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Abstract

This paper addresses the design of local control
methods for voltage control in distribution networks
with high levels of distributed energy resources (DERs).
The designed control methods modulate the active and
reactive power output of DERs proportional to the
deviation of the local measured voltage magnitudes
from a reference voltage, which is referred to as droop
control; thus, the design focuses on determining the
droop characteristics that satisfy network-wide voltage
magnitude constraints. The uncertainty and variability
of DERs renders the design of optimal droop controls
very challenging; hence, this paper proposes chance
constraints to limit the risk from intermittent DERs
by designing droop control coefficients that guarantee
the satisfaction of network operational constraints with
a specific probability. In addition, the proposed
approach relies entirely on historical data rather than
assuming knowledge of the probability distributions that
characterize the uncertainty of DERs. The efficacy
of the proposed method is demonstrated on a 37-bus
distribution feeder.

1. Introduction

As volatile renewable energy increases its share
of the energy resource mix, power system operational
and control objectives become more challenging. For
example, distributed energy resources (DERs) at the
edge of a distribution network can cause voltage
violations, especially when the generation exceeds the
load on a feeder [1]. On the other hand, DERs have the
potential to solve or mitigate their own issues through
different control technologies (e.g., smart inverters
combined with local storage) and from the fact that
they are located at various locations on a distribution
network [2].

When it comes to making sure that voltage
magnitudes stay within their prescribed bounds, a
standard technique called voltage droop control has

DERs adjust their individual reactive power injections in
proportion to locally measured voltage magnitudes [3].
Although at a local level this is a very simple and easy
to implement control law, [4, 5] showed that the actual
droop control settings should be based on their location
in the distribution network; otherwise, instability can
occur.

A natural goal for global droop control design is
to implement robust settings guaranteeing that, under
any situation, the voltages everywhere stay within their
bounds [6]; however, this might not be practical or
justifiable for many reasons. There might not be enough
capacity among the available controllers to satisfy the
guarantees, but adding any additional needed capacity
could be prohibitively expensive [7]. On the other hand,
limiting some uncertainty in the system might require
curtailing or removing the most volatile resources, such
as wind and solar, which goes against many future
objectives for having a clean energy grid [8]; thus, the
key to this balance is how uncertainty is framed and
handled.

In stochastic optimization, where uncertainty is
modeled as a probability distribution of random
variables, a common relaxation from a robust constraint
that must be satisfied under all circumstances is a chance
constraint that allows the violation of a bound under a
limited probability [9]. In the case of voltage droop
control, this would mean allowing voltages to go outside
of their prescribed bounds as long as this could happen
only with a small prescribed probability. Although in
the ideal case it might be desired to set this probability
to zero, a nonzero but small probability could allow
the existing control capabilities to have feasible and
functional droop control settings.

Chance constraints bring their own set of challenges,
however, which makes them difficult to use in general
practical applications. The first is that they are not
convex even if the bound being relaxed probabilistically
is linear [10], except in some special cases (e.g., the
probability distribution is Gaussian or uniform and
symmetric [11]). The second challenge is that the
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probability distribution for the uncertainty is assumed
to be known, but this is not the case in many
applications. This creates the necessity to use an
empirical distribution built from historical data in place
of the true distribution.

In the past decade, many methods have been
developed for this particular data-driven situation;
however, they have the added consequence of greatly
increasing the time complexity to solve an optimization
problem (e.g., [12]), especially for high-dimensional
data, which are often found in energy system problems.
The recent work by [13] designed a simple but
effective method of approximating chance constraints
with data-driven, deterministic, second-order-cone
constraints. They get around the time complexity
problems found in other methods by first using the
data to calculate the sample mean and covariance
of the high-dimensional data and using those in the
optimization problem. We apply this data-driven
method to the application of voltage droop control.

The main contributions of this paper can be
summarized as follows:

• We formulate the voltage droop control decision
problem as a chance-constrained stochastic
optimization problem. (Section 2)

• We decouple the chance constraints and
approximate the stochastic optimization problem
with a data-driven deterministic form that
guarantees satisfaction of the original chance
constraints. (Section 3)

• We evaluate the performance of the proposed
data-driven method on an unbalanced three-phase
IEEE distribution test case using real-world
photovoltaic (PV) and load data. Results show
that using the proposed data-driven method can
better control the voltage magnitude compared to
standard IEEE guidelines. (Section 4)

1.1. Notation

Throughout this paper, all matrices (vectors) are
denoted by upper- (lower-) case boldface letters,
whereas (·)> stands for vector or matrix transpose. The
operator diag(x) is a diagonal matrix holding in order
entries of vector x on its diagonal. The boldface one,
1 (zero 0), is used to denote an all-ones (zeros) matrix
with the respective dimensions. The Lp-norm of a
vector or a matrix is denoted by ‖ · ‖p.

2. Problem Formulation

2.1. Power System Model

Consider a distribution network with the set of nodes
{0}∪N , where node 0 denotes the substation, andN :=
{1, . . . , N}. Let {pt,qt} ∈ RN , respectively, be the
vector of the net real and reactive power injections at
each node in N at time t ∈ {1, . . . , T}, where T is the
time horizon considered for the control settings or the
uncontrollable power injection forecasts.

In this work, the relationship between the voltage
magnitudes, denoted by vt ∈ RN , and the power
injections at time t is approximated using a linear power
flow model:

vt = Rpt + Bqt + a (1)

where {R,B} ∈ RN×N and a ∈ RN can be derived
from the admittance matrix (e.g., [14]) or data (e.g,
[15]). Linearized power flow equations allow us to
formulate a convex optimization problem that can be
solved efficiently and allow the use of linear algebra
techniques in the controller design. Although the
theoretical development will be with linearized power
flow equations, the resulting control algorithms will
be evaluated with a nonlinear AC power flow model
in Section 4 which shows that linearization error has
minimal impact on the results.

Remark 1. The particular linearization method given
by [14] can be derived from the block-partitioned nodal
admittance matrix Y := [Y00 Y0L; YL0 YLL] and the
nominal voltage at the substation v0.

w := −Y−1LLYL0v0

M := Y−1LLdiag(w)−1

R := diag(|w|)<(diag(w)−1M)

B := diag(|w|)<(diag(w)−1(−M))

a := |w|

where w is the nodal zero-load voltages (not to
be confused with the vector of random variables ω
described later).

2.2. Stochastic Load Model

Let (p̃t, q̃t) be the uncontrollable power injections
and (p̂, q̂) be their static forecasts over the time
horizon T . Denote the forecasting errors as the
following random variables (ωpt ,ω

q
t ), and hence, the
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uncontrollable power injections are given by:

p̃t = p̂ + ωpt (2a)
q̃t = q̂ + ωqt . (2b)

In other words, (p̂, q̂) are forecasts of the average
uncontrollable power injections over the time horizon
T , and (ωpt ,ω

q
t ) are the time-varying deviations from

the forecasted average.

2.3. Voltage Droop Control

Voltage droop controls operate in a grid-following
mode by adjusting power injections proportionally
to a measured voltage magnitude difference from a
reference, vref ∈ RN . Let {Gp,Gq} ∈ RN×N+ be
the diagonal matrices of the voltage droop coefficient
vectors {gp,gq} ∈ RN+ so that voltage droop-controlled
power injections at time t become:

pt = p̃t −Gp(vt−1 − vref) (3a)
qt = q̃t −Gq(vt−1 − vref). (3b)

Let the function f(gp,gq) denote the system’s
operational cost associated with the droop control
settings, which can be used to promote different
droop control objectives. For example, ‖[gp gq]

ᵀ‖2,1
proportionally relates the settings to the sum of absolute
apparent power by summing the Euclidean norms of
[gp,i gq,i]

ᵀ among buses i ∈ {1, . . . , N}. This promotes
that the nonzero droop controller settings will be at
only a few key buses. On the other hand, ‖[gp gq]

ᵀ‖2F
penalizes the summation droop control coefficients
squares across the power network system, hence often
leading to wider deployment of droop controls.

2.4. Optimal Voltage Droop Control Problem

The main goal of voltage droop control is to keep
the voltage magnitude, vt, between the lower bound, v,
and upper bound, v. Depending on the capacity of the
controls available, however, it might not be possible to
keep the voltage magnitude within these bounds; thus,
we can soften these bounds by using the slack variable
γ ≥ 0 to allow for some voltage magnitudes outside the
bounds:

v − γ1 ≤ vt ≤ v + γ1.

and then penalize any positive γ.
Because the uncontrollable power injection forecast

errors (ωpt ,ω
q
t ) are random variables, the above bounds

with droop controls (3) are stochastic. Depending on
the support of the probability distribution, the voltage
bounds with the slack variable, γ, will focus only

on controlling for the worst-case voltage magnitude
deviations. A common way to loosen the focus of the
bounds is to turn them into chance constraints that allow
a specified probability of violation, α, at each node:

Pr(vi − γ ≤ vt,i ≤ vi + γ) ≥ 1− α,
∀i ∈ {1, . . . , N}. (4)

Putting together the cost of the droop control
settings, system equations (1), (2), and (3), and
the chance-constrained voltage magnitude bounds (4)
over the time horizon, T , we have the following
optimal droop control problem, which depends on
the probability distribution of the forecast errors
(ωp1,ω

q
1), . . . , (ω

p
T ,ω

q
T ):

min
gp,gq,γ

f(gp,gq) + cαγ (5a)

s.t. (1), (2), (3) ∀t ∈ {1, . . . , T} (5b)
(4) ∀t ∈ {1, . . . , T} (5c)
gp ≥ 0, gq ≥ 0, γ ≥ 0 (5d)

where cα is the per-unit cost of the voltage violation with
probability 1− α, and v0 is given.

3. Chance Constraints from Data

The main challenges associated with solving
problem (5) are: 1) the chance constraints are
time-coupled through the droop control actions (3), and
2) the chance constraints require prior knowledge of
the forecast error probability distribution. First, we
modify problem (5) to decouple the chance constraints
with negligible deviation from the original problem.
Afterward, we use a recently developed data-driven
method that can conservatively approximate the chance
constraints with convex deterministic constraints built
from historical data of the forecast errors.

To make the analysis more concise, we define the
voltage magnitude deviation from vref as yt := vt−vref.
Similarly, we define the upper and lower bounds on y as
y := v − vref and y := v − vref, and we also define the
zero-load voltage magnitude deviation as yref := a −
vref. Throughout, we will use the following definition of
ỹt:

ỹt := Rp̃t + Bq̃t + yref =
[
I R B

] yref
p̃t
q̃t

 (6)

as a compact form that represents the hypothetically
uncontrolled voltage magnitude deviation.
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3.1. Time-Decoupling of Chance-Constraints

The method employed to decouple the voltage
magnitudes in time comes from [4], which was used
to derive a robust optimization problem. Inserting the
droop controls (3) into the power flow equations (1) and
expanding out one step of recursion gives the following:

yt = R(p̃t −Gpyt−1) + B(q̃t −Gqyt−1) + yref

= ỹt − (RGp + BGq)yt−1

= ỹt − (RGp + BGq)ỹt−1

+ (RGp + BGq)
2yt−2

= (I−RGp −BGq)ỹt + (RGp + BGq)

(R(p̃t − p̃t−1) + B(q̃t − q̃t−1))

+ (RGp + BGq)
2yt−2. (7)

At this point, all the time coupling is segregated to the
last two terms. Instead of using yt directly to design
the optimal droop control settings, we use the following
surrogate:

ψt := (I−RGp −BGq)ỹt

=
[
I −R −B

]
diag

I
I
I

 ỹt

 1
gp
gq

 . (8)

To be able to surrogate yt with ψt, we first assume
that the control actions are happening fast enough
compared to the evolution of the uncontrollable power
injections so that (p̃t, q̃t) ≈ (p̃t−1, q̃t−1). This
is a reasonable assumption because droop controllers
typically operate at the 100-ms (or faster) time
granularity, whereas at this timescale, most DERs such
as wind and solar vary slowly and the switching of
discrete loads are relatively spread out. A sudden
large disturbance (e.g., a default) might indicate a
significant change in the system (e.g., power flow
equations, probability distribution) which could be
used to trigger a recalculation of the droop control
coefficients. See Figure 5 in Section 4 for a relaxation of
this assumption. Also, we assume that the O((RGp +
BGq)

2) is negligible compared to the other terms.
To justify this assumption, let ρ(X) be the spectral
radius of X. If we assume that the spectral radius
ρ(RGp + BGq) is less than one, then the recursive
terms are contracting as they go farther back in time,
and it has the added benefit of guaranteeing the
stability of the system (see [4] for details). A simple
way to impose this assumption is by bounding the
Frobenius norm ‖[Gp Gq]

>[R B]‖F < 1 because
ρ([R B][Gp Gq]

>) = ρ([Gp Gq]
>[R B]) ≤

‖[Gp Gq]
>[R B]‖F . Because the closer that

ρ(RGp + BGq) is to 1, the farther the surrogate, ψt,
will be from yt, and we can bound the Frobenius norm
with the variable β ∈ [0, 1):∥∥∥∥[Gp

Gq

] [
R B

]∥∥∥∥
F

≤ β (9)

and penalize β in the objective function.
The main benefits of the surrogate, ψt, are that it

is decoupled from the other time steps and it is linear
with respect to the droop control coefficients. Further,
we assume that the time horizon between the control
setting decisions is small enough so that forecasting
errors (ωpt ,ω

q
t ) : ∀t ∈ {1, . . . , T} in Equation (2) are

independent and identically distributed with respect to
time, which allows us to treat all time steps similarly;
thus, we can drop the associated index and modify
problem (5) by replacing the time-dependent chance
constraints (5c) with

:Pr(y
i
− γ ≤ ψi ≤ yi + γ) ≥ 1− α,

∀i ∈ {1, . . . , N}. (10)

The i-th element in the surrogate, ψ, in (8) can be
written as:

ψi =

 yref
p̂ + ωp

q̂ + ωq

> χi
 1

gp
gq

 (11)

where:

χi :=

 I
R
B

 [I I I
]

diag

 ei
−R>i
−B>i

 , (12)

ei is the i-th standard basis vector, and the index, i, on
{R,B} represents its i-th row. This structure shows that
ψi is the inner product of a stochastic vector and a linear
function of a decision vector. With this structure, there
exist several options to transform the chance constraints
into data-driven deterministic constraints.

3.2. Data-Driven Chance Constraints

Depending on the family of probability distributions,
the first two moments of the forecasting errors
(ωp,ωq) can be used to find an exact or conservative
approximation of the above chance constraints. For
example, if the forecasting errors are assumed to
be Gaussian, then an exact deterministic convex
reformulation can be used [16]. On the other
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hand, if the exact shape of the distribution is not
known besides the first two moments, then a convex
deterministic reformulation can be made that guarantees
satisfaction of the original chance constraint under
the worst possible distribution that has those first
two moments [17]. This is sometimes referred to
as a moment-based or Chebyshev-ambiguous [18]
distributionally robust chance constraint.

In this paper, we adopt a moment-based
distributionally robust chance constraint; however,
instead of assuming knowledge of the true moments
of the distribution of the forecasting errors, we use
historical data to obtain an estimate of their mean
and covariance. We build on the recent result in [13],
which developed a data-driven method that considers
the estimation error when using the sample mean and
covariance in moment-based distributionally robust
chance constraints.

Let µ be the mean vector, Σ be the covariance
matrix, and (ω,ω) be the elementwise lower- and
upper-bound support vectors of the random forecast
errors ω := [(ω

p
)> (ωq)>]>. From M independent

and identically distributed samples, define µ̂M , Σ̂M ,
and (ω̂M , ω̂M ) as their sample derived estimations.
Also define P(µ,Σ,ω,ω) as the family of probability
distributions with the associated properties. To state
the chance constraints in a distributionally robust form,
we split the probability, α, equally on both sides of
the chance constraint (10) and take the worst-case
probability distribution given the first two moments and
support:

inf
ω∼P(µ,Σ,ω,ω)

Pr(ψi ≥ yi−γ) ≥ 1− α

2
,

∀i ∈ {1, . . . , N} (13a)

inf
ω∼P(µ,Σ,ω,ω)

Pr(ψi ≤ yi+γ) ≥ 1− α

2
,

∀i ∈ {1, . . . , N}. (13b)

From the data-driven method described in [13], we
can conservatively approximate (13) with the auxiliary
decision variables, Z ∈ R2×N ; scalar parameters
(κM , φM ); and the following set of deterministic

second-order cone constraints:yref
p̂
q̂

+

[
0
µ̂M

]> χi
 1

gp
gq


+ κM

√
1− α

2
α
2

‖Z:,i‖2 +
√
φM
2
Z2,i − γ ≤ yi,

∀i ∈ {1, . . . , N} (14a)

−

yref
p̂
q̂

+

[
0
µ̂M

]> χi
 1

gp
gq


+ κM

√
1− α

2
α
2

‖Z:,i‖2 +
√
φM
2
Z2,i − γ ≤ −yi,

∀i ∈ {1, . . . , N} (14b)

∥∥∥∥∥∥
[
0 0

0 Σ̂M

] 1
2

χi

 1
gp
gq

∥∥∥∥∥∥
2

≤ Z1,i,

∀i ∈ {1, . . . , N} (14c)

√
φM
2

∥∥∥∥∥∥
[
0 0

0 diag(ω̂M − ω̂M )

]
χi

 1
gp
gq

∥∥∥∥∥∥
1

≤ Z2,i,

∀i ∈ {1, . . . , N}. (14d)

The first term in (14a) and (14b) represents the average
voltage magnitude deviation, whereas the second and
third terms are tantamount to safety buffers to account
for the variation in forecasting errors through Z1,i and
(14c) and the estimation uncertainty of the sample
moments through Z2,i and (14d).

The following theorem provides the guidelines on
how to set the scalar parameters (κM , φM ) so that the
satisfaction of the data-driven deterministic constraints
(14) implies the satisfaction of the distributionally robust
chance constraints (13).
Theorem 1 ([13], Corollary 1). Assume that estimated
supports bound the true supports, i.e., ω̂M ≤ ω and
ω̂M ≥ ω, and that the number of independent and
identically distributed samples, M , satisfies:

8

√√√√√ M

exp

((√
M − 2

)2) < α. (15)
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If the scalar parameters in (14) are set to:

κM =

√ √
M√

M − 1
, (16a)

φM =

2 +

√
2 ln

(
8
√
M/α

)
√
M

, (16b)

then (14) is a conservative approximation to (13). And
as M →∞, (14) asymptotically approaches (13).

The asymptotic result comes from the fact that as
the number of samples, M , approaches infinity, then
κM approaches 1, φM approaches 0, and the moments
estimates approach their true values. At that point, (14)
becomes the form found in [17], which was proven to be
equivalent to (13).
Remark 2. If the estimated support vectors (ω̂M , ω̂M )
do not completely bound the true support vectors (ω,ω)
but instead bound them with probability 1 − ε for ε ∈
(0, α2 ), then Theorem 1 will remain true if α is replaced
with α̂ := α−2ε

1−ε . See Proposition 1 in [13] for more
details.
Remark 3. The bound on the number of samples, M ,
imposed by (15) can be found numerically, but it is a
mild constraint. For example, if α = 0.01, then M
would only need to be as large as 38 to satisfy the
assumption.

For a system operator trying to minimize the
probability of voltage magnitudes going outside of their
bounds, it may be tempting to push the probability
of violation α towards zero. However, a smaller α
increases the size of the coefficients in front of the
second and third LHS terms in Equations (14a) and
(14b) and the coefficient in front of the LHS of Equation
(14d). The increased size of φM due to a smaller α
could be counteracted with a larger number of samples

M but the value of
√

1−α2
α
2

will increase regardless. An

increased size of the coefficients shrinks the feasible
region for the droop coefficients. This could require a
larger slack variable γ that essentially expands out the
bounds on the voltage magnitudes that are guaranteed
for the specified probability of violation α. In other
words, lowering α does not come without cost to
expanding the bounds on the voltage magnitude.

3.3. Data-Driven Droop Control Scheme

Finally, we summarize the complete voltage
droop control scheme that uses the aforementioned
data-driven, distributionally robust chance constraints

for a given specified probability of violation, α, and a
number of collected forecast error samples, M .

At each droop control setting decision epoch (e.g.,
every 15 min):

1. Collect the most recent M power injection
forecast errors (ωp,ωq) from each node with
nonzero power injections in the power network at
the granularity of the droop control actions (e.g.,
every 100 ms), and form the sample mean vector,
µ̂M ; covariance matrix, Σ̂M ; and support vectors,
(ω̂M , ω̂M ).

2. Set (κM , φM ) according to (16).

3. Solve the following optimization problem as a
surrogate to problem (5):

min
gp,gq,γ,β,Z

f(gp,gq) + cαγ + cββ (17a)

s.t. (9), (14) (17b)
gp ≥ 0, gq ≥ 0, γ ≥ 0 (17c)
β ≤ β0 (17d)

where β0 < 1, and the cost coefficient, cβ , limits
the size of the optimal solution as measured by the
spectral radius, which was assumed before.

4. At each droop control action time step, operate
the droop controller using the coefficients gp,gq ,
where power injections follow the expression (3).

Although the development of this scheme was based
on the assumption of the linear power flow equations and
the forecast errors that are independent and identically
distributed, in the next section we test the scheme with
nonlinear three-phase power flow and real-world power
injection data.

4. Performance Evaluation

In this section, we evaluate the performance of
the proposed data-driven voltage droop control setting
scheme summarized in Section 3.3. For this purpose,
we use a three-phase radial distribution network. The
proposed approach is compared to a standard method of
setting the droop control coefficients [3].

4.1. Setup

The unbalanced, three-phase, delta-connected IEEE
37-node distribution test case [20] was used to
benchmark the performance of the droop control
schemes. We assume that PV systems are installed on
buses 5, 6, 7, 9, 10, 11, 13, 14, 16, 20, 21, 24, 26, 29,
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Figure 1: A sample of the PV and active load data at
nodes 5 and 10 from [19].

30, 32, 33, 35, and 36. In addition, the input 1-second
(active) load and PV data were taken from feeders near
Sacramento, California, on August 1, 2012, from 12
a.m.–8 p.m., which was a clear day [19]. See Figure
1 for a small sample of the data. The reactive power
was set to be 50% of the magnitude of the active power
load data to give a constant power factor of 0.894 for
the uncontrollable loads. The power injections input
data were scaled up by a factor of 15 to induce voltage
violations under the scenario with no droop control.
The targeted voltage magnitude lower and upper bounds
were set to 0.95 and 1.05 p.u., respectively. To assess the
performance of the droop control schemes on a realistic
setup, the tuning of the schemes was done using the
linearized power flow model, but their power injection
control actions in (3) were tested with voltage magnitude
measurements based on the nonlinear AC power flow
model. The nonlinear power flow equations were
solved on MATLAB using a three-phase fixed-point
solver [21].

At each node and phase with a load, an inverter with
a rating of 500 kVA and a power source was added. The
maximum voltage range that an inverter can react was
set to be 0.1 p.u. from vref = 1 p.u. which together with
the rating constrains the capacity on each node with a
droop controller as follows:

‖[gp,i gq,i]>‖2 ≤ 5000.

The linearization method to generate (R,B,a) came
from [14], which linearizes the power flow equations
around the zero-load voltage. For the proposed
data-driven, chance-constrained droop control, the
droop control settings are recalculated every 15 minutes
using the most recent forecast errors. The default
amount of the sampled forecast error data used to
calculate the sample moments is the previous 3 hours.
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Figure 2: (a) Maximum voltage magnitudes, and (b)
total reactive power injected from control from 11:00
a.m.–11:15 a.m. under different control schemes.

That is, the chance constraints of a control period are
calculated based on the forecast errors collected in the
previous 3-hour period. Later in this section, we will
vary this duration to analyze the effect of increasing
the amount of data samples on the performance of
the proposed approach. The forecasting method
used was the persistent estimator algorithm, i.e., the
forecast (p̂, q̂) for the next 15 minutes is the average
uncontrolled power injections from the previous 15
minutes. The allowable probability of violation, α, for
the chance constraints is set to 0.1. The maximum
allowable bound, β0, on (9) is set to 0.95. The objective
function was set with f(gp,gq) = ‖[gp gq]

ᵀ‖2F to
promote a wide distribution of control, and the cost
coefficients cα = 5× 107 and cβ = 103.

As a benchmark comparison against the proposed
data-driven method, we employ the IEEE 1547
guidelines [3] (Figure 2a) as the standard way to set
the voltage droop controls, which include a deadband
between 0.98 and 1.02 p.u. and a limit of 0.8 on the
maximum fraction of the apparent power that can be
used by any inverter for reactive power.
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(a) Chance-constrained droop control

(b) Standard droop control settings

(c) No droop control

Figure 3: Histograms of voltage magnitude at Node 32
(Phase a) under different control schemes. Outside the
dotted lines represents the tails, which contain 5% of the
occurrences on each side.

4.2. Results

First, we compare the performance between the
data-driven, chanced-constrained droop control setting
scheme and the standard control settings that are blind
to the power injection data and power system properties.
During the 15-minute interval from 11:00 a.m. to
11:15 a.m., the uncontrolled system had its peak voltage
magnitude among all nodes and phases as a result
of the high penetration of solar power. Figure 2a
tracks the maximum voltage in the system during
this interval under the considered control schemes.
Although the standard control settings can reduce the
maximum voltage magnitude from the uncontrolled
system by 0.0075 p.u. on average, the proposed
chance-constrained scheme can reduce it by 0.0133 p.u.
and keep it close to the 1.05 p.u. upper bound. Figure 2b
depicts the total reactive power being injected among all
the droop controllers in the system. This demonstrates
the efficacy of the proposed chance-constrained scheme
with respect to using power resources for voltage control
because it is using 33% less reactive power than the
standard settings, yet it can provide substantial reduction
of the maximum voltage.
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(c) Average droop control coefficients

Figure 4: (a) 95th and (b) 5th percentile of the voltage
magnitudes at Node 32 (Phase a) and (c) average droop
control coefficients versus the number of 15-minute
intervals used in the sample data.

To assess the performance over the whole 20
hour period, we showcase the voltage magnitude of a
particularly stressed node. Node 32 (Phase a), located
at the edge of the network, achieves both the minimum
and maximum voltage magnitude throughout the whole
period for the uncontrolled scenario. Figure 3 shows the
histograms of its voltage magnitude over the considered
20-hour period under the different control schemes. The
dotted lines delineate the α

2 = 0.05 tails on either
side, within which the chance-constrained scheme was
aiming to place the 0.95-p.u. and 1.05-p.u. bounds.
Although the standard control was able to squeeze
the voltage magnitudes toward the 1.00-p.u. reference
voltage magnitude, the data-driven, chance-constrained
scheme was able to do it more effectively. More
importantly, the proposed approach was almost able to
meet the requirement of the chance constraints to get
the lower and upper tails to start at the 0.95-p.u. and
1.05-p.u. bounds, respectively.

One assumption made in the development of the
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Figure 5: Voltage magnitudes at the buses and their
phases during a fault at Bus 16 (Phase b) under the
data-driven, chance-constrained droop control scheme.
The thick black line indicates the voltage magnitudes at
the location of the fault.

data-driven, chance-constrained droop control scheme
was that the forecasting errors were independent and
identically distributed. In this case, the more historical
samples that are used to find the mean and covariance,
the more accurate the sample moments will be; however,
if the probability distribution of the forecasting errors
varies in time, more samples from farther back in
time could lead to inaccurate sample moments. In
Figure 4, we varied the number of samples used in
calculating the sample mean and covariance in terms
of the number of past 15-minute intervals. We again
focused on the voltage magnitude of Node 32 (Phase
a) and looked at the 95th and 5th percentiles in Figures
4a and 4b, respectively. With α = 0.1, these are the
percentiles focused on by the chance constraints. As the
number of samples increases, the percentiles get closer
to the desired bounds of 0.95 and 1.05 p.u., but they
asymptotically approach a gap that separates them. On
the other hand, Figure 4c shows the droop coefficients
averaged over time and the node location, which grow
logarithmically with the number of samples. This
is mainly because of the chance-constraint parameters
(κM , φM ) approaching (1, 0), which allows for larger
feasible droop control coefficients. Larger droop control
coefficients, however, result in a more aggressive usage
of the energy resources; thus, when picking the number
of past samples to use for estimating the sample
moments, a practitioner might balance the improvement
to the 5th and 95th percentile voltage bounds to the
increase in droop control coefficients.

Another assumption made during the development
of the droop control scheme was that the droop
control actions act fast enough so that changes in the
uncontrollable load would be relatively small compared

to the magnitude of the uncontrollable loads themselves.
Although this is typically true, we want to test how the
droop controls behave when at an instance when this is
not true (e.g., under a fault). Thus, we simulated a fault
at Bus 16 (Phase b) by increasing the active load by
twice the amount of the total average load (excluding
the renewable generation) in the system at 11:07 am
and then releasing it at 11:08 am. Figure 5 shows the
voltage magnitudes at each bus and phase during this
time interval. Notice that the system has large changes
in voltage at the beginning and end of the time interval
for the simulated fault, but it does not show any signs of
instability.

5. Conclusion

In this paper, we develop a data-driven method
to set voltage droop control coefficients in an
electrical distribution network with high integration
levels of DERs. The main objective is to limit the
probability of voltage magnitudes going outside their
bounds. The method is based on a chance-constrained
stochastic optimization problem and adapts the method
developed by [13] to conservatively approximate
the chance constraints with the sample mean and
covariance derived from historical data. The proposed
method is evaluated on an unbalanced, three-phase,
delta-connected IEEE 37-node distribution test case
[20]. We show that it can more effectively keep the
voltage magnitudes within their prescribed bounds than
the IEEE 1547 guidelines [3]. Future directions include
analyzing the stability of networked DERs with droop
controls based on the nonlinear power flow model and
studying the design of voltage droop control under
various objectives, such as determining the minimum
number of DERs with droop control that are required to
maintain the voltage magnitudes between bounds. It will
also be interesting to explore the tradeoff between the
number of samples and the lowest attainable probability
of violation for the bounds on the voltage magnitudes.
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