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Abstract
Large‐scale power systems exhibit more complex dynamics due to the increasing inte-
gration of inverter‐based resources (IBRs). Therefore, there is an urgent need to enhance
the situational awareness capability for better monitoring and control of power grids
dominated by IBRs. As a pioneering Wide‐Area Measurement System, FNET/GridEye
has developed and implemented various advanced applications based on the collected
synchrophasor measurements to enhance the situational awareness capability of large‐
scale power grids. This study provides an overview of the latest progress of FNET/
GridEye. The sensors, communication, and data servers are upgraded to handle ultra‐
high density synchrophasor and point‐on‐wave data to monitor system dynamics with
more details. More importantly, several artificial intelligence (AI)‐based advanced appli-
cations are introduced, including AI‐based inertia estimation, AI‐based disturbance size
and location estimation, AI‐based system stability assessment, and AI‐based data
authentication.

1 | INTRODUCTION

As a critical underpinning of modern society, the electric power
grid consisting of hundreds of thousands of components is
one of the most complex and man‐made dynamic systems in
the world. Situational awareness is critical to the operation and
control of large‐scale power grids. Situational awareness can
accurately and timely translate the collected data into useful
information or knowledge to allow grid operators to better
understand the current situation of a power grid and then make
decisions or take actions [1].

With the increasing integration of renewables and the
retirement of conventional generators, power grids exhibit
more complex dynamics because inverter‐based resources
(IBRs) have different dynamic characteristics compared to

conventional synchronous machines [2]. Moreover, due to the
intermittence of renewable resources, power grids will expe-
rience more dramatic and frequent operating condition varia-
tions. Meanwhile, the integration of distributed energy storage
(e.g., electric vehicles) and more dispatchable loads can
fundamentally change today's power grid operation paradigm
[3, 4]. All of these make it necessary to further enhance today's
situational awareness capability to provide better insights into
system dynamics.

Currently, numerous real‐time data are collected and sent
to control centres by conventional Supervisory Control and
Data Acquisition (SCADA) or Wide‐Area Measurement Sys-
tem (WAMS) [5, 6]. Compared with conventional SCADA,
WAMS provides higher resolution, more accurate, and time‐
synchronized measurements to reflect system dynamics.
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Many algorithms are developed and implemented for situa-
tional awareness, which can be divided into three major cate-
gories as follows: physical model‐based approach, data‐driven
approach, and artificial intelligence (AI)‐based approach.

The physical model‐based approach relies heavily on the
physical model of the power grid. It usually maps the collected
measurements to the physical model to reflect the current
status of a power grid, for example, state estimation. After that,
the critical measurements are compared with predetermined
thresholds, or a time‐domain simulation of a snapshot model
of the large‐scale power grid is needed to estimate grid stability
[7]. However, this method typically requires significant offline
or online simulation time and cannot well accommodate the
dramatic and frequent operating condition variations of a po-
wer grid dominated by IBRs.

Meanwhile, various data‐driven (or measurement‐driven)
approaches based on synchrophasor measurements have been
proposed for power grid situational awareness [8–11]. This
method uses the collectedmeasurements to build a simplemodel
online for situational awareness, for example, transfer function
model and state‐space model. Compared with the physical
model‐based approach, the computation burden can be signifi-
cantly reduced by using the developed simple measurement‐
driven model or reduced model. However, the development of
such a measurement‐driven model is not trivial. The
measurement‐driven model also needs to be frequently updated
online to reflect the fast operating condition variations.

The aforementioned two approaches are mainly based on
the physical model and physical principles. They are insuffi-
cient in predicting major risks/threats in large‐scale power
grids, for example, the California Wildfire Blackouts and 2021
Texas power crisis. Moreover, although massive spatial‐
temporal data are collected and sent to control centres, the
hidden knowledge in the large‐volume data has not been fully
exploited. Recently, AI had many successful applications in
various areas, such as image recognition, language processing,
social media, and fraud detection [12]. AI also has great po-
tential to significantly improve power grid situational aware-
ness to overcome the shortcomings of the two approaches
above and accommodate fast‐changing operating conditions.

Various AI‐based methods have been developed to improve
power grid situational awareness with promising results [13, 14],
including load forecasting [15], wind power forecasting [16, 17],
outage prediction [18], stability assessment [19], electrical
equipment fault detection [20], grid fault diagnosis [21], and
intrusion detection [22]. Note that the AI‐based approach also
belongs to the data‐driven approach. However, since its inputs
are usually feature data and it does not directly rely on a physical
model, this study treats the AI‐based approach as the third
approach. AI technologies have also been used in control
functions of different timescales, for example, demand response
[23], frequency control [24], voltage control [25], and emergency
control [26], but they are out of the scope of this study.

As a pioneer in WAMS, FNET/GridEye is a Global
Positioning System (GPS)‐synchronized power grid dynamic
frequency and phase angle monitoring network deployed at the
distribution level. It uses single‐phase Phasor Measurement

Units (PMUs) to measure synchrophasor at the 110 or 220 V
distribution level and transport data to application servers via
Internet [27, 28]. FNET/GridEye is the only monitoring sys-
tem that provides real‐time insights into the dynamic behav-
iours of all interconnection grids in North America. About
12 GB of data are collected every day, accumulating a massive
and unique spatial‐temporal power grid data asset. Various
online and offline applications have been implemented on
FNET/GridEye to monitor large‐scale power grids. It proves
to be an effective situational awareness tool for electric utilities,
Independent System Operators, and regulatory agencies.

More importantly, thanks to its low‐cost, easy deployment,
and plug‐and‐play features, a newly developed application for
situation awareness can be quickly implemented on FNET/
GridEye and validated using the collected measurements from
realistic power grids. After that, this new application can be easily
integrated into the existing WAMSs deployed at control centres
to enhance the situational awareness of grid operators. Certainly,
FNET/GridEye usually has only single‐phase synchrophasor
measurements, not three‐phase. However, this does not impede
its application in typically balanced transmission grids.

This study introduces the latest progress on FNET/
GridEye development, especially the application of AI tech-
nologies in FNET/GridEye to enhance its situational aware-
ness capability. The main contributions of this study are
summarised as follows.

� The sensors of FNET/GridEye have been upgraded to
support (1) power quality monitoring, (2) ultra‐high
reporting rate (1500 frames/second), and (3) trans-
portation of point‐on‐wave (POW) data

� The communication between sensors and FNET/GridEye
servers has been upgraded to support ultra‐high density
(UHD) synchrophasor and POW data communication by
using a lossless bit‐wise‐based compression method

� Several AI‐based advanced applications have been devel-
oped, including AI‐based inertia estimation, AI‐based
disturbance size and location estimation, AI‐based stabil-
ity assessment, and AI‐based data authentication. These
new applications are developed using realistic power grid
models and actual measurements collected by Frequency
Disturbance Recorder (FDRs)/Universal Grid Analyzer
(UGAs)

2 | OVERALL ARCHITECTURE OF
FNET/GRIDEYE

The overall architecture of FNET/GridEye is illustrated in
Figure 1, which consists of three levels: data collection level,
data communication level, and data application level.

2.1 | Data collection level

Two types of sensors are deployed at the data collection level,
FDR and UGA. FDR is the earlier version of the sensor
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usually deployed in an office room or at home to collect GPS‐
synchronized measurements, including frequency, voltage
magnitude, and voltage angle, from an ordinary 110 V or 220 V
outlet. UGAs are the advanced version of FDRs with higher
sampling and reporting rates, and newly added power quality
monitoring functions. Currently, more than 200 FDRs/UGAs
have been deployed in North America, as shown in Figure 2.
Also, there are more than 100 FDRs/UGAs deployed in other
countries, including major large interconnections around the
world.

The sampling rate of a UGA is usually 96 points per
cycle, which means a 5760 Hz sampling rate for 60 Hz
power grids and a 4800 Hz sampling rate for 50 Hz power
grids. The power quality monitoring functions deployed in
UGAs are listed in Table 1. The harmonics and total har-
monic distortion are calculated through the 1024‐point Fast
Fourier transform (FFT) algorithm per second, while the

voltage sag and voltage swell are calculated with the voltage
magnitude per half cycle [29]. The maximum error rate for
the harmonics is about 0.7%. The voltage flicker is calcu-
lated through the square‐detection method. The estimation

F I GURE 1 Overall architecture of FNET/GridEye. FDR, Frequency Disturbance Recorder; UGA, Universal Grid Analyser

F I GURE 2 Frequency disturbance recorder/universal grid analyser deployment in North America

TABLE 1 Power quality monitoring functions of UGAs

NO. Function name

1 Harmonics (2nd to 15th order)

2 Total harmonic distortion

3 Voltage sag

4 Voltage swell

5 Voltage flicker

6 Signal‐to‐noise ratio

Abbreviation: UGA, Universal Grid Analyzer.
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of signal‐to‐noise ratio is based on the power density
spectrum, which is also calculated through the 1024‐point
FFT algorithm per second.

Another improvement of UGAs is the higher reporting
rate of synchrophasor. Previously, FDRs support only a
10 Hz reporting rate. With the advanced hardware, the
UGA reporting rate can reach 120 Hz. As shown in
Figure 3, the frequency responses from a 120 Hz UGA and
a 10 Hz UGA are compared under a 60 Hz ideal power
source. The UGA with 120 Hz reporting rate has a higher
resolution and can be utilised in protection and real‐time
control. Moreover, UGAs can also be treated as an open‐
source PMU testing platform where synchrophasor algo-
rithms, such as zero crossing and high‐speed algorithm, can
be tested and validated [30].

2.2 | Data communication level

UGAs utilise the IEEE C37.118.2 protocol over TCP/IP to
transfer real‐time data to the data centre. Due to the presence
of UHD synchrophasor and POW data to monitor power
system dynamics with more details, there is an urgent need to
develop a data compression method to transfer synchrophasor
data in a more efficient and lossless manner [31]. FNET/
GridEye uses a lossless bit‐wise‐based compression method,
that is, time‐series special compression [32]. Since the differ-
ence between every two values is small due to the high

sampling rate, the proposed method has a satisfactory
compression performance for the high‐density synchrophasor
data. During daily operation, the average compression ratio
reaches 4.9, and that of the POW data is 3.3. Additionally,
multiple synchrophasor measurements are integrated into one
data frame to further reduce the communication burden [33].

2.3 | Data application level

FNET/GridEye servers are used to archive the data received
from FDRs and UGAs and detect power system events. The
architecture of the FNET/GridEye servers is illustrated in
Figure 4. ‘FNET Server’ programme establishes connections
with the sensors and parses the data stream under the IEEE
C37.118.2 protocol. The data are then archived to a file‐based
Microsoft Access database at the local hard drive. The pro-
gramme is deployed to the ‘Main Server’ and the ‘Backup
Server’ for redundancy. The data streams are forwarded to a
‘Data Distribution Server’ and then distributed to the ‘Appli-
cation Server’, ‘Backup Application Server’, and ‘Utility/orga-
nization Data Subscribers’.

On the application server, OpenHistorian, an open‐
source software for synchrophasor data concentration and
analysis, is deployed to host the application algorithms, such
as generator trip/load shedding events detection, oscillation
detection, and line trip detection [34]. The detected events
or oscillation cases are then analysed, and corresponding
reports are generated and sent to FNET industry members
via emails. A backup of the application system is also
deployed for redundancy.

3 | ADVANCED APPLICATIONS BASED
ON AI

There are various online and offline applications deployed on
FNET/GridEye. The online applications include real‐time
monitoring and visualization, generation trip/load shedding
alert, line trip alert, islanding alert, oscillation alert, and fault‐
induced delayed voltage recovery alert. Recently, forced oscil-
lation detection and source location estimation function is
added [35]. The offline applications include post‐event analysis,

F I GURE 3 Frequency measurement comparison: 120 and 10 Hz
reporting rate. UGA, Universal Grid Analyser

F I GURE 4 Architecture of FNET/GridEye servers. FDR, Frequency Disturbance Recorder; UGA, Universal Grid Analyser
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and large‐scale power grid model validation. More details can
be found in our previous publications [36–39]. This study will
introduce several recently developed new applications based on
AI on FNET/GridEye.

3.1 | Inertia estimation based on ambient
measurements and AI

Power system inertia is the kinetic energy stored in the
rotating mass of synchronous generators and some industry
motors. When the system is subjected to a disturbance, for
example, generation trip, the stored energy can be released
to reduce the generation‐load imbalance before the me-
chanical part of synchronous generators can react. Histor-
ically, since large‐scale power grids are typically dominated
by conventional synchronous generators, power system
inertia is not a concern. However, due to the increasing
integration of IBRs that inherently do not provide inertia,
the decreasing system inertia becomes a significant concern
in a power grid dominated by IBRs [40]. Due to the
insufficient inertia, a power grid can experience larger fre-
quency fluctuation that could trigger generation trips and
under‐frequency load shedding unnecessarily. Therefore, it
is crucial to monitor system inertia under varying operating
conditions.

Usually, system inertia is estimated based on the unit
commitment, which monitors the on/off status of synchro-
nous generators and aggregates the nameplate inertia of all
online units. This method may not be accurate enough since
it does not consider the inertia contributed by loads and
emulated inertia contributed by IBRs [41]. Also, inertia can be
estimated based on the collected measurements during a large
disturbance [42]. However, these event data cannot be used
to monitor system inertia in real‐time because of the
randomness of the large disturbances. Additionally, contin-
uous stimulation signal can be injected into the system. The
system responses, together with the stimulation signal, are
used to estimate system inertia by estimating coefficients of
the swing equation [41]. This method requires periodical in-
jection of the stimulation signal, and system responses may
be impacted by other natural small perturbations in the
system.

The ambient measurements under natural small distur-
bances can also provide sufficient information for inertia
estimation. The variations of system inertia can be identified by
relative magnitudes and phases of ambient frequency mea-
surements at different locations. These variations are quantified
by the minimum volume enclose ellipsoid (MVEE) method
[43, 44], and the extracted features are utilised as inputs to the
AI model.

An AI‐based inertia estimation approach is developed us-
ing the ambient frequency measurements collected by FNET/
GridEye [45]. The system dynamics embedded in the ambient
frequency measurements are represented by MVEE in its
volume, centre vectors’ eccentricity, and the projection of its

longest semi axes, etc. The extracted features are then fed into
the multivariate random forest regression (MRFR) algorithm to
learn the underlying relationship between the features and
system inertia. MRFR is an ensemble of regression trees
trained by bootstrap sampling and random feature selection
[46]. It builds a large set of regression trees and averages the
output of each tree to improve the performance of the final
model.

This inertia estimation approach is validated in the
realistic North America Western Electricity Coordinating
Council (WECC) system. Figure 5 shows the ambient fre-
quency measurements and the associated MVEE under
100% inertia and 50% inertia. The graphic parameters of
MVEE, including the ellipsoid volume, centre vectors, ec-
centricity, and the projection of the longest semi axes, are
used for inertia estimation. Figure 6 shows the estimated
inertia and the actual inertia under both heavy load and light
load seasons. Mean absolute percentage errors (MAPE) is
used to indicate the prediction accuracy. The estimated
inertia is very close the actual inertia (MAPE = 1.2% and
0.8% for heavy load and light load seasons, respectively).
The actual inertia is obtained by aggregating the inertia of
each in‐service synchronous generator. This application can
be used for other power grids if a sufficient number of
FDRs/UGAs are deployed. Typically, the dispatch data are
needed to develop the training database to train the AI
model.

3.2 | AI‐based disturbance size and location
estimation

It is critical for system operators to know the location and the
size of a disturbance in a timely and accurate manner. Typically,
this important information is processed by the disturbance
identification function based on system model and received
data. AI technologies can also be used to estimate disturbance
size and location, which does not require system model in-
formation, for example, topology and power flow. This feature
is very important for FNET/GridEye, whose sensors are
deployed at the distribution level. This method consists of the
following steps [47]:

1. Perform a recurrence quantification analysis on the received
measurements to identify a predetermined number of
FDRs/UGAs that are closest to the disturbance

2. Construct the associated MVEEs based on the data
received from the identified FDRs/UGAs

3. Extract one or more parameters from the developed
MVEEs

4. Input the one or more parameters into a MRFR algorithm
to determine the location of the disturbance and a power
mismatch corresponding to the disturbance

As shown in Figure 7, the received frequency measure-
ments after a generation trip disturbance are divided into
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four data windows: the beginning of the event (W1), initial
period of the event (W2), intermediate period of the event
(W3), and settling period of the event (W4). MVEEs are
applied to frequency measurements to extract features from
three FDRs in different data windows. The extracted fea-
tures are fed into random forests to estimate disturbance
size and location.

Tables 2 and 3 show the comparison of the statistic
estimation error between the proposed AI‐based approach
and the traditional method based on Time‐Delay‐of‐Arrival
[36]. The AI‐based method has higher accuracy in both
event location estimation and magnitude estimation. Figure 8
shows two sample disturbances where the AI‐based method
can estimate more accurate disturbance location than

conventional method. Currently, together with the existing
event detection and location application in FNET/GridEye,
this AI‐based new application is generating and sending event
reports to various electric utilities, Independent System Op-
erators, and regulatory agencies for real‐time event alerts and
post‐event analysis.

3.3 | AI‐based system stability assessment

Traditionally, power system stability assessment is based on the
time‐domain simulations of a few selected scenarios (e.g.,
spring, summer, and winter) under N‐1 and some selected N‐k
contingencies [48]. However, due to the intermittence

F I GURE 5 Ambient frequency measurements (left) and characteristic ellipsoids (right). (a) 100% inertia. (b) 50% inertia
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characteristic of the renewable generation and the high
renewable penetration, a few selected scenarios cannot cover
the daily and hourly variations in operating conditions. More
importantly, it requires tremendous time to evaluate system
stability using time‐domain simulations by screening all
possible scenarios. Although the measurement‐driven
approach with a reduced model or simplified model can
reduce the simulation time, the model itself needs to be
updated online frequently to accommodate the fast variations
in power grid operating conditions.

AI‐based system stability assessment is a more efficient
approach. A deep learning model can find the hidden rela-
tionship between the complex operating conditions and system

stability and provide accurate predictions [49]. More impor-
tantly, the deep learning model does not require the preselected
features by human beings or other algorithms. It can auto-
matically assign low weighting factors to non‐critical input
features.

The deep learning model is used to predict frequency nadir
under the largest generation trip disturbance for frequency
stability assessment, oscillation frequency and damping ratio of
the dominant oscillation mode for small‐signal stability

F I GURE 7 Frequency ellipsoids during the generation trip starting at 4 s. (a) Frequency measurements. (b) Frequency ellipsoids

F I GURE 6 Predicted inertia and actual inertia in Western Electricity
Coordinating Council system during heavy and light load seasons. MAPE,
mean absolute percentage error

TABLE 2 Comparison of disturbance location estimation

Location estimation error
(miles)

Percentage of events (%)

TDOA‐based
method

AI‐based
method

0 30 70

<50 50 98

<100 65 100

Abbreviations: AI, artificial intelligence; TDOA, Time‐Delay‐of‐Arrival.

TABLE 3 Comparison of power mismatch estimation

Mismatch estimation error
(%)

Percentage of events (%)

Beta value‐based
method

AI‐based
method

<10 45 80

<20 70 95

<30 95 100
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assessment, and minimum critical clearing time (CCT) for
transient stability assessment. The reduced 240‐bus WECC
system model developed by US National Renewable Energy
Laboratory is used in this study [50, 51]. The model has 8784
dispatches representing hourly variations in an entire year of
366 days.

3.3.1 | Frequency stability assessment

Figure 9 shows the deep learning neural network‐based
frequency stability assessment as an example. The deep
learning neural network has three layers: input layer, hidden
layer, and output layer. The power output of each generator,
inertia of each generator, and loads are the inputs of the
deep learning model. The output is the predicted frequency
nadir. The major steps of this AI‐based method are as
follows:

1. Clustering to reduce the size of the training database: The
purpose of clustering is to ensure that the selected training
dataset covers all the clusters. The affinity propagation al-
gorithm is used for clustering, which does not need to
assign the number of clusters as traditional clustering
methods do, but by manipulating the preference parameter
in the algorithm. A total of 8784 dispatches of an entire year
are clustered into 494 clusters with default parameters in the
affinity algorithm. The clustering results are given in
Figure 10

2. Time‐domain simulations: The ground truth is obtained by
time‐domain simulations. A fixed 1, 200 MW generation
trip at the same location is used as the disturbance. Thanks
to the clustering results, only 10% of the total dataset are
used as the training dataset, while the rest 90% are used for
testing

3. Train and validate the AI model using the training dataset
and testing dataset

4. Apply the trained and validated AI model to online
applications

F I GURE 8 Comparison of disturbance locations estimated by TDOA‐based and artificial intelligence method. (a) Event 1 on February 1st, 2016. (b) Event
2 on March 12th, 2016. FDR, Frequency Disturbance Recorder; MVEE, minimum volume enclose ellipsoid; TDOA, Time‐Delay‐of‐Arrival

F I GURE 9 Deep learning neural network‐based frequency stability
assessment

F I GURE 1 0 Clustering results of 8784 dispatches
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Figure 11 shows the statistic error of frequency nadir
prediction. The predicted frequency nadir is close to the
simulation results even if the model is trained with only 10% of
the total dataset. Figure 11a,b show the prediction value and
error histogram on the testing dataset (90% of the total),
respectively. Also, if we assume that the error complies with
Gaussian distribution, the error probability density function
(PDF) is showed in Figure 11c. With 96% probability, the
prediction error is smaller than 0.024 Hz. Also, Figure 12
shows the comparison between the predicted and simulated
frequency nadir of three selected days. It further demonstrates
the high accuracy of the AI‐based frequency stability
assessment.

3.3.2 | Small‐signal stability assessment

Similarly, the deep learning model can be used to predict
oscillation frequency and damping ratio of the dominant
oscillation mode under different dispatches. The inputs of the
deep learning model are the same as shown in Figure 9, while
the outputs are the predicted oscillation frequency and
damping ratio under each test scenario. The procedure is
similar to that introduced in Section 3.3.1. The ground truth is
obtained by Prony analysis of the system responses after a large

disturbance. Figures 13 and 14 show the statistic errors of the
predicted oscillation frequency and damping ratio, respectively.
Also, the predicted frequencies and damping ratios are
compared with the simulated results in three selected days in
Figures 15 and 16. The prediction results are very close to the
simulation results.

3.3.3 | Transient stability assessment

The deep learning model can also be used to assess system
transient stability. The minimum CCT is selected to repre-
sent the system transient stability level when a three‐phase
fault is applied to each of the high‐voltage buses. The in-
puts of the deep learning model are the same as shown in
Figure 9, while the outputs are the predicted minimum CCT.
The procedure is similar to that introduced in Section 3.3.1.
The ground truth is obtained by time‐domain simulations.
When the rotor angle between any two generators (capacity
larger than 100 MVA) is greater than 180°, the system is
considered transiently unstable. Figure 17 shows the statistic
errors of the predicted minimum CCT. Also, the predicted
results are compared with the simulated results in three
selected days in Figure 18. The prediction results are very
close to the simulation results.

F I GURE 1 1 Statistic error of frequency nadir prediction. (a) Predictions on testing dataset. (b) Prediction Error histogram. (c) Prediction Error PDF

F I GURE 1 2 Predicted and simulated frequency nadir of three selected days. (a) March 1st. (b) June 4th. (c) January 15th
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F I GURE 1 4 Statistic error of predicted damping ratio. (a) Predictions on testing dataset. (b) Prediction error histogram. (c) Prediction error PDF

F I GURE 1 5 Predicted and simulated oscillation frequency of three selected days. (a) March 21st. (b) July 19th. (c) October 10th

F I GURE 1 6 The predicted and simulated damping ratio of three selected days. (a) March 21st. (b) July 19th. (c) October 10th

F I GURE 1 3 Statistic error of predicted oscillation frequency. (a) Predictions on testing dataset. (b) Prediction error histogram. (c) Prediction error PDF
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3.3.4 | Performance comparison

The performances of the AI‐based stability assessment are
given in Tables 4 and 5. Its accuracy is compared with the
random forest method, while its computation time is compared
with the traditional time‐domain simulation method. It is
evident that the estimation accuracy of the proposed AI‐based
method is better than that of the classic random forest‐based
method. Also, the AI‐based method can significantly reduce
the computation time to perform an accurate and efficient
stability assessment in a power grid dominated by IBRs.

Currently, the developed AI‐based stability assessment
method is being validated on the realistic 20k‐bus WECC
system model. A large number of snapshot models are under
development to train and validate the proposed AI model for
stability assessment.

3.4 | AI‐based data authentication

With more applications of wide‐area measurements in power
grid situational awareness and real‐time control, cyber‐
security becomes a big concern. Since the real‐time
requirements in power grid monitoring and control may
prevent the application of conventional encryption

technologies, power grids lack security properties in moni-
toring and control protocols. Moreover, defending against
data spoofing attacks is more difficult for power grids
compared with other local control systems.

Some potential attacks on WAMS have already been
recognized, including communication link damage (CLD),
denial of service (DoS), and data spoofing [52]. Though both
CLD and DoS may result in significant communication delay

F I GURE 1 7 Prediction error of minimum critical clearing time. (a) Predictions on testing dataset. (b) Prediction Error histogram. (c) Prediction Error PDF

F I GURE 1 8 Critical clearing time prediction of three selected days. (a) April 27th. (b) September 9th. (c) September 23rd

TABLE 4 Comparison of estimation accuracy

Random forest‐based (%) AI‐based (%)

Frequency 98.30 99.72

Small‐signal 98.33 99.18

Transient 98.44 99.29

TABLE 5 Comparison of computation time

Time‐domain simulation (h) AI‐based (ms)

Frequency ∼4 ∼0.18

Small‐signal ∼1 ∼0.16

Transient ∼24 ∼0.11
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or even missing data, existing technologies can detect these
attacks with no difficulty. Some data spoofing attacks, such as
data injection and replay attacks, are easily detected, and the
spoofed data may be corrected if they only account for a small
portion of the overall measurements.

However, if malicious intruders are familiar with the
power system and WAMS configuration, sophisticated data
spoofing attacks may be performed, which have attracted
little research attention and cannot be detected by the
existing approaches. One example of such sophisticated data
spoofing is source identifier mixing. Attackers can mix the
source identifiers of measurement data from different PMUs
without changing measurement values. In this case, the po-
wer system state estimator is deceived into rearranging data
to wrong positions in the measurement matrix, producing
faulty results.

The wide‐area measurement data have spatial and tem-
poral signatures caused by natural responses of each local
grid's continuous and random condition changes. These sig-
natures are almost impossible to counterfeit, making them
unique resources for data authentication. In this work, spatial
and temporal signatures and AI technology are utilised to
authenticate measurements in power grids to effectively pre-
vent malicious cyber‐attacks from causing catastrophic losses
[53]. The architecture of the proposed AI‐based data
authentication method is illustrated in Figure 19. This method
uses ensemble empirical mode decomposition (EEMD) and
FFT for data pre‐processing and the back propagation (BP)
neural network for machine learning. The measurements of
different timescales are extracted using EEMD, which is a
time‐frequency signal processing technology that overcomes
the major shortcoming of traditional empirical mode decom-
position method—the effect of mode mixing [54]. The fre-
quency spectrum from the FFT analysis is the input of the BP
neural network. The BP neural network is a popular neural
network model that is trained by the error BP algorithm. The
BP neural network can be used to learn a large number of
mapping relations of an input‐output model without
requiring a mathematical description of these mapping re-
lations [55]. The output of the BP neural network is the
consistent degree between the measurements and a specific
FDR identifier.

The proposed data authentication method is verified using
three FDRs that are closely deployed in Knoxville, Tennessee,
US, as shown in Figure 20. The average distance of the three
FDRs is 7.9 km. Since the frequency measurements collected
by the three FDRs are quite similar, it is challenging to
authenticate the data from a specified FDR if the three FDRs'
IDs are randomly swapped. However, during the test, the
proposed AI‐based method achieved 80.9% accuracy in
authenticating the data source, significantly higher than other
methods whose accuracy is around 60%–70%. The developed
data authentication method can be easily integrated into other
WAMSs, since PMU measurements deployed at the trans-
mission level also have the similar spatial and temporal
signatures.

4 | CONCLUSION

This study introduces the latest progress of FNET/GridEye,
especially the advanced applications based on AI technolo-
gies. At the data collection level, a new version of single‐
phase PMU called UGA is developed, which can provide
more measurement types with a higher sampling rate and
reporting rate. At the data communication level, a new data
compression method that enables the efficient communica-
tion of UHD synchrophasor measurements and POW data
is used. At the data server level, several AI‐based methods
have been proposed to estimate system inertia using ambient
frequency measurements, estimate disturbance size and
location, assess system stability (frequency stability, small‐
signal stability, and transient stability) using dispatch data,
and authenticate the received data. Compared with tradi-
tional methods, these AI‐based methods can provide more
accurate results and improve efficiency.

However, the major challenge of applying AI technologies
to power grids is that the learnt models usually do not consider
the intrinsic constraints in the physical models. The learnt
models are typically ‘black box’ models that are difficult to
explain or interpret in the sense of physics. Moreover, the
existing AI technologies are not robust enough to adapt to
systems' time‐varying characteristics. Additionally, data privacy
and availability are a big concern, which requires the AI‐based
methods to be functional with partial or limited data.

F I GURE 1 9 Architecture of the proposed back propagation neural
network

F I GURE 2 0 Locations of three Universal Grid Analysers
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Therefore, the developed new functions will be improved by
addressing aforementioned challenges (e.g., incorporating
physical model/laws into the learning process) and further
validations on FNET/GridEye. After the ‘trial’ on FNET/
GridEye, these AI‐based applications can be easily imple-
mented to other WAMSs to significantly enhance the situa-
tional awareness in power grids dominated by IBRs.
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