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Introduction

Computational details
• VASP7,8

• PBE exchange-correlation functional9

• Plane-wave basis, energy cutoff of 400 eV

• Developed systematic workflow to generate all 
possible Mo-terminated surfaces for each low Miller 
index facet of β-Mo2C, as well as all possible 
surface-carbon configurations for studied coverages1

Surface stability under synthesis

Surface stability under reaction

Adsorption energetics of hydrogen and oxygen

• Under carburization conditions, the (111) and (101) surfaces are 
most stable.

• Wulff construction primarily exposes the (111) and (101) surfaces 
(45% and 21%, respectively).

• Even though it is traditionally studied when modeling β-Mo2C 
catalysis,5 the (100) surface is one of the least stable surfaces and 
contributes only 2% to the particle surface area.

• Lower-cost MoxC catalysts show high activities (e.g., 
hydrogenation,2 water-gas shift,3 and 
hydrodeoxygenation4) comparable to transition-
metal catalysts.

• Atomic-scale structure/composition of catalytically 
active sites on MoxC catalysts not well-understood.

• For β-Mo2C, the (100) surface has been traditionally 
studied,5 but previous surface-stability analyses 
indicate the (111) and (101) surfaces may be 
preferentially exposed.6

• C is present in catalyst and reacting species and 
may deposit on, diffuse across, or desorb from the 
surface during reaction, leading to non-
stoichiometric and/or non-bulk-terminated surfaces 
preferentially exposed to the reaction environment.

• C on the surface could change the electronic 
properties and/or block catalytic active sites, thereby 
changing the activity/selectivity of the β-Mo2C 
catalyst.

• Across studied μC range, (111) and (101) surfaces are most stable.

• At high μC, the (010), (100), and (110) surfaces also become stable.

• As μC increases, the surfaces go from carbon-free to reaching the 
maximum studied surface-carbon coverage.

• Accumulation of surface carbon does not affect particle shape but 
does affect the contribution of each facet to the particle surface area.

Conclusions
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• As surface-carbon coverage increases, adsorption of atomic H 
generally weakens, but not systematically (R2 = 0.12), while that of 
atomic O weakens systematically (R2 = 0.82).

• Changes in adsorption strength of both species as surface-ca rbon
coverage increases suggest that surface carbon can play a key role 
in catalyst activity/selectivity through either by inducing changes in 
electronic structure or by blocking catalytically active Mo sites.

• Density functional theory calculations indicate that the (111) and 
(101) surfaces are either most stable or among the most stable 
across the studied range of μC.

• Wulff particle under carburization conditions supports these findings; 
the (111) and (101) surfaces dominate the surface area (66%), and 
particle shape does not change as surface-carbon accumulates.

• Traditionally studied (100) surface contributes very little to the Wulff 
particle surface area.

• Facet identity and surface-carbon coverage affect the adsorption 
energy of atomic H and atomic O; future studies should investigate 
these effects on reaction pathways.
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WGS: Water-gas 
shift

CC: Carburization 
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SMR: Steam-
methane 
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Tropsch
Synthesis

μC = –11.0 eV
(111) – 53%
(101) – 22%
(001) – 8%
(010) – 8%
(011) – 7%
(100) – 1%
(110) – 0%

μC = –9.3 eV (CC)
(111) – 45%
(101) – 21%
(110) – 12%
(010) – 9%
(001) – 9%
(011) – 3%
(100) – 2%


