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ABSTRACT Levelized cost of energy (LCOE) is a commonly used metric to assess the cost-to-benefit ratio
over the lifetime of an energy resource, such as photovoltaics (PV); however, power electronics engineers
tend to rely on metrics such as efficiency and power density, which do not guarantee lifetime cost optimality.
Recent work has shown that an LCOE-focused optimization approach can yield improved system designs,
leading to improved lifetime performance with balanced lifetime cost and energy generation. This paper
outlines an LCOE optimization framework for PV power electronics that uses geometric programming. The
large number of circuit parameters and nonlinear nature of the system equations pose significant barriers.
Our approach allows for decoupling the design variables, which, in turn, enables superior computational
efficiency and a near-optimal solution. By incorporating the power electronics design process and magnetic
loss mechanism into the convex design framework, the optimization engine yields practically implementable
parameters for a PV converter that minimizes LCOE. An optimization example for a cascaded modular PV
inverter architecture is presented that suggests 3.35% LCOE improvement can be achieved by the new power
electronics and the advanced optimization. The proposed optimization framework can be applied to other
power generation systems to evaluate the effect of the power electronics design on system lifetime costs and
efficiency.

INDEX TERMS Convex optimization, geometric programming, levelized cost of energy, lifetime energy
cost, magnetic loss modeling, solar inverters, modular multilevel converter.

I. INTRODUCTION
Demand and the importance of renewable energy have been
rapidly increasing because of recent technology advance-
ments that are leading to significant improvements in cost-
effectiveness, comparable to conventional generation [1].
Among renewable energy resources, photovoltaics (PV) are

The associate editor coordinating the review of this manuscript and

approving it for publication was Lorenzo Ciani .

becoming increasingly common in all sectors, i.e., at the util-
ity, commercial, and residential scales. Recent reports show
that new installations of PV have increased by an order of
magnitude during the last decade, and the generation cost of
a PV system is even lower than conventional energy sources
in some regions [2].

To improve PV system performance and displace retir-
ing conventional generation, recent research and develop-
ment efforts have focused on cost reduction with balanced
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performance [3]. The levelized cost of energy (LCOE) is
a widely accepted metric used to evaluate a technology’s
performance [4]. The LCOE measures the energy cost
required to generate a unit amount of energy for a system’s
lifetime, e.g., $/kWh. To estimate the lifetime cost and energy
yield, it factors in comprehensive system-level characteris-
tics, such as cost for procurement and installation, PV panel
efficiency and degradation, cost for maintenance and down-
time, and financial factors for investment. By reflecting and
balancingmultiple aspects, the LCOE-oriented system design
can be used to maximize system performance.

Prior LOCE-oriented works on PV generation systems
have analyzed the cost share of the system components and
their impacts on the LCOE in the scope of the entire sys-
tem [5], [6]. Moving the scope inside the system, several
studies have been conducted to compare the technologies or
different conditions in a region [7]–[10]. Most prior work
using the LCOE has not considered the PV inverter, which
is an essential element for dc-to-ac power conversion and
the grid interface; in general, parameters in the power con-
version (e.g., efficiency and cost) are assumed to be given
or negligible. In power electronics designs, on the other
hand, power conversion efficiency and component cost are
common design metrics, but, in general, their impact on
the system-level performance metrics has not been a high
priority. The inverter performance, however, has been found
to be not negligible; moreover, inverter performance can
significantly impact the entire system’s performance, includ-
ing its LCOE [11]. An LCOE optimization methodology
for a PV inverter system incorporating the reliability of the
components, reported in [12], demonstrated how compo-
nent design optimization leads to LCOE reduction. In [13],
Saridakis et al. presented a design optimization approach to
evaluate the impact of using Silicon Carbide (SiC) power
switches in PV inverters. By balancing the switching fre-
quency and output filter structure, they showed the potential
of the SiC PV inverters with device cost reduction com-
pared to Silicon-based ones. A recent work reported in [14]
studied the impact of different PV power conversion system
architectures on LCOE, including conventional central and
string inverters and multiport dc transformers, with battery
storage at the utility scale. Reference [15] discussed PV
inverter LCOE improvement by employing absolute active
power control to contribute to extending the inverter lifetime
with thermal stress on power switches controlled. Because
the LCOE of a generation system can be designed to repre-
sent the detailed impact of the design parameters of interest,
an LCOE-oriented design methodology can derive improved
design by balancing both efficiency and cost with proper
system modeling [11], [12], [14]. In addition, it can be used
to evaluate the relative value of a new technology compared
to the baseline state-of-the-art solutions [13]–[15].

This paper presents an LCOE-oriented PV inverter
design optimization. Distinguished from prior works that
used exhaustive search [11], [15] or genetic algorithms
[12], [13], geometric programming (GP) is employed in this

optimization work for its superior computation efficiency.
In addition, GP can guarantee the global optimal point
obtained with detailed models, if the optimization problem
is well constructed to have a specific form that is com-
patible with the method [16]. Section II presents an intro-
duction to the GP optimization. Component-level modeling
for the power conversion loss and the cost to model the
LCOE improvement from a new technology are introduced
in Section III. Section IV presents an optimization case study
of a cascaded modular PV inverter system design with the
GP algorithm, rated for a 200-kW commercial-scale PV gen-
eration. The proposed LCOE-oriented design optimization is
validated by comparing its results with ones from the physics
model-based method. Section V concludes the paper with
final remarks.

II. GEOMETRIC PROGRAMMING
GP is an optimization problem-solving algorithm that has
a special form of objective and constraint functions, called
posynomial. The posynomial function can be defined as:

fposy(x) =
K∑
k=1

(ckx
ak1
1 xak22 . . . xaknn ), (1)

where x1, x2, . . . , xn are optimization variables; and the coef-
ficients, ck , and exponents, ak1, ak2, . . . , akn, are the model
parameters, which are determined by the model characteris-
tics. Here, the optimization variables and the coefficients are
positive real, and the exponents are real values. This is why
this form is called ‘‘posynomial,’’ which is ‘‘positive,’’ and
‘‘polynomial.’’ K is the number of terms in the posynomial
function, and it is in monomial form when K = 1. The
standard form of GP is expressed as:

minimize fo(x) =
K∑
k=1

(cokx
aok1
1 xaok22 . . . xaoknn )

subject to fi(x) =
L∑
l=1

(cilx
ail1
1 xail22 . . . xailnn )

≤ 1, i = 1, . . . ,m

hj(x) = cjx
aj1
1 x

aj2
2 . . . x

ajn
n = 1, j = 1, . . . , p, (2)

where fo is the objective function, which should beminimized
in the optimization problem; and fi and hj are the inequal-
ity and the equality constraint functions, respectively, which
should be satisfied in the optimal point.

GP retains benefits in the convex optimization since is is
a special expansion of the convex [16]. The convex opti-
mization is mathematically proven to find the global opti-
mal point if it exists. It is also known to have polynomial
time complexity [17]; it can solve an optimization problem
in a computationally efficient manner. The improvement in
the computational performance of the convex optimization
(and GP) has been attributed to the advancements in solvers,
e.g., MOSEK [18]. Moreover, it has been recently found that
many practical optimization problems, especially in electrical
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circuit design and system optimization problems, have model
functions that are equivalent or well approximated to the
posynomial form; therefore, GP has been widely applied
in practical electrical circuit/system design optimization
problems [19]–[24].

The first step to solving the practical optimization problem
with GP is to model the target system in a posynomial form.
In case the system cannot be modeled, by nature, in posyn-
omial, approximation or fitting is required. Provided that
the original non-posynomial model is f (x), with data points
(x, f (x)) and its posynomially fitted form, ffit (x), the set of
unknowns in ffit (x), with the coefficients and exponents in (1),
is found by fitting functions to minimize the deviation of
ffit (x) from f (x). In the fitting process, the sum of the square
of the relative errors:

N∑
i=1

r2i =
N∑
i=1

(
f (i)(x)− f (i)fit (x)

f (i)(x)

)2

(3)

or the maximum relative error:

max

(∣∣∣∣∣ f
(i)(x)− f (i)fit (x)

f (i)(x)

∣∣∣∣∣
)
, i = 1, . . . ,N (4)

is commonly used as the error term, where N is the
number of data points of (x, f (x)). The fitting pro-
cess is a nonlinear optimization problem, and general
nonlinear least-square methods—such as Gauss-Newton [25]
or Levenberg-Marquardt [26]—can be used to find the
unknowns that minimize the error. These methods are not
guaranteed to converge to the global optimum, and the solu-
tion depends on the initial values of the unknowns. So the
accuracy of the solution can be enhanced by repeated trials
with changing initial values. There are several techniques to
reduce the error in the posynomial fitting [27], [28]. In these
works, the fitting error is reduced by applying a larger number
of monomial terms or by breaking the data set into clusters
and performing the fitting with each cluster.

The GP problem with optimization variables that are con-
tainedwithin a certain discrete set, such as an integer, is called
mixed-integer geometric programming (MIGP) [16], [29].
It cannot be solved with the same method as the ordinary
GP, and methods for solving the MIGP have some drawbacks
compared to those for the GP solver. The methods to solve
the MIGP can be classified into two types. The first is the
heuristic method. To obtain a solution, the heuristic method
first relaxes the integer constraints and solves the relaxed
noninteger GP problem. After solving, the relaxed values
of the variables are rounded to integer variables, and the
optimization process is completed by solving the reduced-
order optimization problem, with integer variables fixed to
the rounded values. Once formulated, it can calculate the
optimum in a computationally efficient manner; however,
because the process of relaxation and rounding is an approxi-
mation of the originals, it may find a design point that deviates
from the global optimum. The second is the global method.
In this method, the GP optimization runs multiple cases with

different sets of fixed integer variables to find the global
optimal. Since it explores the entire design space, it can find
the global optimum at the cost of additional computation. One
should consider the trade-offs (computation and accuracy)
when choosing the method for an MIGP problem.

III. OPTIMIZATION MODEL
LCOE presents the lifetime energy cost of a generation sys-
tem. This value incorporates system performance metrics,
including the system efficiency, cost, degradation of the
equipment, and interest rate; therefore, an LCOE-oriented
optimization can identify the optimal system design for the
minimum lifetime cost. LCOE for a generation system can
be defined as:

LCOE =
Clife
Elife
=

C0 +
∑T

t=1
Ct

(1+i)t

8760 · Prated · γ · (
∑T

t=1 (1− δ)t−1)
,

(5)

where Clife and Elife are the lifetime cost and energy gener-
ated, respectively. C0 is the initial investment cost, including
installation cost; Ct is the yearly dispensed cost; and Prated is
the rated power of the system; γ = ctη is the ratio of actual
power per year considering the system efficiency (η) and
capacity factor (ct ), considering irradiance and temperature
for a geographic region; δ is the degradation factor, such as
PV module degradation; and i is the interest rate.

By comparing the LCOE value to baselines, the effective-
ness and performance of a new technology can be evaluated.
In case of evaluating a new power electronics technology,
i.e., replacement of the PV-to-grid power conversion archi-
tecture, the parameters related to the power conversion would
vary, including the installation cost (inverter and transformer
cost), Ct , and the power conversion efficiency, η. On the
other hand, the rest of the parameters in (5) would remain
unchanged, such as the cost and degradation factor for the
PVmodules. Based on this rationale, the LCOE of the system
with a new topology can be rewritten and simplified, focusing
on the changes, as:

LCOEnew =
(C̄0 −1C0)+

∑T
t=1

Ct
(1+i)t

8760 · Prated · ct (η̄ +1η) · (
∑T

t=1 (1− δ)t−1)

≈ LCOE −
1C0

Ēlife
− LCOE

1η

η̄
(6)

where 1C0 and 1η are the cost and efficiency change by
applying the new topology, respectively. C̄0, η̄,LCOE, Ēlife
are the initial cost, efficiency, LCOE, and lifetime energy
generation of the baseline topology, respectively. The LCOE
improvement resulting from replacing the power conversion
architecture in the new topology can be expressed as follows:

1LCOE

LCOE
=
LCOE − LCOEnew

LCOE
=

1C0

ĒlifeLCOE
+
1η

η̄
.

(7)

Since lower LCOE translates into a lower cost required
to generate the same amount of energy, the greater the
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LCOE improvement factor (7) is, the better (lower) LCOE is
expected. Based on this, (7) is used as the objective function
for the optimization in the study.

To compute the improvement factor for a new power con-
version technology, its cost and loss model are required to
derive 1C0 and 1η, as shown in (7). To abstract the two
differentials, the major components in the power conversion
that determine the two key metrics should be properly mod-
eled. Since the power semiconductor devices and magnetic
components, i.e., transformers and inductors, are the major
drivers for the power electronics cost and loss, the modeling
of the two is explained in the subsections.

A. SWITCH LOSS MODELING
The loss of the power semiconductor switch is represented
by the conduction loss and the switching loss, which can be
expressed as:

Pcond = i2rmsRds(on), (8)

Psw = 2Cossv2swfsw, (9)

respectively, where Rds(on),Coss are the on-state resistance
and the output capacitance of a switch device. irms, vsw, fsw
are the root-mean-square (RMS) current, drain-source volt-
age, and switching frequency of the switch, respectively.
Here, the relationship between Rds(on) and Coss can be mod-
eled considering the bare die area and height of the switch.
The output capacitance, Coss, can be modeled as the capaci-
tance of the parallel plate capacitor as:

Coss = ε
Adie
Wd
+ Cfixed (10)

where Wd ,Adie are the width and height of the bare switch
die, and Cfixed is the offset capacitance. In case of a vertical
SiC MOSFET,Wd and Adie can be modeled as:

Wd =
2vBD
EC,SiC

,

Adie = KSiC
vκBD
Rds(on)

, (11)

where vBD is the blocking voltage of the switch. Coefficients
of the switch characteristics, Cfixed ,EC,SiC ,KSiC and κ , can
be extracted from the device data sheet. Substituting (10)
and (11) into (9), the switching loss can be expressed in the
posynomial form of Rds(on) and fsw as:

Psw = 2

(
ε
KSiCEC,SiCv

κ−1
BD

2Rds(on)
+ Cfixed

)
v2swfsw. (12)

B. TRANSFORMER AND INDUCTOR LOSS MODELING
The loss of magnetic components can be modeled by the core
loss and the copper loss. The core loss of the unit volume core
can be expressed by the iGSE method [30] as:

Pcore =
1
Ts

Kfe

(2π)α−1
∫ 2π
0 |cos θ |

α 2β−αdθ

FIGURE 1. Winding geometry for copper loss modeling of magnetic
components.

×

∫ Ts

0

(
Bpk−pk

)β−α ∣∣∣∣dBdt
∣∣∣∣α dt (13)

where α, β, andKfe are parameters related to the corematerial
and geometry and can be found in the core data sheet. Ts and
Bpk−pk are the unit period of the ac excitation and the peak-
to-peak value of the flux density of the core section, B(t),
within a single excitation period, respectively. In this model
equation, the core loss can be expressed as a posynomial if
B(t) is properly modeled. Since B(t) is based on the voltage
profile applied to the component, its modeling and approxi-
mation process needed would depend on the circuit topology
and operation. Section IV will provide an example modeling
process of the core loss to formulate a posynomial form for
the case study.

For the magnetic copper loss, Dowell’s equation can be
used [31]. This model function is derived by considering the
dc resistance, skin effect, and proximity effect of the winding.
Fig. 1 shows the design concept of the winding. In this figure,
the shape of the winding is assumed to be rectangular, and
tcu, tw are the thickness and width of a winding. Wcore and
Thcore are the width and thickness of the winding area in
the core, respectively. Assuming that the current waveform
at the winding is sinusoidal, the copper loss of a single layer
winding in Fig. 1 can be expressed as:

Player =
φRdc
(Nt/m)2

((
f 2h + f

2
0

)( sinh (2φ)+ sin (2φ)
cosh (2φ)− cos (2φ)

)
− 4fhf0

sinh (φ) cos (φ)+ cosh (φ) sin (φ)
cosh (2φ)− cos (2φ)

)
=

φRdc
(Nt/m)2

((
f 2h + f

2
0

)
G1(φ)− 4fhf0G2(φ)

)
,

(14)
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where Nt ,m, fh, f0 are the total winding turns, the number of
layers, and the magneto-motive forces (MMF) on both sides
of the winding, respectively. Rdc is the dc resistance of the
single-layer winding, expressed as Rdc = ρ Nt ·MLTmtwtcu

, where
MLT is the mean length per single turn. φ = tcu/δ with δ =√
2πµ0fac is the skin depth, where fac is the frequency of the

ac excitation.

FIGURE 2. MMF profiles in multiple-layer magnetic components.

The total copper loss of the component is calculated by
adding the copper loss of every layer, considering fh and f0 of
each layer. In the case of the transformer, the total copper loss
is dependent on the winding structure of the primary winding
and the secondary winding; previous work [32] showed that
the copper loss is minimized if the primary winding and the
secondary winding are alternately placed layer by layer. This
placement is called a fully interleaved placement. TheMMFs,
f0 and fh, for the fully interleaved winded transformer can be
expressed as shown in Fig. 2a. In Fig. 2a, the MMF values of
the primary winding and the secondary winding in a certain
layer can be expressed as:

f0,pri = fh,sec = 0,

fh,pri = f0,sec =
Nt,priirms,pri

m
, (15)

where Nt,pri, irms,pri are the total turns and the RMS
current value of the primary-side winding, respectively.

Equation (15) is satisfied if the MMF from the primary
winding and the secondary winding are in opposite directions
and therefore cancel each other. By substituting (15) into (14),
the copper loss of the fully interleaved transformer by a single
ac frequency can be presented as:

Player,XF =
φRdc,pri(
Nt,pri/m

)2 (Nt,priirms,prim

)2

G1(φ)

+
φRdc,sec(
Nt,sec/m

)2 (Nt,secirms,secm

)2

G1(φ)

= 2
φRdc,pri(
Nt,pri/m

)2 (Nt,priirms,prim

)2

G1(φ), (16)

where Rdc,pri
Rdc,sec

=

(
Nt,pri
Nt,sec

)2
is assumed. Nt,sec, irms,sec are the

total turns and the RMS current value of the secondary-side
winding, respectively. The total copper loss of the transformer
considering up to nth harmonic current components can be
calculated as:

Pcopper,XF =
m∑
j=1

n∑
k=1

Player,XF

= 2mRdc,pri
n∑

k=1

√
kφi2rms,kth G1

(√
kφ
)

(17)

where irms,kth is the RMS current value of the k th harmonics
component.

Different from the transformer, the MMF of a common
inductor accumulates as additional layers are stacked, as illus-
trated in Fig. 2. The MMF values of the inductor by the jth
layer are expressed as:

f0 (j) = (j− 1)Nt irms/m

fh (j) = f0 (j+ 1) = jNt irms/m. (18)

By substituting (18) into (14), the copper loss of the jth layer
by the fundamental frequency current can be expressed as
follows:

Player,IND (j)

=
φRdc
(Nt/m)2

((
f 2h + f

2
0

)
G1(φ)− 4fhf0G2(φ)

)
= φRdc i

2
rms

((
j2 + (j− 1)2

)
G1(φ)− 4j (j− 1)G2(φ)

)
.

(19)

Similar to the transformer modeling, the total copper loss of
the inductor, considering up to nth harmonics, can bemodeled
from (19):

Pcopper,IND

=

m∑
j=1

n∑
k=1

√
kφRdc i

2
rms,kth

×

((
j2 + (j− 1)2

)
G1

(√
kφ
)
− 4j (j− 1)G2

(√
kφ
))
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= mRdc
n∑

k=1

√
kφ i2rms,kth

×

(
G1

(√
kφ
)
+
2
3

(
m2
−1
) (
G1

(√
kφ
)
−2G2

(√
kφ
)))

.

(20)

Note that for the GP optimization, since G1 and G2 in
the copper loss models, (17) and (20), are not posynomi-
als as of function of φ, they should be approximated. The
RMS harmonic current, irms, depends on the circuit topology
and operation. An example fitting process is presented in
Section IV.

C. COST MODELING
The component costs for a power conversion architecture can
be abstracted by developing scalable models as functions of
key performance metrics. For the power switches, by assum-
ing that the semiconductor switch cost is proportional to the
die area, the switch cost can be modeled as:

Csemi =
ksemi,cost
KSiC

Adie = ksemi,cost
vκBD
Rds(on)

. (21)

Using the market data of the switch under consideration, the
cost model coefficient, ksemi,cost , can be calculated.

For the magnetic components, in this study, it is assumed
that their cost is determined by the core cost, and, based on
this, the cost for the transformers and the inductors is modeled
to be proportional to the core volume:

Ccore = kcoreVcore (22)

where Vcore is the relative core volume of the magnetic com-
ponent, and kcore is the cost of the unit volume core.

IV. CASE STUDY: OPTIMIZATION ENGINE DEVELOPMENT
USING GEOMETRIC PROGRAMMING FOR DIRECT
LOW-VOLTAGE DC TO MEDIUM-VOLTAGE
AC PV POWER CONVERSION SYSTEM
In this section, an optimization case study for a cas-
caded modular PV inverter architecture is presented. Fig. 3
shows the system block diagram under this study using cir-
cuit + control, (C2), modules. The C2 architecture features
cascaded modular power conversion with stacked converter
modules to directly generate medium-voltage ac output with-
out grid frequency (50/60-Hz) step-up transformers from
low-voltage dc input, i.e., < 1500 V. Each C2 module is
connected to a PV string, and the PV dc power is trans-
formed to the three-phase ac driven by a quadruple active
bridge (QAB) with high-frequency transformers followed by
three full-bridge inverters for individual phases, as illustrated
in Fig. 3. The QAB stage operates as a dc transformer (DCX)
with a fixed conversion ratio to improve the efficiency. The
three-phase outputs of the modules are connected in series
with interleaved pulse-width modulation (PWM) signals to
synthesize the multilevel medium-voltage output. Further
details of the power conversion can be found in [33].

A. SYSTEM MODELING
Based on the circuit and system operation, the LCOE
improvement that the C2 system can achieve, compared to a
conventional PV generation architecture, can be modeled as
follows. Themodeling approach considersmajor components
in power conversion, including the QAB primary switches
(4ea/module), QAB secondary switches (12ea/module),
inverter switches (12ea/module), high-frequency transform-
ers (3ea/module), and QAB leakage inductor (3ea/module).
To represent the system characteristics for the LCOE-oriented
optimization, the system modeling should incorporate the
loss and cost mechanism of the individual components.
As presented in Section III, the loss functions, P, and the cost
functions, C , for the C2 system can be defined as:

PQAB,C2 = f1
(
Nmodule,Nt,XF ,mXF ,Rds(on),pri,

Rds(on),sec, fsw,QAB
)

PINV ,C2 = f2
(
Nmodule,Nt,XF ,mXF ,Rds(on),INV , fsw,INV

)
PXF,C2 = f3

(
Nmodule,Nt,XF ,mXF ,Vcore,XF ,

fsw,QAB, tw,XF , tcu,XF
)

PIND,C2 = f4
(
Nmodule,Vcore,IND, fsw,QAB,Nt,IND,

mIND, tw,IND, tcu,IND
)

Csemi,QAB = f5
(
Nmodule,Nt,XF ,mXF ,Rds(on),pri,Rds(on),sec

)
Csemi,INV = f6

(
Nmodule,Nt,XF ,mXF ,Rds(on),INV

)
CCORE,C2 = f7

(
Nmodule,Vcore,XF ,Vcore,IND

)
, (23)

where Nmodule, Rds(on),pri, Rds(on),sec, Rds(on),INV , fsw,QAB,
fsw,INV ,Vcore,XF , andVcore,IND are the number ofmodules, the
on-state resistance of the primary-side switch, the secondary-
side switch, the inverter switch, the switching frequency of
the QAB, the switching frequency of the inverter, and the
core volume of the transformer and inductor, respectively.
The magnetic component variables, Nt ,m, tw, and tcu, are
the geometric parameters of the transformer and inductor,
representing the number of turns, number of layers, and the
winding width and winding thickness of the transformer and
inductor, respectively. Here, in the modeling process, the
power and voltage ratings of the cascaded modules in the
target system are assumed to be identical. This assumption
is based on the common practice found in the field, mostly
for controllability, scalability with standardized modules, and
cost-effectiveness in commercialization andmass production.
Similar approaches in modular power conversion systems are
found in [34], [35]. The function models, f1, . . . , f7, in (23)
will be represented in posynomial form, with respect to the
design variables, to perform the GP optimization.

Fig. 4 shows the relationship of the optimization variables
and the model functions of the C2 system. The system effi-
ciency and the total installation cost are calculated from (23)
as:

ηnew = 1−
Ploss,C2
Prated

= 1−
Nmodule
Prated

(PQAB,C2 + PINV ,C2

+PXF,C2 + PIND,C2), (24)
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FIGURE 3. Cascaded modular PV inverter architecture for case study using C2 building blocks [33].

FIGURE 4. Block diagram of C2 topology LCOE calculation model.

and:

C0,new = Nmodule(Csemi,QAB + Csemi,INV
+CXF,C2 + CIND,C2)). (25)

The LCOE improvement factor of the C2 system can be cal-
culated by substituting the calculated values in (24) and (25)
and the LCOE, Elife, η,C0, values for the conventional one
into (7). The modeling process of each loss and the cost
model (23) is explained in the following.

1) SWITCH LOSS MODELING
First, the switch loss model for the C2 system, PQAB,C2 and
PINV ,C2, are presented. The power loss of the QAB switches,
PQAB,C2, can be expressed as:

PQAB,C2 = Pcond,QAB + Psw,QAB

=

(
4i2rms,priRds(on),pri + 12i2rms,secRds(on),sec

)
+ 12

(
2kv2dcCoss,secfsw,QAB

)
, (26)

FIGURE 5. Voltage and current waveforms of QAB in C2 module.

where irms,pri and irms,sec are the RMS current of the
primary-side switches and secondary-side switches of the
QAB, respectively. Fig. 5 shows the voltage and current
waveform of the QAB in the C2 topology. Variables,
vpri, vsec, iL , isw,pri,1t,Tsw are the primary-side voltage,
secondary-side voltage, inductor current, primary-side switch
current, time delay between the primary and secondary volt-
age, and the switching period of the QAB, respectively. In the
QAB, a phase difference between vpri and vsec allows the elec-
trical power to be delivered to the secondary side. The RMS
value of isw,pri is represented as follows [33]:

irms,pri ≈
ipv

1− φmax
π

√
1
2
−
φmax

3π

=
Prated

Nmodulevpv

1

1− φmax
π

√
1
2
−
φmax

3π
(27)

where φmax = 1t/Tsw is the phase shift between the primary-
side voltage and the secondary-side voltage at the rated
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power, which is set as π/6 for practicality. vpv, ipv are the
voltage and current from the PV panel connected to the QAB
primary side. As discussed, the QAB has three secondary-
side bridges to output three-phase ac, and the secondary-side
current, isw,sec, contains the line frequency component. The
RMS value of isw,sec considering the line frequency compo-
nent can be expressed as:

irms,sec ≈
vdcφmax

2π fsw,QABLlk

√
1
4
−

4φmax
9π2 , (28)

where Llk is the designed leakage inductance of the QAB for
the rated power at φ = φmax . vdc is the dc-link voltage at
the QAB secondary side and the inverter input, which can be
calculated as:

vdc = mINV
vg,pk
Nmodule

= nTRvpv (29)

where mINV is the output voltage margin of the inverter,
vg,pk is the peak phase voltage of the grid, and nTR =
Nt,pri/Nt,sec is the turns ratio of the QAB transformer. Sub-
stituting (27), (28), and (29) into (26), the QAB switch loss
model can be represented as the posynomial function form
with respect to variables Nmodule, Rds(on),pri, Rds(on),sec, and
fsw,QAB.
The switching loss of the QAB switches can be modeled

by incorporating the degree of soft switching achieved over
an ac line cycle and the other switching losses. Using a
current source(s), e.g., leakage inductance or magnetizing
inductance, the QAB can be designed to achieve zero-voltage
switching (ZVS) tomitigate the turn-on switching loss, which
is the major loss component of majority carrier switches,
such as SiC MOSFETs under this study. Since the QAB
delivers ac power, fluctuating at double-line frequency (100
or 120 Hz), the ZVS condition may depend on the line cycle
and the source of soft switching. The QAB primary-side
switches can straightforwardly obtain the full ZVS, indepen-
dent of the line cycle, since the sum of the three individual ac
phase currents flowing through the primary side is kept con-
stant. The secondary-side switches can also achieve the ZVS
by securing enough inductive current and PWM dead time
over the entire line cycle, e.g., having moderate magnetizing
inductance current that remains constant to discharge para-
sitic device capacitances, independent of line cycle. Further
discussion on the soft switching techniques for the QAB can
be found in [36].

With the QAB designed to achieve the full ZVS, the other
switching losses remaining should be incorporated into the
switch model to result in a reasonable design optimization.
To represent the inevitable switching losses, including MOS-
FET gate drive loss and turn-off loss, the switching-loss
factor, k , in (26), is set to 0.1 in this study.

The loss model of the inverters is expressed as:

PINV ,C2 = Pcond,INV + Psw,INV
= 12i2rms,INVRds(on),INV

+ 12
(
2vdc2Coss,secfsw,INV

)
. (30)

Here, the single-phase inverters of the C2 architecture are
implemented with full-bridge inverters operating in the bipo-
lar modulation and hard switching; no soft-switching tech-
nique is employed. In this case, the RMS current of the
inverter switches, irms,INV , considering the switching ripple
can be expressed as follows [37]:

irms,INV =
√
i2rms,g + i

2
rms,ripple

=

√(
Prated
3vg,rms

)2

+
1
3

(
1− m2

a +
3
8
m4
a

)

×

√√√√( vdc
2
(
Nmodulefsw,INV

)
(NmoduleLINV )

)2

(31)

As in the QAB case, the inverter switch loss model can
also be expressed in posynomial formwith respect toNmodule,
fsw,INV , and Rds(on),INV by substituting (29) and (31) into (30).
Here, an additional constraint is required to ensure that the
switching ripple current of the inverter stays below the limit.
Equation (32) shows the inequality constraint regarding this
limit. It is a posynomial form with respect to variables
Nmodule and fsw,INV .

iripple,pk =
vdc

2
(
Nmodulefsw,INV

)
(LINV )

≤ iripple,lim (32)

FIGURE 6. Flux density, B(t), for magnetic components in the QAB.

2) MAGNETIC COMPONENT LOSS MODELING
The loss of the magnetic components in theC2 system occurs
at the inductors and transformers in the QAB. In general,
the magnetic loss can be divided into core loss and copper
loss. The core loss can be presented in posynomial forms as
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functions of the design variables, Vcore,XF , Vcore,IND, Nt,XF ,
Nt,IND, and fsw,QAB. Fig. 6 shows the flux density waveforms,
B(t), for the transformers and the inductors in theQAB,which
can be expressed as:

BXF (t) =
vXF
NtAw

=


vpvt

Nt,XFABaseV
2/3
core,XF

(0 ≤ t ≤ 0.5Tsw,QAB)

vpv(Tsw,QAB−t)

Nt,XFABaseV
2/3
core,XF

(0.5Tsw,QAB ≤ t ≤ Tsw,QAB)

(33)

BIND(t) =
vIND
NtAw

=



vpvt

Nt,INDABaseV
2/3
core,IND

(0 ≤ t ≤ 1t)

vpv1t

Nt,INDABaseV
2/3
core,IND

(1t ≤ t ≤ 0.5Tsw,QAB)

vpv(0.5Tsw,QAB+1t−t)

Nt,INDABaseV
2/3
core,IND

(0.5Tsw,QAB≤t≤0.5Tsw,QAB+1t)

0 (otherwise)
(34)

where Tsw,QAB = 1/fsw,QAB is the switching period of the
QAB; vXF and vIND are the voltages applied to the transformer
and the inductor; Nt and Aw are the number of turns and the
cross-sectional area of the surroundings by turns; vpv is the
panel voltage; and ABase is the cross-sectional area of the unit
volume core. By substituting (33) and (34) into (13), the core
loss of the components in the QAB can be presented as:

Pcore,XF = Vcore,XF
1
Tsw

Kfe
2πα2β−α

× 2
(

vpv
Nt,XFABaseVcore,XF

)β
(Tsw/2)β−α+1

β − α + 1

Pcore,IND = Vcore,IND
1
Tsw

Kfe
2πα2β−α

× 2
(

vpv
Nt,INDABaseVcore,IND

)β
(1t)β−α+1

β − α + 1
.

(35)

In addition, the saturation of the core should be considered.
Here, the peak value of the flux density should be kept
under the limit, Bmax , to avoid the core saturation. Constraints
related to the saturation can be expressed as:

BXF,pk =
0.5vpvTsw,QAB

Nt,XFABaseV
2/3
core,XF

≤ Bmax

BIND,pk =
vpv1t

Nt,INDABaseV
2/3
core,IND

≤ Bmax (36)

where BXF,pk and BIND,pk are the peak values of flux
density, BXF (t) and BIND(t), respectively. As shown, these
constraints are in monomial form to the design vari-
ables; they can be applied to the GP optimization without
modification.

In contrast to the core loss model, the native copper loss
model is not in posynomial form to the variables Vcore,XF ,
Vcore,IND, and fsw,QAB; therefore, the posynomial fitting to the
total copper loss is required so that the loss model can be
applied to the GP optimization.

To derive the copper losses of the QAB inductors and trans-
formers, the RMS values of the harmonic current compo-
nents can be expressed, referring to the illustration in Fig. 5,
by using the Taylor series:

irms,pri = iL,pk
n∑

k=1

2
√
2 sin (kαπ)

α (kπ)2
. (37)

Substituting (37) into (17), the total copper loss of the trans-
former can be expressed as:

Pcopper,XF = 2mRdc,prii2L,pk

n∑
k=1

√
kφ

(
2
√
2 sin (kαπ)

α (kπ)2

)2

×

 sinh
(
2
√
kφ
)
+ sin

(
2
√
kφ
)

cosh
(
2
√
kφ
)
− cos

(
2
√
kφ
)


= 2mRdc,prii2L,pkFac,XF (φ) . (38)

By fitting Fac,XF to posynomial form with respect to φ =
tcu/δ, the total copper loss can be modeled as posynomial
with respect to tcu and fsw,QAB. In the same manner, the total
copper loss of the inductor is:

Pcopper,IND

= Rdci2L,pk

n∑
k=1

m
√
kφ

(
2
√
2 sin (kαπ)

α (kπ)2

)2

×

(
G1
√
kφ +

2
3

(
m2
− 1

) (
G1(
√
kφ)− 2G2(

√
kφ)

))
= Rdci2L,pkFac,IND (m, φ) . (39)

Fig. 7a and 7b show the plots of the non-posynomial terms,
Fac,XF and Fac,IND, with respect to φ.

Next, the posynomial fitting process of Fac,XF and Fac,IND
is presented. Posynomial functions should have convex or
affine characteristics; however, as shown in Figs. 7a and 7b,
Fac,XF and Fac,IND have a concave shape starting from φ ≈

2.2, and this area aggravates the fitting error. In this case,
higher fitting accuracy can be obtained by dividing the orig-
inal function into several clusters and performing fitting to
each cluster. In this case study, Fac,XF is divided into two
clusters at φ = 2.2, and Fac,IND is divided into three
clusters at φ = 1 and φ = 2. Figs. 8 and 9 show the
fitting result to Fac,XF and Fac,IND, with and without clus-
tering. The posynomial functions for the copper loss factors
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FIGURE 7. Copper loss factors for posynomial fitting as functions of φ.

from the fitting are:

Fac,XF (φ)

=



0.2698φ−0.3268 + 0.9901φ−0.0403

+0.5965φ0.3398 + 0.6940φ2.486 (0 < φ ≤ 2.2)
+0.3732φ−0.0293 + 1.2633

0.2368φ0.8182 + 0.7054φ−0.6689

+0.9176φ0.9266 + 1.1906φ0.9569 (φ ≥ 2.2)
+1.2674φ1.1699 + 0.0591

(40)

Fac,IND (m, φ)

=



0.8725m0.9837φ−0.0186

+0.1851m2.9890φ3.5105 (0 < φ ≤ 1)
0.1933m2.988φ2.6327

+0.8516m0.9192φ−0.1813 (1 < φ ≤ 2)
+0.0011m−64.8504φ−4.0907

0.5351m2.9854φ1.229

+0.8312m−30.4309φ−26.4924 (φ ≥ 2)
+0.3447m0.9749φ0.6964 + 0.0441

(41)

This clustering technique is distinguished from the com-
monly used max-monomial fitting method [27] or the
softmax-posynomial fitting method [38]. Fig. 10 illustrates
the difference between the methods. The conventional clus-
tering method reported in [27] and [38] combines the fitting
results of each cluster into a single fitting function. It is
proven to work well when fitting into a convex function
but not in a concave function case. The proposed clustering
separates the original functions into several convex functions
and solves each optimization problem with separate func-
tions. This technique, as a result, has an optimization per-
formance trade-off between model accuracy and computation
time since more clusters require additional computation for
solving subproblems.

There are constraints for the transformer/inductor practi-
cal design. First, the number of layers, mXF and mIND, and
the number of turns per layer, Nt,XF/mXF and Nt,IND/mIND,
should be integer. The entire width and thickness of the
winding should also be less than the width and thickness of
the winding area of the core so that all windings can be placed
within the core. Equation (42) shows the expressions of the
geometric constraints:

Wwinding,XF =
Nt,XF
mXF

(
Tw,XF + Tw,sp,XF

)
≤ Wcore,XF = WBaseV

1/3
core,XF

Wwinding,IND =
Nt,IND
mIND

(
Tw,IND + Tw,sp,IND

)
≤ Wcore,IND = WBaseV

1/3
core,IND

Thwinding,XF = mXF
(
Tcu,XF + Tcu,sp,XF

)
≤ Wcore,XF = ThBaseV

1/3
core,XF

Thwinding,IND = mIND
(
Tcu,IND + Tcu,sp,IND

)
≤ Wcore,IND = ThBaseV

1/3
core,IND,

(42)

whereWwinding,XF andWwinding,IND are the width of the trans-
former and inductor winding; Thwinding,XF and Thwinding,IND
are the thickness of the transformer and inductor winding;
and WBase and ThBase are the width and thickness of the unit
volume core, respectively. The spaces between the windings,
Tw,sp and Tcu,sp, are predetermined by considering the iso-
lation voltage level and size limit. In this case study, It is
assumed that Tw,sp = 1 mm and Tcu,sp = 0.254 mm.

3) COST MODELING
The cost models of the C2 system components, Csemi,QAB,
Csemi,INV , Ccore,XF , and Ccore,IND can be expressed as:

Csemi,QAB = 4Csemi,pri + 12Csemi,sec

= ksemi,cost

(
4
vκBD,pri
Rds(on),pri

+ 12
vκBD,sec
Rds(on),sec

)
Csemi,INV = 12Csemi,INV

= 12ksemi,cost

( vκBD,sec
Rds(on),INV

)
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FIGURE 8. Posynomial fitting for transformer copper loss factor, Fac,XF , with and without clustering.

Ccore,XF = 3kcoreVcore,XF
Ccore,IND = 3kcoreVcore,IND. (43)

As shown, the cost model functions have posynomial forms
with respect to the design variables, Rds(on) and Vcore, directly
applicable for the GP optimization. The model equations are
based on two assumptions: i) The same SiC switch technol-
ogy (latest CREE SiC devices in this study) is used for the
QAB and the inverters, scalable with the key parameters,
i.e., voltage rating and on-resistance; and ii) the same mag-
netic corematerial in the same geometry (EE cores fromTDK
in this study) is used in the transformers and the inductors,
scalable with core volume. It makes the optimization problem
more tractable and provide system-level insights. In case
different types of semiconductor switches or cores are used,
they can be reflected by modifying coefficients ksemi,cost and
kcorein the cost model.

4) GP OPTIMIZATION MODEL
The final GP optimization form for the C2 system design is
expressed as follows:

maximize
1LCOE

LCOE

subject to BXF,pk ≤ Bmax
BIND,pk ≤ Bmax
iripple,INV ≤ iripple,max
Wwinding,XF ≤ Wcore,XF

Wwinding,IND ≤ Wcore,IND

Thwinding,XF ≤ Thcore,XF
Thwinding,IND ≤ Thcore,IND. (44)

In the optimization model (44), five design variables,
Nmodule, Nt,XF , mXF , Nt,IND, and mIND, are integer values in
practice. As a result, it is an MIGP problem, requiring a cer-
tain algorithm for optimization. In this case study, a heuristic
method is chosen to obtain a lower computation time. Fig. 11
shows the flowchart of the heuristic algorithm used. In Step I,
the five integer variables in (44) are relaxed as noninteger, and
we obtain the temporary optimal points by solving the relaxed
GP problems. As shown in (40) and (41), φ is clustered in a
copper loss model fitting. The number of optimization prob-
lems generated is equal to the number of clusters in the copper
loss fitting, and the solution can be obtained by solving each
problem and selecting the solution that maximizes the LCOE
improvement factor among them. In this case study, there are
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FIGURE 9. Posynomial fitting for inductor copper loss factor, Fac,IND, with and without clustering.

FIGURE 10. Comparison of posynomial fitting methods.

six subproblems from the clustering, 2 · 3, two options in the
transformer loss fitting, three options in the inductor fitting.

In the next steps, as shown in Fig. 11, relaxed variables are
fixed to certain integer values to satisfy the practical design
limitation. In Step II, the number of modules, Nmodule, and
the number of turns per layer, Nt,XF/mXF , are rounded to

the integer values. First, two candidates of integer Nmodule
are selected, which are the floor and ceiling values of the
value from Step I. Next, Nt,XF/mXF is rounded to maintain
the turns ratio of the transformer nTR = Nt,sec/Nt,XF at its
optimal value from Step I. As shown in (29), the transformer
turns ratio determines the dc-link voltage and thus the switch
voltage ratings required. Consequently, it would determine
the switching loss and cost of the switches. According to (21),
the cost of the switches exponentially scale with the dc-
link voltage, so the design with a low dc-link voltage in a
certain range tends to outperform in the LCOE; therefore,
with the deviation of nTR from the value in Step I limited,
the degradation in the iterated LCOE improvement in Step II
can be minimized. In addition, the number of turns per layer
of the transformer should be integer values—both the pri-
mary side, Nt,XF/mXF , and the secondary side, Nt,sec/mXF .
Fig. 12 shows the potential design choices of the number
of primary and secondary turns per layer of the transformer.
As shown, Nt,XF/mXF and Nt,sec/mXF are selected under the
three design criteria:

- nTR,min ≤ Nt,sec/Nt,pri ≤ nTR,max
-
∣∣Nt,sec/Nt,pri − nTR,StepI ∣∣ should be minimized.
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FIGURE 11. Flowchart of the proposed optimization method with two integer variable iteration processes to identify
practical optimal design values.

FIGURE 12. Rounding of Nt,XF into integers: selection of candidates.

- Among the (Nt,XF/mXF ,Nt,sec/mXF ) pairs with same
Nt,sec/Nt,pri, the pairs with a smaller number of turns
should be selected for less copper loss.

The maximum and the minimum of the turns ratio, nTR,min
and nTR,max , can be expressed as:

nTR,max =
vBV ,max
mBV vpv

,

FIGURE 13. Computation time and maximum LCOE improvement factor
found as a function of the number of samples per variable by using the
exhaustive algorithm. Computation time exponentially increases with
improvement saturation.

nTR,min =
vg,pk

NmodulemINV vpv
, (45)

where vBV ,max ,mBV , and mINV are the maximum switch
voltage rating available, the boundary voltage margin
for the semiconductor switch, and the output voltage margin
of the inverter. Having boundaries avoids significant variation
of the turns ratio iterated in Step II that may result from round-
ing of Nt,XF/mXF and Nt,sec/mXF . Five design candidates
selected from the criteria, as an example, are illustrated in
Fig. 12. At the final stage of Step II, the optimization engine
reruns the selected cases; as a result, it runs multiple times but
with reduced free variables; the two design variables, Nmodule
and Nt,XF/mt,XF , are predetermined. Among multiple
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FIGURE 14. Final design point from the GP optimization overlaid on the design surface generated from the original models. The initial result (Step I) is
iterated to the final design (Step III) with practical design values.

TABLE 1. System parameters used in optimization.

optimal designs identified in Step II, the one with the max-
imum LCOE improvement is selected.

In Step III, first, the other integer variables are finalized;
mXF ,NIND, andmIND are rounded from the noninteger values
identified in Step II. These variables are rounded to the
nearest integer values. The last integer variable left, NXF ,
is determined, as mXF is rounded accordingly. With optimal
design values practical for the integer variables identified
and fixed, the final optimal design is derived from the GP
optimization to finalize the other design variables for the
maximum LCOE improvement.

The system parameter values given for the optimization are
listed in Table 1. The core characteristics for the magnetic
component losses and costs in this case study are based on
EELP 102 set with N87 from TDK [39]. For the semiconduc-
tor power switches, electrical characteristics and market data
for commercial SiC power devices from Cree are used.

B. OPTIMIZATION RESULTS
In this section, the performance of the GP optimization is
validated with the design values derived for the example
system. To serve as a reliable reference for the performance
evaluation, results from an exhaustive search algorithm using
the original system models, without approximations for

convexity, are used. The algorithm searches the entire design
space formed with a range of free variables. The reference
data sets generated from the algorithm are reliable since the
original models are based on common approaches that are
widely accepted in the literature, and also they have been
validated for the modular multilevel architecture for the case
study in the prior works. Reference [33] validated topological
feasibility, [40] substantiated control, and [36] provided loss
and efficiency models. They include experimental results for
the architecture as well as experimental validation of the loss
models.

TABLE 2. Performance comparison of GP optimization compared to
exhaustive search.

Based on the discussion, the performance of the GP opti-
mization is evaluated by comparison with the exhaustive
search. Fig. 13 presents two performancemetrics of the brute-
force method, the computation time and the LCOE improve-
ment achieved, as a function of the number of data points per
variable. As expected, the computation time exponentially
increases with increasing data points since the total number
of cases searched is proportional to n

nf
d , where nd and nf

are the number of data points per variable and the number
of free variables. On the other hand, notably, the LCOE
improvement factor saturates approaching 3.3%, following
the initial steady increase beyond a certain point, which
implies that it approaches a design point near the optimal,
but it is not guaranteed to be the definite solution. Fig. 13
also clearly shows the heavy computation required to derive
a near-optimal point. In this case, it takes 2000 seconds to find
a design to approach 3.3% of LCOE improvement.

27574 VOLUME 10, 2022



Y. Son et al.: LCOE-Oriented Modular String Inverter Design Optimization for PV Generation System

TABLE 3. Key designs values from the GP optimization and exhaustive search. Variables adjusted to practical values are highlighted in bold at the step of
iteration.

TABLE 4. LCOE improvement factor error from curve fitting of transformer
and inductor copper loss models.

Table 2 compares the computation time taken for each step
of the proposed GP optimization and the LCOE improvement
estimates to the exhaustive search. The reference data from
the exhaustive search are taken from the case with 20 samples
per variable. For the proposed GP optimization, the result
of Step I, direct from the convex optimization, indicates an
LCOE improvement of 3.46%with impractical design values.
Following, Step II iterates to a new optimization point with
two variables adjusted to practical values, Nmodule and Nt,XF .
Based on that, Step III achieves the final design with the
other three integer variables rounded (refer to Figs. 11 and 12
for details). Fig. 14 locates the initial (Step I) and final
design (Step III) values on the design surface generated from
the exhaustive search with respect to Nmodule and Rds(on),pri.
As illustrated, the final result is in good agreement with the
one from the original models, which validates the proposed
optimization method. As tabulated in Table 2, the GP opti-
mization outperforms the exhaustive search by three orders
of magnitude in computation time (13.23 s versus 70,448 s),
with the final design point of higher LCOE improvement
(3.35% versus 3.30%). For reference, the design values from
the GP and exhaustive search are listed in Table 3.
Table 4 shows the error resulting from the curve fitting of

the copper lossmodel functions. The final fitting errors for the
transformers and inductors are below themaximum discussed
in Section IV-A (refer to Figs. 8d and 9d). The 1LCOE

LCOE
error

caused by the function fitting is approximately 0.4%. The
acceptable error and superior computation time confirm the
value of the GP-based optimization.

In addition, to provide insights for system scaling, opti-
mization results with varying system power ratings are pre-
sented. The system power scales from 50 kW to 1.6 MW,
with intervals of power of 2, with the other non-free vari-
ables fixed for the optimizations, yielding five additional
data points, as displayed in Fig. 15. Fig. 15a shows that
the LCOE improvement varies with changing power rat-
ings. It implies that the power rating can be set as a design
variable. It is, however, unclear that the final form of opti-
mization would yield acceptable results. It may need to

FIGURE 15. Optimization results as functions of system power rates.

compromise accuracy to incorporate the involving variable
to maintain the tractable optimization; the system rating is
closely coupled with other design variables, thus hindering
the straightforward formation of posynomials with acceptable
model accuracy. Regarding the optimal design parameters for
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different power ratings, results for the switch on-resistances
and core volumes are noticeable. As illustrated in Fig. 15b
and 15c, the higher the power ratings, the larger switches
and core volumes are favorable. It is matched with the com-
mon practice because higher power ratings (i.e., higher cur-
rents at the same voltage), in general, require lower switch
on-resistance and larger core volume with thicker windings
to avoid excessive conduction and copper loss, resulting in
reduced optimal switching frequency to suppress the switch-
ing and core loss. In addition, note that the results may be
valid only within a certain boundary since the non-free vari-
ables that were fixed at the optimizations should be properly
scaled for changes, e.g., PV array voltage and grid intercon-
nection voltage.

V. CONCLUSION
In this paper, an LCOE-oriented convex optimization of a
grid-tied PV inverter system to derive power electronics
design parameters has been presented. By formulating the
objective function for the lifetime cost of energy generation
that allows for decoupling design variables to enable superior
computational efficiency, the GP optimization can find near-
optimal design parameters that maximize the LCOE improve-
ment for a new power electronics technology. Based on the
framework, an optimization example for a cascaded modular
PV inverter system was presented that suggests 3.35% LCOE
improvement by the new power electronics and the advanced
optimization. The GP-based design optimization example
also validated its superior performance over the exhaustive
search; it demonstrated it can find practical design values
that obtain better LCOE in significantly reduced computation
time, about 2,400 times shorter in the example. Using its
superior performance, the proposed GP optimization frame-
work can be applied to other power generation systems to
evaluate the effect of the power electronics design on system
efficiency and lifetime costs and to efficiently find practical
optimal design values for implementation.
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