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Abstract. A threaded multi-core implementation of the high perfor-
mance dense linear algebra matrix matrix multiply GEMM kernel is
described. This kernel is widely implemented by vendors in the basic lin-
ear algebra subroutine BLAS library. The mathematics of arrays (MoA)
paradigm due to Mullin (1988) results in contiguous memory accesses by
employing outer-product forms. Our performance studies demonstrate
that the MoA implementation of double precision DGEMM combined
with optimal cache-blocking strategies results in equivalent performance
in comparison with the Intel Xeon Skylake processor over the vendor
supplied Intel MKL basic linear algebra libraries. Results are presented
for the NREL Eagle supercomputer. The multi-core DGEMM achieves
over 250 GigaFlops/sec with eight openMP threads.

Keywords: Mathematics of Arrays, contiguous memory, cache-blocking

1 Introduction

The GEMM kernel is critical for both dense and sparse linear solver stacks
and Exascale physics simulations. Both the Hypre and Trilinos DOE solver
frameworks include low synchronization Krylov iterations for linear solvers [9],
together with algebraic multigrid preconditioners that rely on BLAS kernels.
Sparse direct solvers such as SuperLU employ multi-frontal factorizations that
lead to small dense matrices that require a DGEMM kernel [6]. Numerical linear
algebra computations in general require fast matrix multiplication for a vari-
ety of algorithms. These include optimization, data compression and stochastic
gradient descent (SGD) for the acceleration of training algorithms in AI. More re-
cently, half precision FP-16 tensor-core processors are being provided by graphics
processing unit (GPU) vendors such as NVIDIA and our next goal is to extend
our approach to these many-core architectures. In the present study the focus
is on improving the sustained multi-core performance of GEMM in FP-64 and
FP-32 on the Intel Xeon Skylake.
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A recent paper by Antz et. al. [2] reviews mixed precision algorithms for
numerical linear algebra, including both direct and iterative (Krylov) solvers.
The direct solvers rely on LU , LDLT and QR matrix factorizations, whereas
Krylov solvers are based on Gram-Schmidt orthogonalization algorithms. The
most widely known iterative Krylov solver algorithms are the symmetric Lanczos
and non-symmetric Arnoldi-QR iterations. Dense matrix-matrix multiplication
is also required for so-called s-step and block variants of these iterative solvers.
In this case the matrices are tall and skinny rather than square with dimensions
N × N . All of these solvers would directly benefit from fast matrix-vector and
matrix-matrix multiplication kernels.

Mathematics of Arrays (MoA) is a way of describing and representing arrays,
of any dimension, and is a collection of algebraic operations on arrays [7]. MoA
is based on the Psi calculus developed by Mullin in [7]. Psi calculus is, simply,
a calculus of indexing and shapes. MoA has several advantages that make it
attractive. First, it is domain agnostic. Second, no matter what the array di-
mensions are, MoA accesses the arrays in a contiguous fashion. This makes it
very memory, and cache-friendly. The overall performance of a program based on
MoA is predictable. Third, the steps from the high-level description of the prob-
lem to program generation can be fully automated due to linear and multi-linear
transformations [3].

The mathematics of arrays paradigm results in contiguous memory accesses
optimized for target processor architectures. We demonstrate that the MoA im-
plementation of matrix-matrix multiply (GEMM) combined with cache-blocking
strategies results in at least a 25% performance gain on Intel Xeon Skylake pro-
cessors over the vendor supplied Intel MKL basic linear algebra subroutines,
which contain optimized implementations of the BLAS and LaPACK libraries.
Modern processor architectures such as these provide SIMD vector arithmetic
units with fused multiply-add instructions. Similar gains are anticipated on
NVIDIA and AMD GPUs that implement single-instruction multiple thread
SIMT architectures. In addition, these are well-suited to tensor based math-
ematics on 2 × 2 and 4 × 4 matrix-multiplication tensor-core hardware with
low-precision FP-16 arithmetic [1, 5].

2 Matrix Multiplication

A basic linear algebra kernel (BLAS) is matrix-matrix multiplication, known as
DGEMM in double precision floating point arithmetic and available in numerical
linear algebra libraries provided by vendors such as the Intel MKL. For matrices
A and B with conforming dimensions n × p and p × m, the resulting matrix
C = A × B has dimensions n ×m. Because the DGEMM is such an important
component in many applications, much effort is devoted to achieving the highest
possible execution rates on current micro-processor and many-core architectures
such as GPUs. In the present study our focus is on multi-core performance on
the Intel Xeon SkyLake.
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An example code will be derived below for matrix multiplication. Consider
square matrices with dimensions N × N . Given two matrices A and B with
elements ai,j and bi,j with 0 ≤ i, j < N their product is

(AB)i,j =
N−1∑
k=0

ai,k bk,j = ai,1b1,j + ai,2b2,j ,+ · · ·+ ai,(N−1) b(N−1),j

A straight-forward ‘C’ implementation of this algorithm is given below: The
two input matrices are mul1 and mul2. The result matrix res is assumed to be
initialized to all zeroes. It is a nice and simple implementation. While mul1 is
accessed sequentially, the inner loop advances the row number for mul2. The
memory access pattern for the matrix is not stride-1 and leads to slow execution
rates because of cache misses. There is one possible remedy one can easily try.
Because each element in the matrices is accessed multiple times it might be
worthwhile to rearrange or “transpose” the second matrix mul2 before using it.

(AB)i,j =

N−1∑
k=0

ai,k b
T
j,k = ai,1b

T
j,1 + ai,2 b

T
j,2 + · · ·+ ai,(N−1) b

T
j,(N−1)

After the transposition, both matrices are accessed sequentially. The correspond-
ing ‘C’ code is given below.

double tmp [N ] [ N ] ;

for ( i = 0 ; i < N; ++i )
for ( j = 0 ; j < N; ++j )

tmp [ i ] [ j ] = mul2 [ j ] [ i ] ;

for ( i = 0 ; i < N; ++i )
for ( j = 0 ; j < N; ++j )

for ( k = 0 ; k < N; ++k )
r e s [ i ] [ j ] += mul1 [ i ] [ k ] ∗ tmp [ j ] [ k ] ;

A temporary variable contains the transposed matrix. This requires touching
additional memory, but this cost is, hopefully, recovered because the N non-
sequential accesses per column are more expensive (at least on modern hard-
ware). The search for an alternative implementation should start with a close
examination of the math involved and the operations performed by the original
implementation. Our linear algebra knowledge allows us to see that the order in
which the additions for each element of the result matrix are performed is irrel-
evant as long as each addend appears exactly once. This understanding allows
us to look for solutions which reorder the additions performed in the inner loop
of the original code.
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At the algorithmic level, the matrix multiplication is expressed as the product

C = A×B

which is the inner product of arrays A and B to produce the result array C.
This high-level representation is transformed, using Psi-calculus operations on
shapes, to a Denotational Normal Form (DNF), requiring the least amount of
computation and memory access. An example implementation of a transforma-
tion to the DNF, is Python-MoA . The last step relates the ONF to the available
hardware using dimension lifting of the arrays indices. For example, with dou-
ble precision floating arrays on a machine with 128-bit vector instructions, then
elements are processed two at a time. Therefore, indices have to be adjusted.

A simple example of a 2×2 matrix multiplication using the classical and MoA
formulations illustrates how MoA accesses both matrices linearly, in a contiguous
manner [8]. The traditional inner product form is given by[

0 1
2 3

]
×
[

4 5
6 7

]
=

[
0× 4 + 1× 6 0× 5 + 1× 7
2× 4 + 3× 6 2× 5 + 3× 7

]
whereas the MoA formulation is expressed as follows[

0× ( 4, 5 ) + 1× ( 6, 7 )
2× ( 4, 5 ) + 3× ( 6, 7 )

]
=[

( 0× 4 0× 5 ) + ( 1× 6 3× 7 )
( 2× 4 2× 5 ) + ( 3× 6 3× 7 )

]
MoA differentiates between the DNF, which describes the arrays by their shapes
and uses a function ψ to define indices, and between the ONF which takes into
account the arrays layout in memory which is row-major. The resulting ‘C’ code
is given below with a linear array for storage. The inner-most loop employs
stride-1 accesses for mul1.

for ( i = 0 ; i < N; i++)
for ( j = 0 ; j < N; j++)

for ( k = 0 ; k < N; k++)
r e s [ i ∗N+j ] += mul1 [ i ∗N+k ] ∗ mul2 [ k∗N+j ] ;

3 Cache Blocking

The memory hierarchy and cache blocking strategies have a direct impact on the
execution rate of matrix-matrix multiply. Our analysis of the memory hierarchy
is based on Draper [4]. The cache prefetch strategy and ‘C’ code presented in this
earlier work can be improved by modifications to the inner-most loop pointer
arithmetic and array indexing. These changes and the resulting execution rates
are presented below.

Let N = 1000 and let us examine the actual problem in the execution of
the original code. The order in which the elements of mul2 are accessed is:
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(0, 0), (1, 0), . . . , (N − 1, 0), (0, 1), (1, 1), . . .. The elements (0, 0) and (0, 1) are in
the same cache line but, by the time the inner loop completes one round, this
cache line has long been evicted. For this example, each round of the inner loop
requires, for each of the three matrices, 1000 cache lines (with 64 bytes for the
Intel Xeon processor). This adds up to much more than the 32k of L1d data
cache available.

However, consider when two iterations of the middle loop are combined while
executing the inner loop. In this case, two double values from the cache line are
used, which is guaranteed to be in the L1d data cache. Thus, the L1d data cache
miss rate is cut in half. That is certainly an improvement, however, depending
on the cache line size, it still might not be optimal. The Intel Xeon processor
has a L1d data cache line size of 64 bytes.

With sizeof(double) being 8 this means that, to fully utilize the cache
line, the middle loop should be unrolled 8 times. Continuing this analysis, to
effectively use the res matrix as well, i.e. to write 8 results at the same time,
unroll the outer loop 8 times as well. Assume here cache lines of size 64 but
the code works also well on systems with 32 byte cache lines since both cache
lines are also 100% utilized. In general it is best to hard-code cache line sizes at
compile time.

If the binaries are supposed to be generic, the largest cache line size should
be employed. With very small L1d data caches this might mean that not all the
data fits into the cache but such processors are not suitable for high-performance
programs in any case. The resulting code is given below:

d e f i n e SM (CLS / s izeof (double ) )

for ( i = 0 ; i < N; i += SM)
for ( j = 0 ; j < N; j += SM)

for ( k = 0 ; k < N; k += SM)
for ( i 2 = 0 , r r e s = &r e s [ i ] [ j ] ,

rmul1 = &mul1 [ i ] [ k ] ; i 2 < SM;
++i2 , r r e s += N, rmul1 += N)
for ( k2 = 0 , rmul2 = &mul2 [ k ] [ j ] ;

k2 < SM; ++k2 , rmul2 += N)
for ( j 2 = 0 ; j 2 < SM; ++j2 )

r r e s [ j 2 ] += rmul1 [ k2 ] ∗ rmul2 [ j 2 ] ;

This code appears to be quite complex. To some extent it is, however, only
because it incorporates some tricks that can be expressed in MoA e.g. contigu-
ous array access. The most visible change is that now there are six nested loops.
The outer loops iterate with intervals of SM (the cache line size divided by
sizeof(double)). This breaks up the multiplication into several smaller prob-
lems which exhibit better cache locality. The inner loops iterate over the missing
indices of the outer loops. There are, once again, three loops. The only difficulty
here is that the k2 and j2 loops are in a different order. This is done because,
in the actual computation, only one expression depends on k2 but two depend
on j2.
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The rest of the complication here results from the fact that compilers are
not proficient when it comes to optimizing array indexing. The introduction of
the additional variables rres, rmul1, and rmul2 optimizes the code by pulling
common expressions out of the inner loops, as far down as possible. The default
aliasing rules of the C and C++ languages do not help the compiler making these
decisions (unless restrict is used, all pointer accesses are potential sources of
aliasing).

The input matrices can be arbitrarily large as long as the result matrix fits
into memory as well. This is a requirement for a more general solution which
has now been achieved. Most modern processors include special support for
vectorization. Pipelined vector instructions allow processing of 2, 4, 8, or more
values at the same time. These are SIMD (Single Instruction, Multiple Data)
operations, augmented by others to get the data in the right form. The SSE2
instructions provided by Intel processors can handle two double values in one
operation. The instruction reference manual lists the intrinsic functions which
provide access to these SSE2 instructions. Advanced vector extensions AVX-2
instructions process four 64-bit double-precision floating point numbers. AVX-2
instructions utilize 256-bit registers for the vectors, which can be streamed to
the vector units.

The matrix multiplication has been optimized through the use of the loaded
cache lines. All bytes of a cache line are always used and they are accessed before
the cache line is evacuated. It should be noted that, in the last version of the code,
there are still cache problems with mul2; prefetching may not work. However this
cannot be solved without transposing the matrix. Perhaps the cache pre-fetching
units will improve and recognize the access patterns, then no additional change
would be needed. An alternative approach is discussed below for the Intel Xeon
processor.

The latest generation Intel Xeon processors provide vector instructions. For
example, the AVX-2 vector instructions from Intel. These generally work with
vectors stored as cache lines or special registers and are employed in our exper-
iments reported in the sequel.

4 Intel MKL DGEMM on Xeon SkyLake

Our performance on the Intel Xeon SkyLake processor was further improved by
treating the mul2 array differently in the code given below. In particular, this
array is not addressed using pointer arithmetic but rather with array indexing
as in the inner-most loops for the other arrays. The restrict keyword in ‘C’ is
employed to indicate to the compiler that aliasing will not occur.

In order to load the Intel icc compiler and associated libraries along with
the lapack library and BLAS, the following commands were employed

module load i n t e l −p a r a l l e l −s tud io / c l u s t e r . 2 0 1 9 . 1
module load ne t l i b −lapack / 3 . 8 . 0
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Cache pre-fetching was enabled in our code with the pragma prefetch. In
addition, the inner-most loop was unrolled to a depth of 16, which is twice
the recommended value for this architecture. Furthermore, our cache line size
parameter SM was set to 16 doubles. Both of these choices lead to higher execution
rates from the AVX-2 vector instructions associated with the inner-most loop of
our MoA based matrix-multiply kernel. The Intel icc compiler options are given
below and the resulting executable was run on the NREL Eagle Supercomputer.
Note that vector SSE and AVX-2 instructions were enabled for these tests. The
restrict flag informs the compiler to avoid cache aliasing. These parameters are
meant to ensure that the majority of memory references are within the current
L1d data cache line.

i c c − r e s t r i c t −Ofast −xSSE4 . 2 −axAVX,CORE−AVX2 −o t ranspose
t ranspose . c

Intel provides a fast CBLAS DGEMM matrix multiply kernel in the math
kernel library (MKL). For comparison, a driver for the Intel MKL DGEMM was
compiled and compared against our implementation on square matrices ranging
in size up to N = 2500. The compile options were specified as given below.

i c c −Ofast geMMlapack . c ‘ pkg−c o n f i g −− l i b s
−−c f l a g s mkl−dynamic−i l p64 −seq ‘ −Ofast −o geMMlapack

The computational complexity of the matrix multiply is O(N3) for square
matrices, with two floating-point operations (flops) appearing in the inner-most
loop as a multiply-add. The results of our comparison are displayed in Figure 1,
where our cache-blocked MoA based code achieves comparable execution rates
when compared to the Intel MKL DGEMM. The execution rate increases up
to 15 GigaFlops/sec, at which point the curve flattens. Further analysis would
likely indicate that the available memory bandwidth on the Eagle nodes with
two 18-core sockets has been reached.

#define SM 16 // 16 (64 / s i z e o f ( doub le ) )
#define L2 32 // 32 (64 / s i z e o f ( doub le ) )
#define L3 8 // 8 (64 / s i z e o f ( doub le ) )

int main ( int argc , char∗∗ argv )
{

long long int i , i2 , j , j2 , k , k2 ;
long long int i i , i j ;

long long int N = a t o i ( argv [ 1 ] ) ;
double r e s [ 2∗N∗N] a t t r i b u t e ( ( a l i gned ( 6 4 ) ) ) ;
double mul1 [2∗N∗N] a t t r i b u t e ( ( a l i gned ( 6 4 ) ) ) ;
double mul2 [2∗N∗N] a t t r i b u t e ( ( a l i gned ( 6 4 ) ) ) ;

double ∗ r e s t r i c t r r e s ;
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double ∗ r e s t r i c t rmul1 ;
double ∗ r e s t r i c t rmul2 ;

for ( i = 0 ; i < N; i += L2)
for ( j = 0 ; j < N; j += SM )

for ( k = 0 ; k < N; k += L3)
for ( i 2 = 0 , r r e s = &r e s [ i ∗N+j ] ,

rmul1 = &mul1 [ i ∗N+k ] ;
i 2 < L2 ; ++i2 , r r e s += N, rmul1 += N)

for ( k2 = 0 ; k2 < L3 ; ++k2 )
#pragma p r e f e t c h
#pragma ivdep
#pragma u n r o l l (16)
for ( j 2 = 0 ; j 2 < SM; ++j2 )

r r e s [ j 2 ] += rmul1 [ k2 ] ∗
mul2 [ k∗N+j+j2 ] ;

}

5 Shared-Memory Threads

In order to increase the sustained execution rate on an Intel multi-core socket, the
GEMM code has been modified with OpenMP shared-memory parallel directives.
In particular, the outer loop is prefixed with a pragma and loop collapse(5).
The latter provides more granularity for each of the threads. The Intel compiler
directives and the resulting parallel directive placed before the main for-loop is
given below.

i c c −Ofast −ans i−a l i a s −ip
−axCORE−AVX512 ,CORE−AVX2,AVX, SSE4 . 2
− r e s t r i c t −fopenmp −o t ranspose t ranspose . c

With eight OpenMP threads, the DGEMM code can sustain 250 GigaFlop-
s/sec. Increasing the number of threads does not lead to further gains in the
sustained execution rate. Compared to the single-threaded code, the parallel
multi-threaded implementation is roughly 4× to 6× faster.

#pragma omp p a r a l l e l for c o l l a p s e (5 )

6 Conclusions

In this paper, the mathematics of arrays paradigm was applied to the BLAS
DGEMM matrix multiplication kernel. DGEMM is a widely used algorithm and
plays a centrol role in numerical linear algebra and AI/ML applications. With
the advent of low-precision FP-16 tensor-cores, mixed-precision algorithms can
now achieve higher speeds with the same level of accuracy.
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For the Intel Xeon architecture, cache-blocking strategies were combined with
vector instructions to achieve significant performance improvement. For example,
the sustained execution rates were comparable to the Intel MKL GEMM on
the NREL Eagle Supercomputer. Differences in the ‘C’ implementations were
notable. A mixture of pointer arithmetic and array indexing was best for the
Intel. Presumably, this is related to the compiler and also the vector instructions.

We have identified a core algorithm that is important in numerical linear
algebra, especially for iterative and direct solvers. Our studies to accelerate these
algorithms will continue and include many-core architectures such as GPUs. It
is notable that the MoA inner-product matrix-multiply in 2D, is defined using
the outer product. That said, our methodology also supports the Kronecker
product, and this is useful for AI and machine learning and thus requires further
investigation.
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Fig. 1. MoA versus Intel MKL DGEMM. NREL Eagle Xeon Skylake

Fig. 2. MoA DGEMM. Eagle Xeon Skylake. 8 threads
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