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Introduction Surface stability under synthesis Adsorption energetics of hydrogen and oxygen
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For 3-Mo,C, the (100) surface has been traditionally - '
studied,® but previous surface-stability analyses 016 fos
indicate the (111) and (101) surfaces may be
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C is present in catalyst and reacting species and
may deposit on, diffuse across, or desorb from the
surface during reaction, leading to non-
stoichiometric and/or non-bulk-terminated surfaces
preferentially exposed to the reaction environment.

C on the surface could change the electronic
properties and/or block catalytic active sites, thereby
changing the activity/selectivity of the -Mo,C
catalyst.

Computational details

* Under carburization conditions, the (111) and (101) surfaces are
most stable.

*  WauIff construction primarily exposes the (111) and (101) surfaces
(45% and 21%, respectively).

« Even though it is traditionally studied when modeling 3-Mo,C
catalysis,® the (100) surface is one of the least stable surfaces and
contributes only 2% to the particle surface area.

Surface stability under reaction
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As surface-carbon coverage increases, adsorption of atomic H
generally weakens, but not systematically (R? = 0.12), while that of
atomic O weakens systematically (R? = 0.82).

Changes in adsorption strength of both species as surface-ca rbon
coverage increases suggest that surface carbon can play a key role
in catalyst activity/selectivity through either by inducing changes in
electronic structure or by blocking catalytically active Mo sites.

Conclusions
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