
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

  

Conference Paper  
NREL/CP-5D00-80846 
July 2022 

A Fast and Scalable Genetic Algorithm-
Based Approach for Planning of 
Microgrids in Distribution Networks 

Preprint  
Abhijeet Sahua,1,2 Kumar Utkarsh,1 and Fei Ding1  

1 National Renewable Energy Laboratory  
2 Texas A&M University 

Presented at the IEEE Power and Energy Society General Meeting   
Denver, Colorado  
July 17–21, 2022  



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

Conference Paper  
NREL/CP-5D00-80846 
July 2022 

A Fast and Scalable Genetic Algorithm-
Based Approach for Planning of 
Microgrids in Distribution Networks 

Preprint  
Abhijeet Sahua,1,2 Kumar Utkarsh,1 and Fei Ding1  

1 National Renewable Energy Laboratory  
2 Texas A&M University 

Suggested Citation  
Sahua, Abhijeet, Kumar Utkarsh, and Fei Ding. 2022. A Fast and Scalable Genetic 
Algorithm-Based Approach for Planning of Microgrids in Distribution Networks: Preprint. 
Golden, CO: National Renewable Energy Laboratory. NREL/CP-5D00-80846. 
https://www.nrel.gov/docs/fy22osti/80846.pdf.  

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of 
this work in other works. 

https://www.nrel.gov/docs/fy22osti/80846.pdf


 

 

NOTICE 

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for 
Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. 
Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy 
Technologies Office Agreement Number 37770. The views expressed herein do not necessarily represent the 
views of the DOE or the U.S. Government. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,  
NREL 46526. 

NREL prints on paper that contains recycled content. 

http://www.nrel.gov/publications
http://www.osti.gov/


A Fast and Scalable Genetic Algorithm-Based
Approach for Planning of Microgrids in

Distribution Networks
Abhijeet Sahua,b, Kumar Utkarsha, Fei Dinga

aNational Renewable Energy Laboratory, Golden, CO, bTexas A&M University, Texas

Abstract—As a result of climate change, extreme weather
events are occurring more frequently and with increasing impact.
This trend poses a significant challenge for distribution utilities
and system operators to ensure that there is uninterrupted power
supply to critical loads in their networks; thus, the level of
proactive preparation of the distribution system to be able to
handle severe impacts of extreme weather events represents the
system’s resilience. One method that distribution system planners
can use to prepare for future extreme events is to plan multiple
microgrids which can use local generation as much as possible
to supply critical loads. But partitioning an existing distribution
system such that multiple feasible islands are planned and which
are capable of supporting critical loads is still challenging for
distribution systems—first, because of the size of the network
graph partitioning problem and, second, because of the difficulty
in properly formulating the desired attributes of such islands or
microgrids. Therefore, this paper presents a genetic algorithm-
based approach that facilitates incorporating multiple objectives
for grid partitioning by formulating two types of problems—
node allocation and edge elimination—and it considers multiple
topological and resilience-enhancing objectives. The performance
of the proposed genetic algorithm-based approach is numerically
evaluated on multiple test systems as well as on a real distribution
feeder in Colorado, United States.

Keywords–edge elimination, genetic algorithm, microgrid, multi-
objective optimization

I. INTRODUCTION

Historically, distribution system planners have performed
studies related to distribution grid partitioning based on ca-
pacitor bank controllability, post-fault island formation, market
supply and demand mismatch, etc. These methods are targeted
toward specific solutions, such as determining capacitor bank
set points, or fault-specific islanding, or islanding based on
generation/load balance. Such segregated problems avoid scal-
ability issues related to large systems because their goals are
confined to a specific easily-solvable objective.

There have been many studies exploring network partition-
ing for different objectives. Network partitioning approaches
are used in [1] for distribution system state estimation that
leverages a post-order traversal algorithm considering radial
topology structure and phasor measurement unit configuration.
Graph partitioning is considered in [2] for capacitor control in
a distribution feeder with a focus on voltage spread reduction
and loss minimization. In [3], the shortest path-based Dijkstra
algorithm is used for flexible island partitioning against distri-
bution grid failures. In [4], a metric-based approach for grid
partitioning with validation in a regional distribution network
in Anhui Province, China, is presented that aggregates multiple
graph-based metrics as objective. These techniques, however,
cannot handle multiple-objective based network partitioning. A
k-means clustering method for optimal partitioning into service
areas is proposed considering the geographic information and

administrative boundaries [5]. The major weakness is finding
an optimal k as well as the high chance of obtaining local
optima. Moreover, this method is highly sensitive to the
feature considered in the adjacency matrix for computing the
Laplacian.

To address the challenges in these techniques, a meta-
heuristic, multi-objective-based genetic algorithm approach,
known as the fast non-dominated sorting genetic algorithm
(NSGA-2) [6], is adopted in this paper because of its fast
convergence to near-global optimal results and its ability to
deal with highly complex, nonlinear, and multidimensional op-
timization problems [7]. Though the spectral clustering [8] and
the conventional genetic algorithm techniques might theoreti-
cally compute the partitions faster, they are effective usually
only for single-objective problems. We further propose two
solution methods—node allocation and edge elimination—
and we evaluate the proposed methods for multiple topolog-
ical and resilience objectives. This method ensures diversity
in solutions that can assist system planners in appropriate
distributed energy resource (DER) deployment. The major
contributions of this paper are as follows: a. Formulate a node
allocation and edge elimination-based, multi-objective, grid-
partitioning problem. b. Incorporate the NSGA-2 algorithm to
solve the problem for different scales of distribution feeders
and compare its performance with other techniques. c. Validate
the method for a real utility distribution feeder.

The paper is organized as follows. Section II provides
a brief review of the genetic algorithm and its use in a
distribution grid. Section III introduces the formulation of
the node allocation and edge elimination-based microgrid
formation problems. Finally, Section IV introduces the use
cases and evaluates the performance of the proposed NSGA-2
technique.

II. BACKGROUND

A genetic algorithm [9] is a meta-heuristic algorithm based
on natural selection, with the algorithm initiating a random set
of possible solutions, called a population of solutions. These
solutions are evaluated based on a set of fitness functions,
where the individuals having the best adaptation measure have
higher chances of reproducing and generating new offspring.
The generation process consists of crossover and/or mutation
operators and it continues repeatedly until a global optimal
solution is obtained. A crossover operator creates an offspring
by combining parts of two parent solutions. The mutation op-
erator is used to maintain genetic diversity from one generation
of population to the next.

Genetic algorithm was first implemented in the distribution
network as a loss-minimization reconfiguration problem [10],
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where the chromosomes consist of the sectionalizing switch
statuses, and the fitness function is formulated as the total
system losses and penalty value of voltage drop and current
violations. An advanced genetic algorithm based on binary
programming is proposed for maximizing the flexibility in
network reconfiguration for determining the proper points
to split an entire interconnected distribution network into
microgrids [11].

A single fitness function cannot provide an optimal solution
for multiple system-wide objectives; hence multi-objective
genetic algorithms need to be explored. NSGA [6] has been
found to efficiently solve constrained multi-objective prob-
lems. Therefore, this paper adopts NSGA-2 to solve the
microgrid formation problem.

The algorithm for NSGA-2 (as given in Algorithm 1)
primarily involves two steps: a) From the given population,
Pt, at iteration t, the offspring solution, Qt, is obtained using
the selection, mutation, and crossover operations (Line 12-
15). In the first step, using the union of Pt and Qt, non-
dominated sorting is performed to obtain solutions at different
pareto-front levels (Line 2-3). Non-dominated sorting in multi-
objective problems is a sorting done between two solutions,
say X and Y , where X is considered to dominate Y if and
only if there is no objective of X worse than that objective
of Y and there is at least one objective of X better than
that objective of Y . Further, pareto-front of a multi-objective
problem is a set of non-dominated solutions, which are chosen
as optimal if no individual objective can be improved without
sacrificing at least one other objective. b) In the second step,
while the next population set Pt`1 is obtained by sequentially
adding the elements in the obtained pareto fronts, starting with
1 until the condition |Pt`1| ` |Fi| ď N is satisfied (where Fi

is the solution in the ith front, and N is the maximum size
of the population), for the selection of the elements in Fi,
crowding-distance computation using the fitness function in
each front (Line 6) is performed to obtain diverse solutions
(Line 5-9).

Algorithm 1 Pseudo-code for NSGA-2 [6]
1: while termination criteria do
2: Rt Ð Pt YQt

3: F Ð non dominated sorting(Rt)
4: Pt`1 Ð φ; iÐ 1
5: while |Pt`1| ` |Fi| ď N do
6: Ci Ð crowd sourcing assignment(Fi)
7: Pt`1 Ð Pt Y Fi

8: i “ i` 1
9: end while

10: Fi Ð sortpFi, Ci, descq
11: Pt`1 Ð Pt`1 Y Fir1 : pN ´ |Pt`1|qs
12: Qt`1 Ð selectionpPt`1, Nq
13: Qt`1 Ð mutationpQt`1q
14: Qt`1 Ð crossoverpQt`1q
15: tÐ t` 1
16: end while

III. PROBLEM FORMULATION

This section presents the formulation of the multi-objective,
grid partitioning problem considering topological and re-
silience metrics. The problem is formulated as a graph par-
titioning problem, where the distribution grid is considered as
a graph, and each partition that can be obtained is considered
as a subgraph. The graph partitioning problem can be solved
using two methods. One method is based on allocating nodes
to each partition. Using the genetic algorithm approach, the

size of the solution or the chromosome with the node-based
problem will be m ˚ n, where m is the number of partitions,
and n is the number of nodes. In the second method, which is
based on eliminating edges, the size of the chromosome will
be k, where k is the number of power lines or graph edges.
A. Node Allocation Problem

In the node based approach, the following objective func-
tions are considered:

1) Edge loss minimization: Minimize the net loss of the
edge values, which is equivalent to the net loss in the
power line capacity when an edge is removed because
of partitioning.

min F1 “
ÿ

ei,jPE
pfij ¨Xij (1)

where Xij is a variable that decides whether the nodes
i and j of the edge, ei,j , belong to the same partition;
and pfij indicates the real-power flow between buses.

2) Similarly sized partitions: Minimize the difference in
the number of nodes in different partitions, to form
similarly-sized partitions.

min F2 “

P´1
ÿ

i“1

P
ÿ

j“i`1

ˇ

ˇn1i ´ n
1
j

ˇ

ˇ (2)

where n1i and n1j are the number of buses in the parti-
tions, pi and pj , respectively. And P is the maximum
number of partitions.

3) Compact partitions: Minimize the geographic spread of
a partition to make the microgrids more geographically
compact.

min F3 “

P
ÿ

p“1

δp,

where
δp “ xUp ´ x

L
p , if xUp ´ x

L
p ą yUp ´ y

L
p

“ yUp ´ y
L
p , if yUp ´ y

L
p ą xUp ´ x

L
p

(3)

and (xLp ,xUp ) are the x-coordinate range, and (yLp ,yUp ) are
the y-coordinate range in partition p.

The constraints considered for the node-based approach are:
1) A node cannot belong to more than one partition.

g1 ”
z
ÿ

p“1

Xip “ 1; i “ 1 to n (4)

where Xip decides whether the node i belongs to the
pth partition.

2) There exist an upper and lower limit of the nodes within
a partition.

g2 ” nmin
p ď np ď nmax

p , p “ 1 to P (5)
3) The nodes within a partition need to be contiguous,

which is incorporated based on the constraint that paths
between all node pairs within a partition do not tra-
verse through nodes in another partition. This constraint
increases the computation time because enforcing con-
tiguity constraints requires significant computation for
larger graphs [12].

B. Edge Elimination Problem
In this approach, the decision variables are the edges that

need to be removed from the existing grid to form the partition.
The following objectives are considered:

1) Edge loss minimization: This is similar to (1), except
Xij is a variable that decides if an edge is eliminated.

2) Similarly sized partitions: This is similar to (2).
3) Compact partitions: This is similar to (3).
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4) Feasible islands: A distribution system with switching
devices has the capability to form multiple islands
with geographically diverse DERs and loads, thereby
improving its resilience against an event; therefore, the
objective F4 captures the number of feasible islands
possible relative to the total number of asset nodes in
the system.

F4 “
maxNsub

ř

jPt1,..Nsubu
A

npNq

A “

#

”

ř

iPNj

`

gij ´ l
c
ij

˘

ı

`
`
ř

iPNj
rvmax ´ vijs`

`
ř

iPNj
rvij ´ vmins`

+

(6)

where Nsub is the number of independent islands possi-
ble; Nj is the set of nodes in the island j; and gij , lcij ,
and vij are the generation, critical load, and voltage at
node i of island j.

5) Path redundancy: The higher the number of possible
paths from DERs to loads, the higher the likelihood
of ensuring power supply to such loads under varied
damage scenarios of an event; this is used as another
parameter, F5 and it is defined as:

F5 “ max

ř

jPN

ř

iPN 1{
ř

kPK E pPkpi, jqq

npNq2{2Ê pPkpi, jqq
(7)

where Pkpi, jq is the kth path from node i and j; and
EpPkpi, jqq and ÊpPkpi, jqq are the electrical distance
of the path and the maximum electrical distance, respec-
tively.

Both resilience metrics, feasible islands (F4) and path redun-
dancy (F5), are maximized in this edge elimination problem.
The constraints considered are:

1) The number of partitions have an upper and lower limit:

g1 ” Pmin
ď P ď Pmax (8)

where [Pmin, Pmax] is the range of the number of
partitions.

2) There exists a lower limit of the nodes within a partition:

g2 ” nmin
p ď np, p “ 1 to P (9)

C. Solution Encoding

The solution for a graph partitioning problem can be
obtained using either integer or binary encoding. In integer
encoding, the nodes on the graph can be assigned integer
numbers depending on the partition they belong to, which is
appropriate for use in the node allocation problem. Binary
encoding is used for the edge elimination problem, where
the decision variables for an edge within a graph are binary,
indicating lines where the system graph can be split. Because
distribution grids are radial in nature, the difference between
the number of edges and nodes is small; hence, formulating
the problem as an edge elimination problem is computationally
less expensive than the node allocation problem.

IV. EXPERIMENTAL RESULTS

In this section, the NSGA-2 algorithm is used for both
the node allocation and the edge elimination problems to
formulate microgrids based on resilience and topological met-
rics, and the solution performance is evaluated on multiple
distribution feeders.

Table I: NSGA-2 & problem attributes for the test feeders

Attributes IEEE 13 IEEE 34 IEEE 123 SM Cozy
Number of nodes 16 37 123 623

Number of edges 15 36 126 629

Number of objectives [1–4] [1–4] [1–4] [1–4]

Number of constraints 3 3 3 3

Range of partitions [2,16] [3,37] [4,123] [5,623]

Minimum nodes within partition 3 4 6 [7,15]

Population size [200–500] [200–500] [200–500] [200–500]

Max no. of generations 1000 1000 1000 1000

Offspring generation [10–40] [10–40] [10–40] [10–40]

Crossover points [10–40] [10–40] [10–40] [10–40]

Crossover probability 0.9 0.9 0.9 0.9

Mutation probability 0.05 0.05 0.05 0.05

A. Use Cases
1) IEEE 13 bus: This is a small test feeder consisting

of shunt capacitor banks, in-line transformers, and one
substation voltage regulator consisting of three single-
phase units connected in wye. Four DERs are added to
this test feeder—at nodes 684, 645, 692, and 670—to
study the grid partitioning.

2) IEEE 34 bus: This is a long and lightly loaded test
feeder with a nominal voltage of 24.9 kV. It has two
in-line regulators, an in-line transformer for voltage
reduction to 4.16 kV, along with a few shunt capacitors.
Five DERs are added to this test feeder—at nodes 836,
858, 826, 808, and 818—to study the grid partitioning.

3) IEEE 123 bus: This is a comprehensive feeder with
unbalanced loading with all combinations of loads,
four step-type voltage regulators, capacitor banks, and
switching to provide alternate paths of power flow and
to make the grid meshed. Six DERs are added to this
test feeder—at nodes 35, 48, 64, 78, 95, and 108—to
study the grid partitioning.

4) A real distribution feeder in Colorado: This feeder
model is developed based on the information provided
by our utility partner in Colorado. The data set contains
two substations, each having 8 feeders. One feeder
(named SM Cozy) is considered for grid partitioning
in this paper. Along with 7 pre-existing generators, 10
utility-scale DERs and 10 behind-the-meter DERs are
added to the primary and secondary circuits, respec-
tively.

The distribution grids are partitioned by using NSGA-2 under
the parameters and the details are given in Table I, and Fig. 1
presents the partition solution for the real distribution feeder
in Colorado.

Figure 1: The partition solution of a Colorado feeder.

B. Node Allocation and Edge Elimination Comparison
Fig. 2 shows the computation time for the grid-partitioning

problem using both the node allocation and edge elimination
approaches solved using NSGA-2. The longer time taken to
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obtain the optimal solution in the case of the node allocation
approach to the partitioning problem is because of the larger
size of the chromosome (m ˚ n, where m is the number
of partitions, and n is the number of nodes), the increased
computation overhead in satisfying the equality constraint in
(4), and ensuring contiguous nodes within a partition.

Figure 2: Computation time comparison of edge elimination
and node allocation-based grid partition.

C. Comparison With Other techniques for graph partition

Here, we evaluate the NSGA-2-based grid partition with
the conventional genetic algorithm technique and the graph
spectral clustering technique. Spectral clustering is one of the
fastest techniques to obtain the partitions because it considers
only the system topology (Fig. 3); however, it is quite sensitive
to the adjacency matrix (considered for computing the sym-
metric Laplacian matrix) and its eigenvectors (considered for
k-means clustering for the partition). Incorporating multiple
objectives for building the adjacency matrix can make the
Laplacian ill formed, resulting in negative eigenvalues. The
conventional genetic algorithm technique is relatively faster
than NSGA-2, but it is feasible only for single fitness function-
based problems.

Figure 3: Comparison of NSGA-2 with genetic algorithm and
spectral clustering technique.

D. Effect of Genetic Algorithm Parameters

Three common genetic algorithmic parameters are consid-
ered for the evaluation of computation time for different use
cases: a) population size for each generation, b) crossover
points in mutation, and c) offspring size in every generation.
The time complexity of the NSGA-2 algorithm is OpMN2q,
where M is the number of objective functions, and N is the
population size. Figs. 4(a) and 4(c) show the increase in com-
putation time with increasing population and offspring size for
different use cases. The number of crossover points in every
generation did not affect the computation time (Fig. 4(b)).
The algorithm can be sensitive to the increased number of
crossover points, making it difficult to converge to an optimal
solution; however, in certain cases—such as in the later stages
of the genetic algorithm search process, when the population
is homogeneous, or for a smaller population size—a larger
number of crossover points can be beneficial [13].

E. Effect of Selection of Fitness Function
The impacts of the fitness function are evaluated based on

two types of evaluation metrics: a) objective-specific, such as
hypervolume (HV), generational distance (GD), and diversity
index (DI); and b) solution-specific, such as electrical cohesive
index (ECI) and cluster size index (CSI). Generational dis-
trance computes the average euclidean distance in the objective
space for each solution to the closest solution in the pareto
front. For evaluating the hypervolume, reference points are
considered instead of solutions in the pareto front. A higher
hypervolume and lower generational distance indicates better
solutions [14]. The diversity index computes the inter-solution
euclidean distance among the solutions in the objective space.
ECI measures the extent to which the buses within each cluster
are electrically connected, formulated as:

ECI “

Nsub
ÿ

k“1

ÿ

ei,jPSk,em,nPG

pfij
pfmn

(10)

where Nsub is the number of partitions obtained from the
solution, pfij is the real power flow in edges within each
partition Sk, and pfmn the real power flow in the original
non-partitioned grid G. CSI measures the extent to which
the cluster size deviates from the equally distributed cluster
size with ideal partition p˚, i.e., s˚ “ n{p˚, where n is the
number of buses. CSI is based on the shape of the log-normal
distribution with the width parameter σ “ w lnpnq [15].

CSI “ e
´plnpsq´lnps˚qq2

2σ2 (11)
where s is the weighted average of the cluster size, and w is
the penalty factor.

In Table II, column Obj is the total number of objectives
considered. Sol is the average number of solutions obtained
using NSGA-2. The rest of the columns are the evaluation met-
rics, averaged over all the experiments conducted with varying
combinations of objective functions. The average number of
solutions and the DI metric increases with increasing numbers
of fitness functions, providing more options for grid partition
but at the cost of a decrease in the HV and an increase in the
GD metrics. The ECI metric is more than 0.85 for most
scenarios, except the IEEE 123 case with consideration of
four objective functions. Even the CSI metric reduces with
an increase in fitness function; hence, it is crucial to identify
ideal metrics to formulate the set of fitness functions in the
problem.

Table II: Evaluation metrics for different distribution feeders.
The scores reflect the average value, computed across every
combination of the number of fitness functions selected.

Use Case Obj Sol HV GD DI ECI CSI

IEEE 13
2 3 .019 2.7E-09 .57 .90 .269
3 3 .003 1.2E-08 1.2 .89 .097
4 5 0.0 3.9E-09 1.5 .89 .2

IEEE 34
2 37 .09 .0462 .32 .86 .15
3 11 .05 .187 .78 .86 .063
4 30 .01 .216 1.1 .87 .021

IEEE 123
2 57 .77 .26 .96 .90 .0092
3 106 .61 .71 2.1 .87 4.9E-04
4 200 .30 1.19 4.0 .79 5.5E-07

SM Cozy
2 35 .74 .41 1.4 .97 .067
3 96 .44 0.73 2.5 .97 .011
4 195 .033 1.13 3.7 .97 6.8E-05

F. Selection of Resilience Metrics
The feasible islands and path redundancy resilience metrics

are evaluated based on their inclusion within the set of fitness
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(a) (b) (c)

Figure 4: Effect of (a) population size, (b) number of crossover points, and (c) number of offspring in each generation.

functions. The scenarios shown in Table III are based on the
inclusion of fitness functions F4 and F5 with the topology-
based objectives F1, F2, and F3. The resilience metric F4 is
better compared to F5 on the basis of DI , but F5 is relatively
effective on the basis of the ECI and CSI metrics. The time
to solve the problem for the IEEE 123 case including F5 was
approximately 10 hrs. Because the path redundancy metric
is computationally expensive, only the IEEE 13 and 34 cases
are considered for the evaluation purpose.

Table III: Evaluation of the resilience metrics F4 and F5.
Use Case Scenarios Solns DI ECI CSI

IEEE 13
with F4 5 1.508 0.88 0.20
with F5 4 1.413 0.91 0.25
with F4 and F5 10 1.058 0.89 0.1

IEEE 34
with F4 33 1.087 0.87 0.02
with F5 35 0.91 0.90 0.01
with F4 and F5 186 0.94 0.84 0.004

G. Improvisation with Parallelization
Incorporating multi-threading for evaluating the fitness of

solutions in parallel reduced the computation time for obtain-
ing the optimal solutions, as shown in Fig. 5; hence, with the
usage of high-performance computing resources, NSGA-2 can
be more effective and can obtain multiple optimal solutions
even faster.

Figure 5: Effect of parallelizing the evaluation of solutions for
different population sizes for the IEEE 34 and 123 cases.

V. CONCLUSION
Planning of microgrids in a distribution system, based on

a meta-heuristic genetic algorithm approach, is proposed in
this paper. The method works efficiently when the edge-
elimination approach is considered rather than the node-
allocation approach. and the former approach provides multi-
ple diverse solutions that can provide more flexibility to the
system planners for microgrid planning. The proposed method
is validated with topological and resilience metrics for multiple
test feeders and a real distribution feeder, and it allows for
integration of multiple other reliability/resilience objectives as
well. These objectives are currently being explored by the
authors on several models of real distribution feeders and will
be discussed in a future publication.
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