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Abstract—This paper proposes a hybrid data and model-based 

anomaly detection scheme to secure the operation of distributed 
energy resources (DERs) in distribution grids. Data-driven 
autoencoders are set up at the edge device level and they use local 
DER operational data as inputs. The abnormal statuses are 
detected by analyzing reconstruction errors. In parallel, model-
based state estimation (SE) is set up at the central level and it uses 
system-wide models and measurements as data inputs. The 
anomalies are identified by analyzing measurement residuals. The 
hybrid scheme preserves the benefits of both data-driven and 
model-based analyses and thus improves the robustness and the 
accuracy of anomaly detection. Numerical tests based on the model 
of a real distribution feeder in Southern California highlight the 
proposed scheme’s effectiveness and benefits. 

Keywords—Anomaly detection, state estimation, largest 
normalized residual, autoencoder 

I.  INTRODUCTION 
Because of efforts to decrease carbon emissions, the 

penetration of distributed energy resources (DERs) has 
increased consistently during the past decade. This has led to the 
development of DER management systems (DERMS), which 
integrate the needs of utility grid operations with the capabilities 
of demand-side DERs to support multiple objectives related to 
distribution system operations, end customer value, and market 
participation. Deployments of DERMS will lead the grid to 
increasingly depend on the security of the cyberspace 
infrastructure to provide DER monitoring, protection, and 
control capabilities. 

Recent findings documented in government reports [1], 
however, indicate that the threat of cyber-based attacks is 
increasing in both the number and the sophistication of targets 
toward the U.S. electric grid. A major cyber incident in a 
DERMS could have severe consequences on the operation of the 
DERs and could result in blackouts, equipment damage, or 
market impacts. Therefore, to ensure distribution system 

reliability, stability, security, and resilience, it is crucial to 
monitor the operating states of DERs and to detect anomalies 
quickly to avert disturbances and disruptions. 

Most work on anomaly detection can be divided into two 
categories: model-based and data-driven methods. The key idea 
of model-based methods is to compare the expected system 
behavior, estimated by a model, to the actual behavior when the 
system is in a specific state. These applications range from the 
diagnosis of switching converters to short-circuit detection [2]. 
The limitations of using model-based methods in distribution 
systems include the lack of accurate system models (especially 
for secondary feeders) and the lack of measurements that support 
the models’ observability into the system. 

Data-driven approaches use machine learning methods to 
conduct statistical inference or decision making based on the 
available data. The key idea is to extract features (including the 
voltage and system frequency [3] and its deviation [4]) from the 
measurements data and to classify those with similar features 
resulting from the same event type. One limitation of data-driven 
methods is that the computational complexity generally 
increases when the data set size increases. Moreover, most 
classifiers are trained from labeled data (i.e.,  through supervised 
learning), whereas DER diagnosis and event-labeling can be 
expensive and scant [5]. 

To overcome the above shortcomings, this paper proposes a 
hybrid data-driven and model-based scheme to detect abnormal 
DER operation in distribution grids. Data-driven autoencoders 
are set up at the edge device level and they use local DER 
operational data as inputs. Auto-encoders detect the anomalous 
operating status of DERs by analyzing reconstruction errors. 
Meanwhile, model-based state estimation (SE) is set up at the 
central level and it uses system-wide models and measurements 
as data inputs. The anomalous data and their location are 
identified by analyzing the measurement residuals.  

This paper contributes the following: 
(1) A dimension reduction-based autoencoder is designed in 

two parts and deployed in a decentralized manner for anomaly 
detection. No communication is required among the inverters. 
No labeling is required for the data. 

(2) The proposed hybrid scheme retains the advantages of 
both data-driven and model-based analyses and thus improves 
the robustness and the accuracy of anomaly detection. 

(3) Without intensive investment in hardware, the proposed 
hybrid anomaly detection scheme can be established using 
existing the sensing, communication, and control infrastructures 
in distribution grids. 
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II.  BACKGROUND 
This section describes the SE and autoencoder approaches 

that are used in this paper. 

A.  Weighted Least-Squares-Based State Estimator 
Given a network model and system measurements—such as 

nodal power injection, voltage magnitude, branch power flow, 
and current magnitude—from supervisory control and data 
acquisition (SCADA) systems, SE determines the optimal 
estimate for the system state, which comprises complex bus 
voltages in the entire power distribution system [6]. The 
mathematical definition of SE is: 

 𝒛𝒛 = ℎ(𝒙𝒙) + 𝒆𝒆, (1) 
where 𝒛𝒛,𝒙𝒙, 𝒆𝒆 are the system measurement, state, and error vector, 
respectively; and ℎ(∙)  is the nonlinear function relating 
measurement to the state vector. Based on the statistical 
properties of the errors, two assumptions are commonly made: 
(1) measurement errors are normally distributed with zero mean, 
i.e., 𝐸𝐸(𝑒𝑒𝑖𝑖) = 0; and (2) measurement errors are independent, i.e., 
𝐸𝐸�𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗� = 0. Hence, 𝐶𝐶𝐶𝐶𝐶𝐶(𝒆𝒆) = 𝐸𝐸[𝒆𝒆 ∙ 𝒆𝒆⊺] = 𝑹𝑹. 

Different SE techniques have been developed. The most 
widely used is the weighted least-squares (WLS) approach, 
which minimizes the following objective function: 

 𝐽𝐽(𝒙𝒙) = [𝒛𝒛 − ℎ(𝒙𝒙)]⊺𝑹𝑹−1[𝒛𝒛 − ℎ(𝒙𝒙)]. (2) 
At the minimum (local optimal), the first-order optimality 

conditions will need to be satisfied, expressed as: 
 𝑔𝑔(𝒙𝒙) = 𝜕𝜕𝐽𝐽(𝒙𝒙)

𝜕𝜕𝒙𝒙
= −𝐻𝐻⊺(𝒙𝒙)𝑹𝑹−1[𝒛𝒛 − ℎ(𝒙𝒙)] = 0, (3) 

where 𝐻𝐻(𝒙𝒙) = [𝜕𝜕ℎ(𝒙𝒙) 𝜕𝜕𝒙𝒙⁄ ]. To solve these equations, one can 
expand the nonlinear function 𝑔𝑔(𝒙𝒙)  into the Taylor series. 
Neglecting the terms higher than the second order leads to an 
iterative solution scheme called the Gauss-Newton method [6] 
to determine the estimated state 𝒙𝒙�. 

B.  Autoencoder 
Unlike the model-based WLS-SE, an autoencoder is a 

special type of neural network whose objective is to achieve an 
identity mapping between its inputs and outputs. It works by 
compressing the inputs into a latent-space representation (i.e., 
encoding) and then reconstructing the outputs from this 
representation (i.e., decoding) [7]. As shown in Fig. 1, an 
autoencoder consists of (1) a 𝑑𝑑-dimension vector as the visible 
layer that collects the input, denoted by 𝒖𝒖 = [𝑢𝑢1, … ,𝑢𝑢𝑑𝑑]⊺; (2) a 
reconstructed vector as the reconstruction layer that shares the 
same dimension as the input vector, denoted by 𝒖𝒖� = [𝑢𝑢�1, … ,𝑢𝑢�𝑑𝑑]⊺; 
and (3) one or more hidden layers, or latent representations, that 
aim to learn a pattern in the inputs. 

Let us index all the layers in the autoencoder by 𝑙𝑙 = 1, 2, … , 𝐿𝐿, 
and denote the number of neurons in the 𝑙𝑙-th layer by 𝑛𝑛(𝑙𝑙). The 
value of the neuron 𝑖𝑖 in the layer 𝑙𝑙, denoted by 𝑎𝑎𝑖𝑖

(𝑙𝑙), is calculated 
by: 

 𝑎𝑎𝑖𝑖
(𝑙𝑙) = 𝑠𝑠𝑠𝑠𝑠𝑠 �∑ 𝑤𝑤𝑖𝑖𝑖𝑖

(𝑙𝑙−1)𝑎𝑎𝑗𝑗
(𝑙𝑙−1)𝑛𝑛(𝑙𝑙−1)

𝑗𝑗=1 + 𝑏𝑏𝑖𝑖
(𝑙𝑙−1)�, (4) 

Where 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼) = 1 (1 − 𝑒𝑒−𝛼𝛼)⁄  is the sigmoid activation function; 
𝑤𝑤𝑖𝑖𝑖𝑖

(𝑙𝑙−1) is the weight associated with the connection from neuron 
𝑗𝑗  in layer 𝑙𝑙 − 1  to neuron 𝑖𝑖  in layer 𝑙𝑙 ; and 𝑏𝑏𝑖𝑖

(𝑙𝑙−1)   is the 
bias/intercept associated with neuron 𝑖𝑖  in layer 𝑙𝑙 . The final 
output, 𝒖𝒖�, is then 𝒂𝒂(𝐿𝐿), and it is denoted as 𝑓𝑓(𝒘𝒘,𝒃𝒃)(𝒖𝒖). 
 Given 𝑇𝑇 training samples, {𝒖𝒖[1],𝒖𝒖[2], … ,𝒖𝒖[𝑇𝑇] }, the objective 
function of the autoencoder is to minimize the cost: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝒘𝒘,𝒃𝒃) ∶= 1
𝑇𝑇
∑ �1

2
�𝑓𝑓(𝒘𝒘,𝒃𝒃)(𝒖𝒖[𝒊𝒊]) − 𝒖𝒖[𝒊𝒊]�2�𝑇𝑇

𝑖𝑖=1   
(5)                           + 𝜆𝜆

2
∑ ∑ ∑ �𝑤𝑤𝑖𝑖𝑖𝑖

(𝑙𝑙−1)�
2

𝑛𝑛(𝑙𝑙)
𝑖𝑖=1

𝑛𝑛(𝑙𝑙−1)
𝑗𝑗=1

𝐿𝐿−1
𝑙𝑙=1 . 

The first term defines the reconstruction error to the inputs, and 
the second term is a regularization term to prevent overfitting. 
Minimizing this function can be achieved by using a back-
propagation algorithm [8].  
 Suppose the dimension of the hidden layers is less than that 
of the visible layer. In that case, the establishment of these 
hidden layers aims to extract the essential information of the 
inputs with affordable loss. Further, because the output is set to 
be as equal as possible to the input, the training samples are 
automatically obtained by setting 𝒖𝒖� = 𝒖𝒖 , which is why the 
autoencoder is considered an unsupervised learning model. 

III.  HYBRID DATA AND MODEL-DRIVEN ANOMALY 
DETECTION SCHEME 

This section explains the proposed hybrid scheme and how 
to integrate the SE-based and autoencoder approaches. 

A.  Largest Normalized Residual (LNR) 
A SE-based approach can be used to detect and identify 

anomalous measurement/data. When using WLS-SE, anomaly 
detection is based on the analysis of the residual properties [6]. 
The estimated value of ∆𝑧𝑧 (denoted as ∆𝒛𝒛�) is given as: 

 ∆𝒙𝒙� = 𝑮𝑮−1𝑯𝑯⊺𝑹𝑹−1∆𝒛𝒛 (6) 
 ∆𝒛𝒛� = 𝑯𝑯∆𝒙𝒙� = 𝑲𝑲∆𝒛𝒛, (7) 

where 𝑲𝑲 = 𝑯𝑯𝑮𝑮−1𝑯𝑯⊺𝑹𝑹−1 , 𝑮𝑮 = 𝑯𝑯⊺𝑹𝑹−1𝑯𝑯 is the gain matrix, ∆𝒙𝒙�  is 
the last update on ∆𝒙𝒙 that reaching the convergence in Gaussian-
Newton method. The residual vector, 𝒓𝒓 , is defined as the 
difference between the measured values and the estimated 
values. Based on the property of the 𝑲𝑲 matrix (i.e., (𝑰𝑰 − 𝑲𝑲) ∙ 𝑯𝑯 =
0), one can derive that: 

 𝒓𝒓 = ∆𝒛𝒛 −𝑯𝑯∆𝒙𝒙� = (𝑰𝑰 − 𝑲𝑲)𝒆𝒆 (8) 
 The mean and covariance of the measurement residuals can 
be derived as 𝐸𝐸(𝒓𝒓) = (𝑰𝑰 − 𝑲𝑲) ∙ 𝐸𝐸(𝒆𝒆) = 0  and 𝐶𝐶𝐶𝐶𝐶𝐶(𝒓𝒓) = Ω = (𝑰𝑰 −
𝑲𝑲) ∙ 𝑹𝑹, therefore, 𝑟𝑟~𝑁𝑁(0,Ω). One can use the residual properties 
to formulate a test to identify bad measurement data [6]. The 
normalized residual of measurement 𝑖𝑖 can be calculated as: 

 𝑟𝑟𝑖𝑖𝑁𝑁 = |𝑟𝑟𝑖𝑖| �Ω𝑖𝑖𝑖𝑖⁄  (9) 
If 𝑟𝑟𝑖𝑖𝑁𝑁 > 𝑡𝑡ℎ𝑙𝑙𝑙𝑙 (𝑡𝑡ℎ𝑙𝑙𝑙𝑙 is a chosen identification threshold, e.g., 3 

for a Gaussian distribution), then measurement 𝑖𝑖  will be 
suspected as anomalous data. The challenge of implementing the 
LNR for DER situational awareness in distribution grids is 
twofold: (1) The LNR method relies on knowledge of an 
accurate system model. But most DERs are connected to the grid 
edge (e.g., behind the meter), and the secondary models are 

 
Fig. 1. An autoencoder neural network. 
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usually unknown; thus, it is impractical for WLS-SE and LNR 
to include states that directly relate to each DER’s operational 
status. (2) Most existing SCADA systems cannot yet obtain 
DER operational data. The limited measurement redundancy 
further reduces the capability of LNR to detect anomalies. 

B.  Dimension Reduction-Based Autoencoder 
Different from LNR, using an autoencoder for anomaly 

detection is a data-driven implementation. We use a dimension 
reduction-based autoencoder that attempts to find an optimal 
latent space where the normal and abnormal data appear to be 
different. Because the normal data in the test data set meet the 
normal profile, the corresponding error is smaller, whereas the 
abnormal data will have a relatively higher reconstruction error. 
As a result, the autoencoder can be applied to detect anomalous 
data by analyzing the reconstruction error. 

The scheme for implementing autoencoders for anomaly 
detection at the DER inverters is presented in Fig. 2. Each 
inverter runs one copy of the autoencoder and executes two 
tasks: (1) performs anomaly detection, which is done 
independently with local DER data—such as voltage, active and 
reactive power—and without communications with other 
inverters or the cloud/server; (2) provides the local DER data, 
reconstructed copy, and reconstruction error (𝒖𝒖,𝒖𝒖�, 𝝃𝝃) during the 
reconstruction to the cloud/server as training data. The 
cloud/server trains the autoencoder model using the data set 
(𝒖𝒖,𝒖𝒖�). Then it sends the updated hyperparameter (𝒘𝒘,𝒃𝒃) back to 
the inverter to update the autoencoder. If the autoencoder 
identifies anomalous data by analyzing the reconstruction errors, 
the inverter can take actions, such as alarming DER owner or 
utility control center. The implementation consists of two 
parts—one resides on the inverter, and another resides on the 

cloud/server—and it is presented as the pseudo-code in the 
inverter and cloud/server algorithm in Table I and II. 

 The autoencoder offers the following advantages: 
(1) Decentralized structure. The use of a dimension 

reduction-based autoencoder for anomaly detection is designed 
in two parts and deployed in a decentralized structure. No 
communication is required among inverters.  

(2) Low requirements on the data and computational burden. 
The local DER operational data are not required to be labeled. 
Both direct DER operational data and their deviations can be 
used to capture the latent representation and allow anomaly 
detection [10]. Further, the algorithm on inverters involves only 
simple matrix dot products to match the limited computational 
resources at inverters and enable the online application. 

(3) Flexibility. Establishing the cloud/server is unnecessary 
if the local inverter can handle the relatively more 
computationally intense updates in (5). In addition, separate one-
on-one cloud/server connections are also not necessary if the 
DER data share very similar patterns, e.g., photovoltaics (PV) 
on the same rooftop. Finally, the communication between the 
inverters and the cloud/servers can happen at a much lower (and 
configurable) frequency. 

C.  Architecture of the Hybrid Anomaly Detection Scheme 
The architecture of the hybrid data-driven and model-based 

anomaly detection scheme for DER operation in distribution 
grids is illustrated in Fig. 3. Essentially, the proposed hybrid 
scheme consists of: 
 (1) A centralized model-based SE is set up at the central level 
and it uses system-wide models and measurements from existing 
SCADA points as data inputs. The LNR-based anomaly 
detection module identifies the anomalous data and their 
location by analyzing the residuals. 

(2) Decentralized data-driven autoencoders are set up at the 
edge device level and they use local DER operational data (or 
any local measurements, if available) as inputs. The abnormal 

 
Fig. 2. Using autoencoders for anomaly detection in DER inverters 

TABLE I  PSEUDO-CODE OF INVERTER ALGORITHM 
Inverter Algorithm: reconstruct local DER data to detect anomaly 

1 for 𝒕𝒕 ← 𝟏𝟏 to ∞ do: 
2     Obtain the inverter readings, 𝒖𝒖[𝒕𝒕]; 
3     Provide 𝒖𝒖[𝒕𝒕] to autoencoder to reconstruct 𝒖𝒖�[𝒕𝒕]; 
4     Obtain the reconstruction error by 𝝃𝝃[𝒕𝒕] = ‖𝒖𝒖[𝒕𝒕] − 𝒖𝒖�[𝒕𝒕]‖𝟐𝟐; 

5 Determine the anomaly by: 𝜽𝜽[𝒕𝒕] = �𝟎𝟎, 𝒊𝒊𝒊𝒊 |𝝃𝝃[𝒕𝒕] − 𝝁𝝁| ≤ 𝝆𝝆𝝆𝝆 
𝟏𝟏, 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 , 

 where 𝝆𝝆 sets the threshold, e.g., 𝝆𝝆 = 𝟑𝟑 for error in Gaussian; 
6     Alarm local agent or control center if 𝜽𝜽[𝒕𝒕] = 𝟏𝟏; 
7     if 𝒕𝒕 𝒎𝒎𝒎𝒎𝒎𝒎 𝑻𝑻 =  𝟎𝟎, then: 
8         Send {𝒖𝒖[𝒕𝒕: 𝒕𝒕 + 𝑻𝑻]}, {𝒖𝒖�[𝒕𝒕: 𝒕𝒕 + 𝑻𝑻]}, {𝝃𝝃[𝒕𝒕: 𝒕𝒕 + 𝑻𝑻]} to cloud/server; 
9         Receive the updated (𝒘𝒘,𝒃𝒃,𝝁𝝁,𝝈𝝈) from clould/server; 

10 End 

 
TABLE II PSEUDO-CODE OF CLOUD/SERVER ALGORITHM 

Cloud/Server Algorithm: update the autoencoder model 
1 for 𝒕𝒕 ← 𝟏𝟏 to ∞ do: 
2     if 𝒕𝒕 𝒎𝒎𝒎𝒎𝒎𝒎 𝑻𝑻 =  𝟎𝟎, then: 
3         Receive {𝒖𝒖[𝒕𝒕: 𝒕𝒕 + 𝑻𝑻]}, {𝒖𝒖�[𝒕𝒕: 𝒕𝒕 + 𝑻𝑻]}, {𝝃𝝃[𝒕𝒕: 𝒕𝒕 + 𝑻𝑻]} from inverter; 
4         Update (𝒘𝒘,𝒃𝒃) by minimizing (5); 
5         Calculate 𝝁𝝁 = 𝟏𝟏

𝑻𝑻
∑ 𝝃𝝃[𝒕𝒕]𝒕𝒕 ; 

6         Calculate 𝝈𝝈𝟐𝟐 = 𝟏𝟏
𝑻𝑻
∑ (𝝃𝝃[𝒕𝒕] − 𝝁𝝁)𝟐𝟐𝒕𝒕 ; 

7         Send the updated (𝒘𝒘,𝒃𝒃,𝝁𝝁,𝝈𝝈) to inverter; 

8 end 

 

 
Fig. 3. The architecture of the hybrid anomaly detection scheme. 
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operations of DERs will be detected by analyzing the 
reconstruction errors. 
 The operational status of the DERs will be judged as 
suspicious when either of the two mechanism alarms, as 
abnormal when both mechanisms alarm, and normal only when 
both mechanisms report normal.  

The model-based and data-driven anomaly detection 
mechanisms operate using various types of data, at disparate 
time frames, on different levels, independently and in parallel. 
The hybrid scheme builds on the strengths of both the data-
driven and model-based methods, and each addresses the 
shortcomings of the other, thus improving the robustness and the 
accuracy of the anomaly detection. The proposed hybrid 
anomaly detection scheme can be established using existing 
sensing, communication, and control infrastructures in 
distribution grids, i.e., without intensive investment in hardware. 

IV.  NUMERICAL TESTS 
To demonstrate that the proposed scheme can reliably detect 

abnormal DER operation in distribution systems, we build a 
numerical simulation based on a real feeder in Southern 
California. The network model consists of 7,309 nodes, 
including both primary and secondary circuits; has a peak load 
of 16,651 kW; and is operated at 12 kV. To simulate a case with 
high PV penetration, we randomly select 60% of customers 
(1,053 of 1,755 load nodes) to be equipped with one or more PV 
systems, and the size of total PV systems at each node ranges 
from 0.2 to 0.8 times its nodal peak load value. In total, 1,559 
PV systems are modeled in the feeder, with a total capacity of 
8,404 kW (50% peak power penetration). To conduct time-series 
simulation, the real load data of this feeder collected in the field 
for the year 2019 at 5-min resolution are applied to the load 
models. Since no PV measurements are available from the field, 
and the autoencoders need high-resolution data, we use PV 
inverter data obtained  from hardware-in-the-loop experiments 
at the National Renewable Energy Laboratory [11] to model the 
time-series power outputs of the PV systems. These data are at 
500-ms resolution for 2 days. A two-day time-series simulation 
with 5-min time step is conducted using OpenDSS [12] to 
generate power flow data, which are then used as data inputs by 
the SE. Since the autoencoder measures data locally, we assume 
that PV power outputs with 500-ms temporal resolution can be 
directly collected and used by the autoencoder as data inputs.  

A.  Effectiveness of LNR Analysis 
The performance of the LNR is validated by adding a gross 

error to the measurements that are used by the SE and for 
processing the residual analysis. In the test, the voltage and 
power measurements are assumed to be available at the 
substation. Additional meters are assumed to be available at the 
distribution devices, such as transformers and capacitor banks, 
and that they can collect voltage and power measurements. The 
nodes without any load or PV are modeled to provide virtual 
measurements. The remaining nodes are assumed to deliver 

pseudo-measurements. Noise following normal distribution is 
added, and the standard deviation for different types of 
measurements is obtained using the criteria given in [13]. The 
SE and LNR analysis are executed for 576 snapshots (2 days 
with 5-min resolution).  

To simulate the anomalous data, a gross error with 
magnitudes ranging from 5% to 30% (5% step size) is added to 
a randomly selected 2% of the voltage magnitude (12 of 600), 
1% of the power injection (18 of 1,770 pairs), and 2% of the real 
power flow (12 of 585) measurements at each snapshot.  

Table III reports the true value, bad value, and normalized 
residual for four measurements (real and reactive power 
injection measurements on a certain node, voltage magnitude on 
a certain node, and real power flow measurement on a certain 
branch) at the first snapshot. For instance, the voltage magnitude 
is manipulated from 1.0271 to 1.0098, and this anomaly is 
captured with 8.69 as the normalized residual. Similar 
observations hold for the other measurements. Fig. 4 reports the 
average normalized residual for all four types of measurement 
during all snapshots with different magnitudes of the gross 
errors. Because of the small standard deviation of error in 
voltage magnitude measurement, even very small anomalies can 
be identified by the LNR efficiently, e.g., on average, a 5% error 
leads to 24.4 in the normalized residual. Only 5%–10% of the 
reactive power injection errors and 5% of the branch real power 
flow errors were not captured by the LNR module because their 
corresponding normalized residual is smaller than the threshold 
that was set at 3. These are hard to detect with the LNR mainly 
because of the low fidelity of the pseudo-measurements. 

B.  Effectiveness of Autoencoder 
The performance of the model-free anomaly detection 

scheme using the dimension reduction-based autoencoder is 
validated with the smart inverter data. For each inverter, the 
terminal real and reactive power data for 30 second at 500-ms 
resolution (i.e., input dimension 𝑑𝑑 = 120 ) are fed into the 
reconstruction as a datum. The hyperparameters are updated 
every 10 hours (i.e., 1,200 datum). A seven-layer autoencoder is 
built with TensorFlow [14]. The structure is 120-30-16-8-16-30-
120, which is determined by k-fold cross-validation.  

Synthetic anomalies are created by adding errors generated 
by the spike and burst models defined in [15]. The magnitude of 
the spike and burst error is varied and follows a normal 
distribution. Five spike or burst errors are randomly added to 
each datum. The performance of the autoencoder is indicated by 

TABLE III. TRUE AND BAD VALUE AND NORMALIZED RESIDUAL USED BY LNR 

 V mag. 
meas. (p.u.) 

P inj. meas. 
(kW) 

Q inj. meas. 
(kVar) 

P fl. meas. 
(kW) 

True value 1.0271 4.43 0.79 3.46 
Bad value 1.0098 2.42 2.97 6.42 

Normalized 
residual 8.6914 11.73 9.20 7.58 

 
 

 
Fig. 4. The average normalized residual for manipulated measurements 

with different magnitudes of gross errors. 
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the area under the curve (AUC) of the receiver operating 
characteristic (ROC) curves [16], which is commonly used to 
assess the performance of a binary classifier. A good classifier 
has an AUC of ROC near 1, and a bad classifier has a value near 
0, and 0.5 corresponds to a random guessing classifier. 

The autoencoder model is prevalidated by checking the 
reconstruction error. Fig. 5 shows the reconstruction of a normal 
and an abnormal datum on the terminal data from a certain PV 
inverter. It can be observed that the reconstructed 𝒖𝒖�  almost 
coincides with the original 𝒖𝒖 ; the area of their difference 
(marked with yellow) is near zero. But the abnormal datum can 
be characterized by the large reconstruction error (marked by 
pink). The heat map of the average AUC of ROC for all inverters 
in a 2-day test is shown in Fig. 6. It can be observed that AUC is 
greater than 0.8 for most error means and variances, which 
indicates a good classifier. The AUC is only low (i.e., 0.5–0.8) 
when the anomaly is barely notable (when the mean and variance 
are smaller than 0.02 and 0.1, respectively).  

C.  Case Study on Malicious Cyberattacks 
 To validate the benefits of the proposed hybrid anomaly 
detection scheme, we designed and launched two types of 
malicious cyberattacks. For these tests, we focused on one load 
node with three PV systems connected. For the SE (at the central 
level and on the snapshot of hour 13:00, second day), the nodal 
power injection (aggregated by three PV power outputs and load 
power) is obtained as a measurement. The data and model of 
each PV unit behind the node are unknown to the SE. The 
autoencoder is deployed to be running on each PV system (at the 
edge device level and on the first half of the minute including 
the snapshot) with only inverter terminal data. 
 Case A: False data injection attack. The real power output of 
one PV unit is increased by 5 kW with a positive spike error, and 
another is decreased by 5 kW with a negative spike error. The 
SE failed to detect the attack because the nodal power injection 
stays the same and is subject to the power flow principle. 
However, the autoencoder captured both anomalies because they 
led to high reconstruction errors in corresponding datum. 
  Case B: Delay of communication attack. The inverter 
terminal data of three PV systems are replaced with their data 
from 3 hours ahead. In this case, the autoencoder failed to detect 
the attack because all the data follow the latent pattern, and the 
reconstruction errors are small. Whereas the SE marked the 
nodal power injection measurement as suspicious because it is 
not subject to the power flow principle, and the normalized 
residual is higher than 3. 
 Both cases would result in the status of these DERs being 
indicated as suspicious to higher-level controllers and/or system 
operators. 

V.  CONCLUSIONS 
This paper proposes a hybrid data-driven and model-based 

scheme to detect anomalous DER operation in distribution grids. 
Autoencoders are set up at the edge devices and they use local 
DER operational data as inputs. The anomalous DER operations 
are detected by analyzing the reconstruction errors. A model-
based SE module is set up at the central level and it uses system 
models and measurements as data inputs. The anomalous data 
and their locations are identified by analyzing the measurement 
residuals. Our preliminary numerical results suggest that the 
proposed hybrid scheme successfully combines the benefits of 
both data-driven and model-based analyses and thus can 
improve the robustness and the accuracy of anomaly detection. 
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Fig. 5. The reconstruction performance of the autoencoder.  

Fig. 6. A heat map of the AUC of ROC with different error mean and 
variance. 




