers. The process of selecting coarse points in this algorithm is
massively parallel, which makes it appropriate for GPUs.

Interpolation operators in AMG transfer residual errors between adjacent levels. There are a variety
of interpolation schemes available in BoomerAMG on CPUs. Direct interpolation [35] is straightforward
to implement on GPUs because the interpolatory set of a fine point i is just a subset of the neighbors of
i, and thus the interpolation weights can be determined solely by the i-th equation. A bootstrap AMG
(BAMG) [42] variant of direct interpolation is generally found to be better than the original formula.
The weights wij are computed by solving the local optimization problem

min ‖aiiwT
i + ai,Cs

i
‖2 s.t. wT

i fCs
i

= fi,

where wi is a vector that contains wij , C
s
i and denotes strong C-neighbors of i and f is a target vector

that needs to be interpolated exactly. For elliptic problems where the near null-space is spanned by
constant vectors, i.e., f = 1, the closed-form solution of (5.2) is given by

(5.4) wij = −
aij + βi/nCs

i

aii +
∑
k∈Nw

i
aik

, βi =
∑

k∈{fi∪Cw
i }
aik ,

where nCs
i

denotes the number of points in Csi , Cwi the weak C-neighbors of i, fi the F-neighbors, and
Nw
i the weak neighbors. A known issue of PMIS coarsening is that it can result in F-points without

C-neighbors [43]. In such situations, distance-one interpolation algorithms often do work well, whereas
interpolation operators that can reach C-points at a larger range, such as the extended interpolation [43],
can generally yield much better convergence. However, implementing extended interpolation is much
more complicated mainly due to the fact that the sparsity pattern of the interpolation operator cannot be
determined a priori, which requires dynamically combining C-points in a distance-2 neighborhood, and
furthermore, efficient implementation can be even more difficult on GPUs. With minor modifications
to the original form, it turns out that the extended interpolation operator can be rewritten by using
standard sparse matrix computations such as matrix-matrix (M-M) multiplication and diagonal scaling
with certain FF - and FC-sub-matrices. The coarse-fine C-F splitting of the coarse matrix A is given by

A =

[
AFF AFC
ACF ACC

]
where A is assumed to be decomposed into A = D + As + Aw, the diagonal, the strong part and weak
part respectively, and AwFF , AwFC , AsFF and AsFC are the corresponding submatrices of Aw and As.

The full prolongation operator is given by

P =

[
W
I

]
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The extended “MM-ext” interpolation takes the form

W = −
[
(DFF +Dγ)−1(AsFF +Dβ)

][
D−1β AsFC

]
with

Dβ = diag(AsFC1C) Dγ = diag(Aw
FF1F +Aw

FC1C),

This formulation allows simple and efficient implementations that can utilize available optimized sparse
kernels on GPUs. Similar approaches that are referred to as “MM-ext+i” modified from the original
extended+i algorithm [43] and “MM-ext+e” are also available in BoomerAMG. See [44] for details on
the class of M-M based interpolation operators.

Aggressive coarsening reduces the grid and operator complexities of the AMG hierarchy, where a
second coarsening is applied to the C-points obtained from the first coarsening to produce a smaller set
of final C-points. The A-1 aggressive coarsening strategy described in [35] is employed in our studies.
The second PMIS coarsening is performed with the CC block of S(A) = S2 + S that has nonzero entry

S
(A)
ij if i is connected to j with at least a path of length less than or equal to two. Aggressive coarsening

is usually used with two-stage interpolation [45] which computes a second-stage interpolation matrix P2

and combined with the first-stage P1 as P = P1P2. The aforementioned MM-based interpolation is also
available for the second stage.

Finally, Galerkin triple-matrix products are used to build coarse-level matrices Ac = PTAP involving
the prolongation P and restriction PT operators. This computation is performed using parallel primitives
from Thrust and routines from cuSPARSE or hypre’s own sparse kernels. We refer to [46] for the details
omitted here on the algorithms employed in hypre for computing distributed sparse M-M multiplications
on GPUs.

5.3. Two–Stage Inner–Outer Gauss–Seidel Iteration. To solve a linear system Ax = b, the
Gauss-Seidel (GS) iteration is based on the matrix splitting A = L + D + U , where L and U are the
strictly lower and upper triangular parts of the matrix A, respectively. Then, the traditional GS updates
the solution based on the following recurrence,

(5.5) xk+1 := xk +M−1rk, k = 0, 1, 2, . . .

where rk = b−Axk, A = M −N , and M = L+D, N = −U or M = U +D, N = −L for the forward
or backward sweeps, respectively. In the following, xk is the k–th iterate. To avoid explicitly forming
the matrix inverse M−1 in (5.5), a sparse-triangular solve is used to apply M−1 to the current residual
vector rk.

To improve the solver scalability, hypre implements a hybrid variant of Gauss-Seidel [47], where
the neighboring processes first exchange the elements of the solution vector on the boundary, but then
each process independently applies the local relaxation. Furthermore, in hypre, each process may apply
multiple local GS sweeps for each round of the neighborhood communication. With this approach, each
local relaxation updates only the local part of the vector xk+1 (during the local relaxation, the non-
local solution elements on the boundary are not kept consistent among the neighboring processes). This
hybrid algorithm is shown to be effective for many problems [47].

A two-stage Gauss-Seidel relaxation employs a fixed number of “inner” stationary iterations for
approximately solving the triangular system with M ,

(5.6) x̂k+1 := x̂k + M̂−1(b−Ax̂k), k = 0, 1, 2, . . .

where M̂−1 represents the approximate triangular system solution, i.e., M̂−1 ≈ M−1. A Jacobi-

Richardson (or Jacobi) inner iteration (further abbreviated as JR) is employed. In particular, if g
(j)
k

denotes the approximate solution from the j-th inner iteration at the k-th outer GS iteration, then the
initial solution is chosen to be the diagonally scaled residual vector,

(5.7) g
(0)
k = D−1rk,

and the (j + 1)–st JR iteration computes the approximate solution by the recurrence

g
(j+1)
k := g

(j)
k +D−1(rk − (L+D)g

(j)
k )(5.8)

= D−1(rk − Lg
(j)
k ).(5.9)
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When “zero” inner sweeps are performed, the two-stage GS recurrence becomes

x̂k+1 := x̂k + g
(0)
k = x̂k +D−1(b−Ax̂k),

and this special case corresponds to Jacobi-Richardson for the global system, or local system on each
process. When s inner iterations are performed, it follows that

x̂k+1 := x̂k + g
(s)
k = x̂k +

s∑
j=0

(−D−1L)jD−1r̂k

≈ x̂k + (I +D−1L)−1D−1r̂k = x̂k +M−1r̂k,

where M−1 is approximated by the degree-s Neumann expansion. Note that D−1L is strictly lower
triangular so that the Neumann series converges in a finite number of steps. The two-stage GS recur-
rence (5.6) can be also written as

x̂k+1 := x̂k + M̂−1(b− (M −N)x̂k)(5.10)

= (I − M̂−1M)x̂k + M̂−1(b +N x̂k).(5.11)

In the classical one-stage recurrence (5.5), the preconditioner matrix is taken as M̂−1 = M−1, and only
the second term remains in the recurrence (5.11), leading to the following “compact” form,

xk+1 := M−1(b +Nxk).(5.12)

Hence, the recurrences (5.5) and (5.12) are mathematically equivalent, while the recurrence (5.12) has
a lower computation cost.

A similar “compact” recurrence for the two-stage algorithm can be derived as

x̃k+1 := M̂−1(b +N x̃k).(5.13)

However, with the approximate solve using M̂−1, the recurrences (5.6) and (5.11) are no longer equiva-
lent. For example, even if it is assumed that x̃k = x̂k, comparing (5.5) and (5.6), the difference in the
residual norms using the classical and the standard two-stage iterations is given by

‖r̃k+1 − rk+1‖ = ‖A(I − M̂−1M)M−1rk‖
≤ ‖A(I − M̂−1M)‖‖M−1rk‖,(5.14)

while comparing (5.5) and (5.11), the difference between the classical and the compact two-stage itera-
tions is

‖r̂k+1 − rk+1‖ = ‖A(I − M̂−1M)(M−1rk + xk)‖
≤ ‖A(I − M̂−1M)‖‖M−1rk‖(5.15)

+ ‖A(I − M̂−1M)‖‖xk‖(5.16)

and the compact form has the extra term with ‖xk‖ in the bound. For the recurrence (5.13) to be as
effective as the recurrence (5.11), we found that additional inner iterations are often required (to make

‖I − M̂−1M‖ small).
Two outer and two inner inner iterations often lead to rapid convergence in less than five precondi-

tioned GMRES iterations for the momentum solver of the incompressible Navier-Stokes equations [33].

5.4. Coarse Matrix Splitting and Dropping Strategy. There are two important measures
that determine the quality of an AMG algorithm. The first is the convergence factor, which indicates
how fast the method converges. The second is the operator complexity, which affects the number of
operations and the memory usage. Operator complexity C is defined as

(5.17) C =
m∑
k=0

nnz(Ak)/nnz(A) .

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

12



where nnz(A) is the number of non-zero elements of A. The complexity measure indicates the amount of 
memory required. To reduce memory utilization, the complexity C should remain small. The complexity 
is also an indicator of the number of operations per V -cycle in the solver, assuming an iterative smoother. 
Small operator complexities lead to small V -cycle times. The average stencil size S(Ak) is the average 
number of non-zero elements per row of Al. Even when the stencil sizes S(Ak) of the original matrix 
are small, very large stencil sizes can occur on coarser levels. Large stencil sizes can lead to large setup 
times, even if the operator complexity is small. This is because the coarsening algorithms, and to some 
degree interpolation, visit neighbors of neighbors, resulting in super-linear or even quadratic growth 
in the number of operations when evaluating the coarse system or the interpolation matrix. Large 
stencil sizes can also increase parallel-communication cost, because they may require the exchange of 
larger sets of data. Both convergence factors and complexities need to be considered when evaluating 
coarsening and interpolation algorithms, as they often influence each other. Higher complexities can 
improve convergence, and lower complexities lead to degradation in convergence rates. A degradation in 
convergence rate due to lower complexity often can be overcome by Krylov methods such as GMRES.

In this study, a dropping strategy is proposed to further reduce the amount of computation within 
the two-stage inner-outer Gauss-Seidel smoothers, without leading to a degradation of the GMRES-
AMG solver convergence rate. Given the matrix splitting A = D + L + U , at every level of the V -cycle, 
dropping is applied according to the Matlab statement L = (abs(L) > tol) .* L. Consequently, we 
expect that the operator complexity C, for the L matrix, can be reduced substantially with the drop in 
nnz(L).

5.5. Hypre-BoomerAMG. To study the performance of the two-stage Gauss-Seidel precondi-
tioner and smoother in a practical setting, incompressible fluid flow simulations were performed with 
Nalu-Wind [33]. This is the primary fluid mechanics code for the ExaWind project, one of the application 
projects chosen for the DOE Exascale Computing Project (ECP) and is used for high-fidelity simulations 
of air flow dynamics around wind turbines. Nalu-Wind solves the acoustically incompressible Navier-
Stokes equations, where mass continuity is maintained by an approximate pressure projection scheme. 
The governing physics equations for momentum, pressure, and scalar quantities are discretized in time 
with a second-order BDF-2 integrator, where an outer Picard fixed-point iteration is employed to re-
duce the nonlinear system residual at each time step. Within each time step, the Nalu-Wind simulation 
time is often dominated by the time required to setup and solve the linearized governing equations, using 
hypre-BoomerAMG. To solve the momentum equations, Nalu-Wind typically employs Gauss-Seidel (GS) 
or symmetric Gauss-Seidel (SGS) iteration as a preconditioner to accelerate GMRES convergence. The 
pressure systems are solved using GMRES with an algebraic multigrid (AMG) preconditioner, where a 
Gauss-Seidel smoother is applied to relax or remove high energy components of the solution error (e.g. 
those associated with the large eigenvalues of the system), which the coarse-grid solver fails to eliminate. 
Hence, Gauss-Seidel iteration is a compute time intensive component, employed either as a stand-alone 
preconditioner for the Krylov solver or as a smoother within an AMG V -cycle.

The Nalu-Wind time integrator employs the one-reduce MGS-GMRES linear solver for the momen-
tum and pressure-Poisson solvers for the incompressible Navier-Stokes governing equations as described 
in [33] and [3]. The one-reduce solver described herein has been implemented as a part of hypre. The 
momentum solver is preconditioned with a two-stage Gauss-Seidel relaxation scheme as described previ-
ously and in the recent work by Thomas et al. [15]. The pressure-Poisson preconditioner is based on an 
AMG algorithm using aggressive PMIS coarsening at the first two levels combined with the matrix-based 
approach for the second-stage interpolation.

The McAlister wind tunnel experiment for wind-turbine blades is an unsteady RANS simulation of a 
fixed-wing, with a NACA0015 cross section, operating in uniform inflow and was chosen as a problem to 
evaluate the performance of our hypre linear solver. Resolving the high-Reynolds number boundary layer 
over the wing surface requires resolutions of O(10−5) normal to the surface resulting in cell aspect ratios 
of O(40, 000). These high aspect ratios, coupled with the loss of diagonal dominance in the momentum 
system, present a significant challenge for the iterative solvers. Overset meshes were employed to generate 
body-fitted meshes for the wing and the wind tunnel geometry. The simulations were performed for a 
wing at 12 degree angle of attack, a 1 m chord length, denoted c, 3.3 aspect ratio, i.e., s = 3.3c, and a
square wing tip. The inflow velocity is u∞ = 46 m/s, the density is ρ∞ = 1.225 kg/m

3 
, and the dynamic

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

13



viscosity is µ = 3.756 × 10−5 kg/(m s), leading to a Reynolds number, Re = 1.5 × 106. Wall normal
resolutions were chosen to adequately represent the boundary layers on both the wing and tunnel walls.
The k − ω SST RANS turbulence model was employed for the simulations. Due to the complexity of
mesh generation, only one mesh with approximately 3 million grid points was generated.

Coarsening for Hypre-BoomerAMG is based on the parallel maximal independent set (PMIS) al-
gorithm of Luby [40, 41, 43] allowing for a parallel setup phase. A transposed prolongation operator is
retained for triple-matrix RAP products. The strength of connection threshold is set to θ = 0.25. Ag-
gressive coarsening is applied on the first two V -cycle levels with multi-pass interpolation and a stencil
width of two elements per row. The remaining levels employ M-M extended+i interpolation. with trun-
cation level 0.25 together with a maximum stencil width of two matrix elements per row. Sparsification
techniques with non-Galerkin operators and drop tolerances applied to specific levels were introduced
in [48] to reduce the complexity C. The truncation is applied on the first three levels with drop toler-
ances γ = [ 0.0, 0.01, 0.01 ]. The smoother is two sweeps of the inner-outer Gauss-Seidel iteration with
two inner sweeps. The Hypre-BoomerAMG smoother is hybrid with the two-stage Gauss-Seidel applied
locally and then Jacobi smoothing for globally shared degrees of freedom. The coarsening rate for the
wing simulation is roughly 4× with eight levels in the V -cycle for Hypre. Operator complexity C is close
to 1.1 indicating more efficient V -cycles with aggressive coarsening, however, an increased number of
(restarted) GMRES iterations are required compared to standard coarsening. The comparison among
l1-Jacobi, hybrid Gauss-Seidel and the proposed two-stage hybrid Gauss-Seidel smoothers is shown in
Figure 3.
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Fig. 3: Convergence history of C-AMG V -cycle with l1-Jacobi, hybrid Gauss-Seidel and two-stage hybrid 
Gauss-Seidel smoothers

5.6. Compatible Relaxation in LAMG. In this section, our proposed dropping strategy is 
applied within the context of the Los Alamos algebraic multigrid (LAMG) framework created by Cullum 
and Joubert [49]. These authors have written the AMGToolBox in Matlab for the purposes of prototyping 
algorithms. The block lower triangular system arising from the coarse-fine ordering of the matrix at the 
k-th AMG V -cycle level with compatible relaxation is given below and is discussed in Brannick and 
Falgout [50]. This results in a recursive polynomial type smoother based upon a Gauss-Seidel iteration
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and which generates a Neumann series.
Now consider the C-F splitting of the current AMG coarse level matrix, The full prolongation

operator is given by

P =

[
−A−1FF AFC

I

]
, W = −A−1FF AFC

However, A−1FF is usually approximated by lumping or a diagonal scaling. We then form the matrix L,
the lower triangular part of A above

L =

[
MFF 0
ACF MCC

]
The Gauss-Seidel smoother is based on MFF = DFF + LFF and successive over-relaxation (SOR)
employs damping factor ω and forms the matrix MFF = DFF + ω LFF . This also applies to the matrix
MCC = DCC + LCC .

A polynomial type smoother based on a Gauss-Seidel iteration applied to the linear system, Ax = b,
where D is the diagonal of A, is given by

xk = (I +D−1L)−1D−1 b

The matrix inverse can be replaced by a truncated Neumann series, where the inverse approximation is
given by,

( I +D−1L )−1 = I −D−1L+ (D−1L)2 − (D−1L)3 + . . .

Convergence of the series depends on the eigenvalues of the iteration matrix ρ(G) < 1, where

G = ( I −D−1( I + L ) )

We also note that the Neumann series smoother converges rapidly for close to normal matrices where
the off-diagonal elements of L decay rapidly to zero. Because the matrix L is once again strictly lower
triangular, it is idempotent and the Neumann series is a finite sum. A further improvement in the
convergence rate of the GMRES+AMG solver is obtained in combination with the residual correction
that was introduced by Verbeek and Cullum (2001). At each level in the V -cycle, the basic AMG
correction vector is augmented with an additional correction to the fine points.

xFF = xFF +A−1FF rFF

Scaling results in maximum diagonal elements max diag( AF F ) < 1 and thus significantly improves the 
accuracy of the correction.

The above polynomial algorithm is cache-optimal for CPU architectures. Instead of triangular solves 
with backwards or forwards sweeps (with cache fetch ordering conflicts), the algorithm relies on matrix-
vector products in natural (fastest stride-1 memory reference) order. The algorithm is also ideally suited 
to GPU implementation because matrix-vector multiplications become the dominant cost. In order to 
demonstrate that a dropping strategy can be an effective technique for reducing the compute time and 
yet maintain the solver convergence rate, we consider the 2-D Laplace problem as studied in Joubert 
and Cullum [49].

The drop tolerance is set to tol = 1.0 and thus the smoother becomes more like a standard Jacobi 
iteration for the finest levels of the V –cycle. The number of non-zeros nnz(L) of the lower triangular 
matrix in the splitting A = D + L + U are plotted in Figure 4. The convergence history of the GMRES-
AMG solver is plotted in Figure 5, where it can be seem that the slope of the relative residual error 
remains the same as without dropping. The convergence rate for the solver with a Jaocbi smoother is 
also plotted and exhibits a different slope. We postulate that the dropping acts like an adaptive smoother 
in the V -cycle, where the iterations switch from Jacobi on the fine levels to Gauss-Seidel on the coarser 
levels. The adaptive smoothers developed by Magri et al. [51] are based upon sparse approximate inverses 
(SPAI) and their efficacy depends on the amount of fill-in as measured by the number of non-zeros in 
the resulting matrix at each level. In our case, this is determined by the drop tolerance and diagonal 
dominance of the coarse matrices.
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Fig. 4: 2-D Laplace problem N = Nx ×Ny = 10, 000. Number of non-zeros.

Fig. 5: 2-D Laplace problem N = Nx × Ny = 10, 000

Next consider the McAlister blade simulation described earlier. The problem is run again but now 
using the LAMG V -cycle as the preconditioner for the one-reduce MGS-GMRES solver. With dropping 
set to L = (abs(L) > 1e-8) .* L, the number of non-zeros nnz(L) with and without dropping are 
plotted in Figure 6. The convergence history of the GMRES-AMG solver remains essentially unchanged 
with the dropping strategy as can be observed in Figure 7. The compute time for the solver with 
dropping is reduced by at least 10%.

6. Conclusions. In this paper we have shown how truncated Neumann series play an important 
role in both a new formulation of the MGS-GMRES algorithm and inner-outer Gauss-Seidel smoother 
iterations for an AMG preconditioner. The resulting implementations of these algorithms are well-suited 
to multi-core computer architectures such as GPUs because they rely on matrix-vector products. To a 
large extent, the loss of orthogonality of the Krylov vectors determines when the MGS-GMRES solver will 
converge to a backward stable solution. Our corollary to the seminal backward stability proof of Paige
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Fig. 6: C-AMG V -cycle number of non-zeros nnz(L)

Fig. 7: Nalu-Wind pressure solver convergence history

et al. [1] demonstrates that the inverse compact WY MGS projector appears as the (2, 2) block of the
augmented Householder transformation matrix introduced in Björck and Paige [10]. Furthermore, the
loss of orthogonality results elucidated by Paige and Strakoš [9] imply that the strictly lower triangular
matrix Lk, appearing in the correction matrix T , remains small and thus T = I − Lk is sufficient for
convergence of MGS-GMRES when ‖Lk‖pF = O(εp)κpF (B), and p > 1. Furthermore, the matrix Lk
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is idempotent because it is strictly lower triangular. Therefore the Neumann series is a finite sum.
Numerical experiments demonstrate that the truncated Neumann series formulation of MGS-GMRES
produces the same loss of orthogonality and norm-wise relative backward error as the original algorithm
due to Saad and Schultz [2]. In particular, the norm-wise relative backward error reaches O(ε) when the
Krylov vectors lose linear independence and the loss of orthogonality as measured by ‖S‖2 increases to
one, at which point the relative residual error stalls.

In addition to these results, we have demonstrated that the inner-outer two-stage Gauss-Seidel
iteration may be expressed as a truncated Neumann series. When higher-order terms are included in the
sum, rapid convergence is achieved for GMRES-AMG solvers applied to the incompressible Navier-Stokes
equations in computational fluid dynamics. An effective strategy for reducing the computation time is
to apply a dropping strategy to the matrix L from the splitting A = D + L+ U at each level in the V -
cycle. The dropping strategy was applied in two different implementations of the C-AMG solver, namely
a Matlab prototype for the LAMG toolbox from LANL, written by Joubert and Cullum [49] and the
Hypre-BoomerAMG framework from LLNL. The former includes compatible relaxation as described by
Brannick and Falgout [50] and dropping was evaluated in this context. For hypre the dropping strategy
was applied within each parallel subdomain by hybrid smoothers for the local block diagonal matrices on
each MPI rank. Pressure continuity problems from the Nalu-Wind incompressible Navier-Stokes CFD
models were examined. GMRES-AMG solver convergence was not adversely affected by the dropping.
The number of non-zeros per row is reduced and the associated solver computation time is lowered.
Indeed the dropping strategy results in an adaptive smoother that changes form depending on the level
in the V –cycle hierarchy. The recent work of Magri et al. [51] employs a sparse approximate inverse at
each level to construct adaptive smoothers. The amount of fill-in or number of non-zeros determines the
quality of the smoother and is analogous to our dropping strategy, where small elements of diagonally
dominant matrices at each coarse level are removed. Further study is certainly merited to determine if
this approach applies to a broader class of problems than fluid mechanics.
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Appendix. Block Matrix Inverses and WY Modified Gram-Schmidt . For the block upper
triangular matrix inverse, we can write

(6.1)

[
A X
0 B

] [
A−1 Y

0 B−1

]
=

[
I AY +XB−1

0 I

]
where Y = −A−1 X B−1 In the case of the block lower triangular matrix inverse, we have

(6.2)

[
A 0
X B

] [
A−1 0
Y B−1

]
=

[
I 0

XA−1 +BY I

]
where Y = −B−1 X A−1 Finally, for the inverse compact WY MGS, given the recursive T matrix
generated by

(6.3) T−1 = ( I + Lj−1 ) =

[
T−1j−2 0

qTj−1Qj−2 1

]
it is possible to prove that

(6.4)

[
T−1j−2 0

qTj−1Qj−2 1

] [
Tj−2 0

−qTj−1Qj−2Tj−2 1

]
=

[
Ij−2 0

0 1

]
Therefore, lower triangular correction matrix T = ( I + L )−1 from Björck [30] and Paige et al. [1] is 
equivalent to the compact WY matrix from Björck [27]. For another example, consult equations (2.8)
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and (3.10) of Barlow [22]. The inverse for a general block matrix is given by Lu and Shiou [52] or For
the matrix R given by

R =

[
A B
C D

]
The block inverse takes the form

R−1 =

[
A−1 +A−1B(D − CA−1B )−1CA−1 −A−1B(D − CA−1B )−1

−(D − CA−1B )−1CA−1 (D − CA−1B )−1

]
Therefore, in the case of a symmetric correction matrix Tj−1, it follows that[

T−1j−2 QTj−2 qj−2
qTj−2 Qj−2 1

]−1
=

[
Tj−2 −Tj−2 LTj−1,1:j−2

−Lj−1,1:j−2 Tj−2 1

]
where α−1 = ( 1−Lj−1,1:j−2 Tj−2 LTj−1,1:j−2 ) is the inverse Schur complement and O(ε2)‖L‖22 terms are
dropped from the X matrix derived using the Sherman-Morrison-Woodbury formula for a symmetric X
in the projection matrix P = I −QX QT given in Bielich [53].
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