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A future built on renewable energies relies on hydrogen storage
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The Hydrogen Materials - Advanced Research Consortium (HyMARC)

02/19

onboard H2 storage carriers/long-term storage

H2
A

Enabling twice the energy density for onboard H2 storage

B

Addresses Key Challenges to Hydrogen Storage in 
Advanced Materials Through a Multi-Lab Collaboration 
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Hydrogen storage technologies
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700 bar, 40 g/L 20 K, 71 g/L
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Hydrogen storage technologies
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700 bar, 40 g/L 20 K, 71 g/L

700 bar compressed gas (2015 record) 
vs. 

revised ultimate targets
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Hydrogen storage technologies
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700 bar, 40 g/L 20 K, 71 g/L

Materials have the potential 
to reach DOE targets for light-

duty vehicles:

 4.5 H2 wt%
 p < 100 bar

 -40˚C < T < 40˚C

at lower system costs than 
the 700 bar technology.

HyMARC has the world record 
room temperature 

sorbent (11g/L)

Kapelewski et al., Chem. Mater. 2018, 30, 
22, 8179–8189
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Complex hydride: Mg(BH4)2
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700 bar, 40 g/L 20 K, 71 g/L

Material used in this work:
porous and nanostructured 

γ-Mg(BH4)2
for increased H2 diffusion 

and reaction rates
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Mg(BH4)2 vs. DOE targets

• Exceeds DOE targets:
– Volumetric H2 capacity (82 g/L)
– Gravimetric H2 capacity (14.9 wt%)

Y. Filinchuk et al., Angew. Chem. Int. Ed. (2011), 50, 11162 –11166

• Requires improvements:
– Kinetics
– Reversibility:

• Suppression of B2H6 liberation: 
fuel cell damage and material loss

• Suppression of B12H12 formation: 
thermodynamic energy well

– Desorption temperature: 300˚C for 
neat material

N. Leick et al., ACS Appl. Energy Mater. 2021, 4, 2, 1150–1162 
G. Severa et al., Chem. Commun., 2010, 46, 421-42306/19

https://doi.org/10.1002/anie.201100675
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Approach: Additives through 
atomic layer deposition (ALD)

• Coating retains the Mg(BH4)2
nanostructure for cyclability

• Atomically thin to maintain the 
gravimetric capacity of Mg(BH4)2

• Manipulation of the thermodynamic 
pathway for H2 release

• Mitigate material loss
• Catalyst additive to enhance reaction 

rates 

Al-precursor:
8 s

Trimethylaluminum 
(TMA, Al(CH3)3)

O-Precursor:
8 s

Water (H2O)

Room temperature ALD 
to prevent phase change and 

H2 release of γ- Mg(BH4)2

07/19
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ALD of Al2O3:
TMA + H2O

H2O pulsing only

Approach to improve the performance of  
Mg(BH4)2

TMA pulsing only
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Mg(BH4)2 + ALD

Al2O3 ALD process releases the most 
H2 at low temperatures

Al2O3 was the only RT ALD process

09/19

Temperature Programmed Desorption
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Mg(BH4)2 + ALD of Al2O3

N. Leick et al., ACS Appl. Energy Mater. 2021, 4, 2, 1150–1162 

Temperature Programmed Desorption

Higher amounts of H2 desorbed at 
lower temperature with ALD 

 Suppression of diborane (toxic to 
people, damages the fuel cell)

H2 desorption B2H6 (diborane) desorption

0.6 wt%

1.6 wt%

10/19
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Mg(BH4)2 + ALD of Al2O3

 First desorption performs better with 
Al2O3 than without it

Desorption kinetics were improved by 
a factor of 3

Absorption of H2 remains challenging, 
with or without Al2O3 ALD
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Mg(BH4)2 neat
SSA: 680 m2/g

Mg(BH4)2 3c. Al2O3
SSA: 487 m2/g

Mg(BH4)2 10c. Al2O3
SSA: 316 m2/g

Mg(BH4)2 100c. Al2O3
SSA: 73 m2/g

Mg(BH4)2 100c. Al2O3
Mg(BH4)2 10c. Al2O3
Mg(BH4)2 3c. Al2O3
Mg(BH4)2 neat

SSRL BL 1-5; 1m, 
E = 15.5keV 

(i.e. lower-Q)

region sensitive to 
~ 10 Å pores

Small angle X-ray spectroscopy on 
Al2O3 ALD-coated γ-Mg(BH4)2

Porosimetry based on N2 physisorbtion

12/19

Mg(BH4)2 + ALD of Al2O3

 Suggests the coating is infiltrating the 𝛾𝛾-
Mg(BH4)2 pore structure

 Pores ~10 Å are accessible to TMA and H2O 
throughout the entire deposition process  
(“swelling” of the 𝛾𝛾-Mg(BH4)2 framework)
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↑exo
𝜆𝜆=0.885415 Å

20˚C

100˚C

175˚C

225˚C

Differential Scanning Calorimetry

loss of crystalline 
structure

X-Ray Diffraction - in situ heating

Hydrolysis:

During ALD:
Mg(BH4)2 + 2H2O Mg(OH)2 + B2H6 + 2H2

After ALD – during heating:
Mg(BH4)2 + nH2O Mg(BO2)2 x (n-4)H2O + 8H2

N. Leick et al., ACS Appl. Energy Mater. 2021, 4, 2, 1150–1162 
13/19

Mg(BH4)2 + ALD of Al2O3
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ALD of Al2O3:
TMA + H2O

H2O pulsing only

Approach to improve the performance of  
Mg(BH4)2

TMA pulsing only
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Mg(BH4)2: hydrolysis from TPD

N. Leick et al., ACS Appl. Energy Mater. 2021, 4, 2, 1150–1162 14/19
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Mg(BH4)2: hydrolysis from TPD
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Hydrolysis:

During ALD:
Mg(BH4)2 + 2H2O Mg(OH)2 + B2H6 + 2H2

After ALD – during heating:
Mg(BH4)2 + nH2O Mg(BO2)2 x (n-4)H2O + 8H2

14/19

Mg(BH4)2: hydrolysis from TPD
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Mg(BH4)2 + ALD

Except for the Al2O3 ALD process, all 
processes were performed ~100-200 ˚C

Water was involved all ALD processes of 
metal oxides.

15/19
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ALD of Al2O3:
TMA + H2O

H2O pulsing only

Approach to improve the performance of  
Mg(BH4)2

13/30

TMA pulsing only
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100c TMA + γ-Mg(BH4)2

TPD/DSC with identical heating rates
Event A (~90 °C ) 
 releases H2 in the γ → ε structural phase 

transformation region
 releases H2 rapidly

Event C coincides with MgH2 → Mg transition
 begins at 240 °C, a reduction of over 125 °C 

compared to uncoated Mg(BH4)2

Low H2 capacity
 ~0.6 H2 wt% released below 175 °C
 ~2.5 H2 wt% from 20 – 500 °C

Only ~2.5 H2 wt% total

N. Strange, N. Leick, S. Shulda, A. Schneemann, V. Stavila, A. Lipton, M. Toney, T. Gennett, S. Christensen - Reactive Vapor-Phase Additives towards 
Destabilizing γ-Mg(BH4)2 for Improved Hydrogen Release (submitted)

16/19
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Volatile reaction products causing 
loss of H2 capacity?

 10c TMA sample exhibits full retention of 
native H2 capacity between room 
temperature and 500 °C.

 H2 desorption temperature is lowered by 
<100 °C.

20-175 °C 20-250 °C 20-500 °C

γ-Mg(BH4)2 0.16 0.37 13.7

10c TMA 0.33 1.54 14.5

100c TMA 0.58 1.05 2.52

H2 wt% from Integrated TPD SignalTemperature Programmed Desorption

N. Strange, N. Leick, S. Shulda, A. Schneemann, V. Stavila, A. Lipton, M. Toney, T. Gennett, S. Christensen - Reactive Vapor-Phase Additives towards 
Destabilizing γ-Mg(BH4)2 for Improved Hydrogen Release (submitted)

17/19
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What Mechanism is Responsible for 
Improvement in H2 Release?

vdW radius
BH4

- = 2.05 Å
-CH3 = 2.0 Å

Al2(CH3)6 + 3 Mg(BH4)2 → 2 Al(BH4)3 + 3 Mg(CH3)2

complete 
reaction

partial reaction 
forming mainly 

MgBH4CH3

From 11B, 27Al NMR, DRIFTS, TPD:
 No reaction with B – pure exchange of BH4

- and CH3
 No incorporation if Al-containing species

N. Strange, N. Leick, S. Shulda, A. Schneemann, V. Stavila, A. Lipton, M. Toney, T. Gennett, S. Christensen - Reactive Vapor-Phase Additives towards 
Destabilizing γ-Mg(BH4)2 for Improved Hydrogen Release (submitted)

18/19
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ALD of Al2O3:
TMA + H2O

H2O pulsing only

Approach to improve the performance of  
Mg(BH4)2

TMA pulsing only
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Opportunities and Limitations for ALD on complex 
hydrides for H2 storage

13/3019/19

Short 
exposure to 
precursors

Exposure to 
1 precursor 

can be 
sufficient

Avoid the 
use of H2O, 

oxygen 
precursors

Room-
temperature 

ALD 
processes

Control of 
infiltration 
vs. coating

VdW radii of 
functional 

groups

Need for more chemistries
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