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Abstract. Denial of Service (DoS) and Distributed Denial of Service
(DDoS) attacks pose a serious threat to computing networks - especially
to critical systems within the U.S. electrical grid. As attack mechanisms
have increased in complexity and variety, more sophisticated detection
mechanisms have become necessary to ensure network security. This pa-
per explores the use of artificial intelligence to automate the process of
detection and mitigation of DoS and DDoS attacks within the frame-
work of Software-Defined Networking (SDN), to a high degree. Machine
learning algorithms are trained to recognize DoS and DDoS attacks and
are deployed in real-time to mitigate malicious network traffic. The re-
sults show a well-tuned gradient-boosted decision tree detecting DoS and
DDoS attacks, as well as initial successful mitigation of attacks within
an SDN framework.

Keywords: Denial of Service, Cyber Detection, Machine Learning

1 Introduction

Software-Defined Networking (SDN) is a novel technology that decouples net-
work controls and forwarding. This structure allows for flexible, automated net-
work construction, and it facilitates network management. These benefits, cou-
pled with low operational costs, make SDN architecture a highly desirable tool
for modern networking.

As SDNs have become more prevalent, protecting them from common net-
work threats, like DoS and DDoS attacks, has become increasingly important,
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Science, Office of Workforce Development for Teachers and Scientists (WDTS) under
the Science Undergraduate Laboratory Internships Program (SULI).
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as addressed in [8,15]. The target of this study is the detection of these preva-
lent network attacks within an SDN framework using Machine Learning (ML)
classifiers, as well as the implementation of initial mitigation steps.

DoS and DDoS attacks make machine or network resources unavailable to
legitimate users by using streams of traffic to consume network resources such
as bandwidth and memory. These attacks can be executed via a variety of pro-
tocols, including UDP, TCP, and HTTP, among others as listed in [5]. It is well
known that these attacks have increased many-fold in recent years. This has been
researched broadly, including by [20], while using ML classifiers as a detection
mechanism for such attacks has been shown in studies such as [14]. While many
studies have achieved success using certain classifiers such as Random Forests
(RF), this study aims to show that there is room for accuracy improvements
through the use of enhanced classification algorithms, such as gradient-boosted
decision trees, in disarming DoS/DDoS attacks. In addition, using a rich, high-
variance dataset would also add robustness to these algorithms.

This study was designed as an extension of these previous works in an effort to
further explore ML approaches in the classification and obstruction of assorted
DoS/DDoS attacks on SDN architecture. After initially implementing the RF
classification and performance testing scripts outlined in [15], several additions
were made: a randomized RF hyperparameter scan, repeated stratified k-fold
cross-validation, and the addition of new classification variables. This study also
trained and tested the involved modules on the dataset used in [14] in an attempt
to better reflect real-world performance.

Following the optimization of the RF model and the subsequent optimiza-
tion of a comparative gradient-boosted decision tree classifier, a traffic-generating
script was used to create both attack and non-attack traffic within a simulated
SDN. This study found that although random forests and gradient-boosted clas-
sifiers performed comparably, well-tuned gradient-boosted algorithms outper-
formed the best RF classifiers. This study also laid the groundwork for a real-
time DoS/DDoS attack mitigation mechanism on a simulated SDN and provided
a baseline for future investigations.

In the following section, we first review some of the basic background material
which forms the basis for this study, as well as a broad literature search on related
studies. Then in the following section, we look more extensively at the datasets
used and the classifiers considered, as well as the implementation of the SDN
architecture. We lay out the definitions of the metrics for the data analysis in
the next section and conclude with all the different and varied results which we
set out to explore, as well as initial attempts at mitigation. Finally, we lay out
our future research plans.

2 Background and Related Work

2.1 Software-defined networking

In a traditional network, switches independently determine where to send pack-
ets. In other words, traditional switches assume a dual controlling/forwarding
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role. Software Defined Network (SDN) architecture offers a fundamentally dif-
ferent approach to network topology, in that it separates network controls and
forwarding, as shown in Fig. 1. In an SDN, switches act only as forwarding
devices and receive packet-handling guidance from a controller: a software ap-
plication on a remote server, as explained in [8]. As with traditional networks,
SDN topology can vary widely, with the number and arrangement of controllers,
switches, and hosts in a network chosen to meet the needs of its users. Due to
the centralization of SDN controls, SDNs are capable of dynamic load-balancing
and resource scaling. This makes them ideal for high-bandwidth applications.
The programmable nature of SDNs also allows for dynamic management and
adaptable security.

As SDNs have grown in popularity, se- e e——
curing them from attacks has become a high
priority. While SDN control centralization contiollGver{Contiolier)
can facilitate attacks intended to overwhelm !

network resources, this same centralization

can be advantageous for the streamlined de- Fig. 1: Basic SDN structure. Ap-
tection and mitigation of attacks. Specifi-
cally, the decoupled nature of SDN control
and forwarding planes has created the pos-
sibility for new methods of attack detection
and obstruction — namely, those that take advantage of a controller’s “bird’s-
eye” view of a whole network. By probing all traffic for attacks using machine
learning and deploying mitigation software when necessary, a single controller
can act as both a surveillance and a defense system for an entire SDN.

plications interact with and man-
age the controller, which provides
forwarding guidelines to switches.

2.2 DoS and DDoS attacks

Easy to execute and difficult to mitigate, DoS and DDoS attacks are a common
menace to modern networks. Although these attacks come in many forms, they
share a goal: the consumption of network resources. By forcing a network to
allocate resources to the processing of attack traffic, DoS/DDoS attacks inhibit
network usage for legitimate users. DDoS attacks are especially effective, as they
initiate DoS attacks from multiple hosts at once.

These attacks, as explained in [5], can be divided into several classes: volu-
metric, protocol, and application layer. Volumetric attacks consume bandwidth;
protocol attacks consume server or intermediate equipment resources; applica-
tion layer attacks crash web servers with seemingly innocuous connection re-
quests. Among these, some of the most common are UDP floods (volumetric),
TCP SYN floods (protocol), and HTTP floods (application).

2.3 Machine learning classifiers

Given the capability of DoS and DDoS attack mechanisms to evolve rapidly,
classical detection software can struggle to identify new attacks. In an attempt
to create detection mechanisms that are robust to changes in attack methods,
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researchers have increasingly turned to machine learning as a resource for deter-
mining the underlying patterns in attack traffic — [14].

Classical methods of attack detec-
tion struggle to identify new attacks
due to their reliance on rigid, pre-

e e e e
defined statistical expectations for %% &6 oo o6 o6 6o o 6o

X dataset

N, features N, features N, features N, features

threatening network patterns. Ma- " " " "
chine learning algorithms, on the s s s e
other hand, are advantageous due to
their ability to make inferences about

previously unencountered data points X
based on patterns in familiar datasets. / j \

Since network attack detection is
a classification problem involving the i \j&(\ h joi \z@;\ i /\?;
separation of attack from benign net- N ‘ .
work traffic, machine learning classi- \ V
fiers such as random forests (RFs) and “ ©
gradient-boosted decision trees were I
of particular interest for this study. As
shown in Fig. 2, RFs and gradient-
boosted classifiers both rely on de-
cision trees to make classifications.
While RFs randomly generate trees in
parallel, gradient-boosted classifier trees are built in series so that each tree can
learn from previous mistakes, as explained in [9,12].

Each of these algorithms relies on implementation in two stages: training and
testing. During training, network flow data is input into the algorithm, and it
learns to recognize what makes a flow an attack. During testing, the performance
of the algorithm is tested on a separate dataset. New data is input into the
algorithm, and it predicts whether or not each flow is an attack. The algorithm’s
predictions for each flow are then compared to the true classifications, and the
resulting accuracy is used to gauge how well the algorithm can classify previously
unencountered data.

Fig.2: Top: Random forest schematics
exemplifying majority voting. Bottom:
Gradient-boosted ensemble schematics.

2.4 Related investigations

The vulnerability of network structures to DoS and DDoS attacks has been
previously investigated in a variety of contexts in [20], [14], [15] and [17] among
others. In 2018, [15] introduced the usage of RFs for the detection of DDoS
attacks within an SDN framework. The study explored the detection accuracy
of RFs in comparison to a dynamic statistical method and a support vector
machine (SVM) machine learning implementation.

Although [15] concluded that RFs outperformed the other methods in ques-
tion, achieving more than 97% detection accuracy, further room was left for
algorithm and dataset improvement. In particular, the RF used in the study
was trained using minimal tuning and a lack of constructed variables (variables
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created out of operations on other variables), although these variables have the
potential to significantly strengthen classifier performance — [18].

In addition, the dataset
used in the experiment was

FWl packet_time srclP destIP srcPort destPort U

0.015675 1.1.139.109 1.1.236.8

bytes packets

a relatively low-variance UDP
flood dataset (Fig. 3), sup-
plemented by independently-
generated data. As indicated
by [14], the use of such a
dataset could lead to a pre-

0.015674 1.1.139.167 1.1.236.8
0.01574 1.1.139.92 1.1.236.8
0.015824 1.1.139.210 1.1.236.8
0.015945 1.1.139.71  1.1.236.8
0.016028 1.1.139.142 1.1.236.8
0.01612 1.1.139.131 1.1.236.8

0.0162 1.1.139.84 1.1.236.8
0.016283 1.1.139.80 1.1.236.8
0.016373 1.1.139.214 1.1.236.8
0.016457 1.1.139.80 1.1.236.8

0.01654 1.1.139.61 1.1.236.8
0.016621 1.1.139.91 1.1.236.8

dictor that performs well dur-
ing training and testing, yet
weaker when confronted with
higher variance real-world at-
tacks. In the place of similar
low-variance datasets, sets containing realistic benign and attack traffic across a
variety of protocols are preferable for achieving comparable detection accuracy
(more than 96%, in the case of [14]) within a more broadly applicable framework.

Fig.3: A snapshot of the dataset used in [15],
demonstrating its low duration, byte count, and
packet count variance.

3 Materials and Methods

3.1 Dataset preparation

Two datasets were prepared for this study. While our initial investigations be-
gan with UDP floods, as in [15], the richness and complexity of TCP packet
data coupled with their prevalence in NREL DDoS attack data led us to make
TCP floods a primary focus of this study. Thus, our first dataset consisted of
exclusively TCP SYN flood traces and “clean”, or legitimate, TCP traces. The
second dataset was generated by the Canadian Institute for Cybersecurity (CIC).
It consisted of a variety of DoS and DDoS attacks against a multi-protocol clean
traffic background. To prevent discrepancies in variance across separate dataset
regions, the order of each set’s entries was randomly shuffled. Each dataset was
divided into 80% for training, 10% for validation, and 10% for testing, advised
by the Pareto principle — [16].

TCP dataset The first dataset was acquired by the National Renewable En-
ergy Lab. The data consisted of 604,589 TCP SYN flood netflow traces and
8,162,905 legitimate TCP netflow traces. This dataset was significantly “imbal-
anced”, as it consisted of almost entirely legitimate traces. Typically, imbalanced
datasets are preferable for classification scenarios with unequal class frequencies,
as they contain information about relative appearance probabilities. However,
for the classification problem of attack versus benign traffic in which both high
accuracy and recall are prioritized, a balanced dataset can help the algorithm
better recognize the low-frequency attack class, thus raising its recall for threat-
ening traffic. For comparative purposes we generated a relatively balanced subset
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consisting of all 604,589 attack traces and 1,028,362 legitimate traces. For classi-
fication, attack traces were labelled with a 1, and legitimate traces were labelled
with a 0, as shown in [3].

‘While numerous netflow classification variables were available, such as source
and destination IP addresses and ports, only a select few were relevant to classifi-
cation: duration (ms), payload (bytes), and packet count. From these values, two
other variables were constructed: payload per packet and duration per packet.

CIC dataset The second dataset

was adapted from the CIC’s c D £ F
IDS2017 dataset, used in [14]. S R R -7
This dataset has been w1dely used 11 ; 204.3636362 217.363632:
for classification studies due to its 2 : — =
wide assortment of attack classes : ; o usr
and its proprietary realistic back- 2 e
ground simulation. The dataset 8 o os s
offers a selection of more than 80 196 0 0244897959 6661734694
0 0.375 238.375

classification from variables per

bidirectional flow, flow duration Fig.4: A snapshot of the TCP data sample.

and payload to low-level charac-

teristics like the maximum packet payload of a given flow, as shown in [19].
The first step in adapting

the IDS2017 dataset for this [HiEEEEEEECEENN

. . pill duration bytes bytes_per_packet results packets_per_second packets
study was isolating DoS and

5.063925 383 4255555556 0 1.777277507 9
0.024066 452 226 0 83.10479515 2

DDoS traces from other at- 0.573531 26 8.666666667 1 5.230754746 3
tacks. This was accomplished 4.13186801 46 46 0 0.242021284 1
K K 0.062457 204 102 0 32.02203116 2

by wusing data exclusively 0.33681 218 109 0 5.938065972 2
. 0.000962 0 0 1 6237.006237 6

from the Wednesday Working 0.000199 170 85 0 10050.25126 2
: 0.025155 24 117 0 79.50705625 2

Hours and the Friday After- T oree p . : Soocon :
noon DDoS files. Within these 0.155199 55319 1229311111 4 289.9503218 45
. ” 0.434965 4195 466.1111111 0 2069131999 9

ﬁles, “bemgn and “attack 71.7019415 11601 2900.25 1 0055786495 4
0.050753 0 0 0 39.40653754 2

trace labels were converted to
0 and 1 respectively, for clas- Fig.5: A snapshot of the wider DoS/DDoS
sification. Then, to ensure the j,z45et.
compatibility of the dataset
with netflow data capture, each bidirectional flow was separated into two unidi-
rectional flows. O-packet “backward” flows were eliminated from the dataset.
Following this preparation, the classification variable list was trimmed and
constructed for netflow compatibility, as shown in Fig. 5. The variables kept from
the original set were the number of packets, the payload in bytes, the rate of
packets per second, and the rate of bytes per packet. From the packet count and
packet /second rate, a “duration” variable was constructed. Any infinite duration
values (resulting from division by 0) were cleared from the dataset. The end result
was a relatively balanced dataset with 1,005,995 legitimate background traces
and 640,417 attack traces.
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3.2 Proposed classifiers

For this study, two different decision tree-based ML classifications were used.
Random Forests (RFs) are an ensemble learning method known for providing
high-quality classification results with minimal user-end tuning — [9]. Although
RFs perform well with default settings, this study explored hyperparameter tun-
ing as a method for boosting their performance.

Gradient boosting (GB) takes a more refined approach to decision tree-based
classification. GB constructs decision trees iteratively, with each tree constructed
such that it “learns” from previous trees’ mistakes. GB typically performs bet-
ter than RFs, but only after more intensive hyperparameter tuning. A popu-
lar Python implementation of gradient-boosted decision trees is the XGBoost
(XGB) package, used in this study — [12]. A systematic approach was followed in
order to ensure the optimal hyperparameter tuning of the XGB classifiers used
in this study — [1].

3.3 SDN implementation

The SDN wused in this experi-
ment was simulated within NREL’s
Contralcr CEEP system infrastructure — [4].
The network was simulated us-
ing Minimega, a virtual machine
launching and management tool —

101

Switch 51 Switch §2

T A 2 1 . .
IIIT P o R e [7]. The simulated network consisted
100.0245 o 1001245 of one controller, two switches, and

20 hosts (10 per switch), as shown
in Fig. 6. The controller and hosts

) operated under Operating System
L E) v (0S) Ubuntu 18.04.4 LTS (gionic

10.0.0.X/24 10.0.1.X/24

Beaver), and the switches operated

Fig.6: A network diagram of the imple- under Cumulus Linux 4.1.1 OS.

mented network within CEEP Although Cumulus Linux is not
a traditional SDN switch OS, its

adaptability in terms of creation of
multi-layered hierarchical network design enables the implementation of SDN
solutions, as explained in [2]. It enabled the key SDN features required for this
study: traffic monitoring, switch-to-controller and host-to-host data transmis-
sion, and attack detection and mitigation. Fig. 7 shows the the visualization
of the network with both benign and attack traces, the details of which are
discussed in the results section.

Several scripts were used to facilitate the detection and mitigation of DoS and
DDosS attacks, all available in the project git repository — [3]. First, an “fprobe”
command was executed on each switch to initiate real-time traffic capture. This
data was passed to the controller, where it was captured as netflow data. Finally,
this data was parsed and tested for attacks in real-time, using a Python script
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on the controller. In the event of an attack, this script used iptables to remotely
disable traffic from an offending IP address.

In order to gauge the detec-
tion and mitigation capabilities
of the real-time machine learn-
ing testing script, DDoS attacks
were simulated using the Low Or-
bit Ion Cannon application — [6].
The script sent randomly gener-
ated TCP and UDP flood attack
packets to a specific port on a
victim machine, using IP address
spoofing — a process in which a
computer masks its own IP ad-
dress with another to make an
attack appear as though it came
from a trusted source.

Fig.7: Snapshot of the SDN solutions im-
plemented for this study. Red line: Attack
transmitted from a spoofed “gateway” IP ad-
dress to a victim workstation. Green line:
Benign switch-to-controller data transmis-
sion.

4 Data Analysis

4.1 Machine learning performance metrics

Accuracy, Precision, and Recall The primary figures used to evaluate a
learning machine’s performance are true and false positives and negatives, where
a “positive” in this study is an attack flow, and a “negative” is a non-attack flow.
A true positive (TP) denotes a positive accurately predicted as a positive; a true
negative (TIN) denotes a negative accurately predicted as a negative; a false posi-
tive (FP) denotes a negative inaccurately predicted as a positive; a false negative
(FN) denotes a positive inaccurately predicted as a negative.

These figures can be used to compute several metrics, including accuracy,
precision, and recall. Accuracy gives an overview of prediction correctness, pre-
cision gives the proportion of true positives to reported positives, and recall gives
the proportion of accurately reported positives [10].

y B TP + TN 0
Y = TPYFP+TN + FN
. TP TP
Precision = m (2) Recall = m (3)

The final model implemented in this study was refined using these metrics,
with confusion matrices providing TP, FP, TN, and FN counts. While maximal
accuracy was given high priority, high recall was an equally significant metric.
This is because, due to the high cost of not identifying an attack, the primary
goal of the model was to identify as many attacks as possible at the cost of
minimal false positives.
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ROC AUC Another metric used to evaluate
binary classifiers is the Area Under the Curve
(AUQ) for the Receiver Operating Characteristic
(ROC) Curve, where a higher ROC AUC indicates
a stronger ability to distinguish between classes.
ROC curves plot True Positive Rate (TPR) vs.
False Positive Rate (FPR), so an ideal ROC AUC
is 1, as shown in Fig. 8 and explained in [13]. This
indicates that the classifier has a 100% chance
of distinguishing between positive and negative
classes. Equations 4 and 5 provide the TPR and
FPR formulas.

TPR

FPR

Fig.8: Sample ROC — [13].

TP
~ TP+FN

FP

TP e a—
R TN+ FP

(4) FPR= (5)

5 Results and Discussion

5.1 TCP results

The first round of tests was performed on an abbreviated, 100,000-point, ran-
domly chosen subset of the balanced NREL TCP dataset (Table 1). Three RFs
were trained on this dataset, each on a unique set of classification variables. As
a baseline for comparison, the first set included the three relevant variables used
to identify netflow traces: duration (ms), packet count, and payload (bytes). To
probe for differences in non-linear relationships between benign and attack traf-
fic, we added the seconds/packet variable to the second set. For the same reason,
we added both the seconds/packet and the bytes/packet variables to the third
set. The final five-variable combination was found to be optimal, indicating that
the nonlinear relationships between packet count, duration, and payload differed
significantly between benign and attack traffic.

Table 1: Variable Set Performance Comparison.
Variable Key: P = Payload, D = Duration, PC = Packet Count, D/P =
Duration/Packet, P/P = Payload/Packet

Algorithm Variables | Accuracy Precision Recall ROC AUC
Random Forest | P, D, PC | 78.98 + 0.31 | 93.49 + 0.63 | 46.56 4+ 0.76 0.80
Random Forest P, ]];)7/;’07 79.08 £ 0.29 | 93.19 £ 0.59 | 47.04 + 0.74 0.80

P, D, PC,
Random Forest D/P, P/P 79.70 + 0.28|94.96 + 0.32|47.79 + 0.79 0.81

Once the classification variable list was optimized, a comparison was made
between classification on the full imbalanced and balanced NREL TCP datasets
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(Table 2). Although classification accuracy drastically increased on the imbal-
anced dataset, this was a byproduct of decreased attack prevalence. Virtually
every trace was labelled as legitimate, rendering the classifier ineffective. Thus,
the balanced dataset was chosen as the final dataset for RF optimization.

Table 2: Balanced vs. Imbalanced Data Performance Comparison.
Algorithm Balance | Accuracy Precision Recall ROC AUC

Random Forest |Imbalanced| 93.67 £+ 0.02 | 82.08 + 0.85 | 10.75 £+ 0.31 0.81
Random Forest| Balanced [81.90 + 0.10({94.98 + 0.15|53.98 + 0.24 0.84

With an optimal RF classifier pinned down, a comparison was made against
the XGBoost classifier, trained on the five-variable set (Table 3). Across all
metrics, the XGBoost classifier outperformed the best random forest.

Table 3: RF vs. XGB Performance Comparison.
Algorithm | Accuracy | Precision Recall |ROC AUC

Random Forest|81.90 4+ 0.10{94.98 + 0.15|53.98 + 0.24 0.84
XGBoost 83.43 95.25 58.19 0.85

ROC Curve

100000

1.0 OConfusmn Maﬂ;rlx]L

80000

o
o

60000

°
o
Actual

True Positive Rate
o
o

40000

0.2 1
20000

L —— ROC Curve (Area = 0.85) j Predicted

0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig.9: Testing set performance metrics for XGBoost classifier. Left: ROC curve.
Right: confusion matriz (0: non-attack, 1: attack).

5.2 Generalized DoS/DDoS results

Once the TCP-exclusive tests were completed, the optimization rounds were re-
produced for the CIC IDS2017 dataset (Table 4). This time, the first round of
RF tests was conducted to compare classification based on two variable sets. As
before, the first was the duration, packet count, and payload set. The second
paired these variables with the packets/second and bytes/packet variables. The
difference in performance this time was virtually nonexistent between the classi-
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fiers, indicating that the initial three variables differed significantly between the
dataset’s attack and non-attack traffic.

Table 4: Variable Set Performance Comparison.
Variable Key: P = Payload, D = Duration, PC = Packet Count, D/P =
Duration/Packet, P/P = Payload/Packet

Algorithm |Variables| Accuracy | Precision Recall |ROC AUC
Random Forest| P, D, PC |97.15 £ 0.04|95.60 + 0.07|97.14 £ 0.08 0.99
P, D, PC,
Random Forest D/P, P/P 97.15 £+ 0.04|95.57 &+ 0.07(97.17 + 0.08 0.99

With the RF optimization complete, an XGBoost classifier was again trained
on the five-variable dataset. The five-variable dataset was selected in order to
capitalize on all available netflow data. A balanced/imbalanced dataset compari-
son was not made for this dataset due to its innately balanced nature. This time,
the difference between the XGBoost and RF classifiers was less pronounced than
between the TCP-only classifiers. However, a non-negligible increase in recall was
observed. As time and resource efficiency are comparable for prediction-making
by trained RF and XGBoost algorithms, this increase in recall made the XG-
Boost classifier the better choice for real-time attack detection. In general, the
CIC DoS/DDoS classifiers performed significantly better than the TCP-exclusive
classifiers, likely due to the exemplary quality of the CIC IDS2017 dataset.

Table 5: RF vs. XGB Performance Comparison.

True Positive Rate

Fig. 10: Testing set performance metrics for XGBoost classifier. Left: ROC curve.
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5.3 Experimental Result Visualization

Through the CEE Platform
used to deploy the simulated
SDN, it was possible to vi-
sualize benign traffic passing
through the network, as well as
attack alerts signalled by the
machine learning algorithm, in
real-time.

On the SDN, attacks were
generated using the LOIC ap-
plication. A serialized version
of the trained XGB machine
learning algorithm was loaded
onto the controller and de-
ployed to detect them. As the
model was precompiled, pre-
dictions were rapid, occurring
in under a second. However,
performance on any specific
machine depends on computa-
tional resources.

Upon the detection of an at-
tack by the algorithm, the fol-
lowing preliminary mitigation
steps were taken: when mali-
cious traces were identified by
the algorithm, its containing script would produce output with information
about the attack’s source. Using this information, a signature-based rule would
be created for Suricata [11], an open-source Intrusion Detection System (IDS),
deployed in the platform back-end.

This IDS instance was con-
nected to the common tap inter-
face and could scan all communi-
cations in the platform in order
to identify the network flow in-
stance representing the malicious
packets. The identified flow was
then handled by the alerts mod-
ule to visualize the malicious flow
in real-time overlaid over benign
background traffic. Fig. 12: Detailed logs of alert events available

In case a real-time visualiza- jn platform
tion was missed, a detailed log of
each event was available on the platform’s GUI, as shown in Fig. 12. The missed

Fig. 11: Top: Visualization with normal traffic
flow. Bottom: Visualization of alert (in red)
simultaneously with normal traffic
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event could be compared to similar events in order to verify correct operation
of the malicious flow identification. These alerts were also simultaneously logged
in the experiment’s historical database, as shown in Fig. 13. Thus, all traffic
information could be analyzed post-experiment by exporting this dataset.

This experiment served to prove that the rule developed on the identified
malicious flow was capable of correctly identifying the attack. This leads to the
conclusion that containerization and deployment of the algorithm in the platform
backend, similar to the deployment of Suricata used for the visualization of
alerts, would allow for tighter integration with the CEE Platform in general.
In addition, as the XGB attack detection algorithm was agnostic to network
structure, in that it could scan traffic streams on a controller in any SDN for
attacks, these solutions could be implemented for an SDN of any topology.

> [timestano:| 09/17/2020-06:39:11.463497 [type: sur:
destPort:| 22 |_id:| iH7Bm8zNBK Iy oLGE _type:

ata (essage: [1:2260807:1] Suricata rule - Flood type detected clossification: Web Application Attack priority: 1 protocol: TCP (srcIP: 10.0.1.16 (srcPort:| 36876 [destIp:|10.0.0.6
e [_index: idsalerts _sc

> [tinestanp: 09/17/2020-06:39:13.493884 [type: s essage: [1:2260967:1] Suricata rule - Flood type detected |classification:|Web Application Attack (priority:| 1 (protocoli TCP (srolPi 1.6.1.16 [srcPort:| 36888 (destIPi 16.8.8.6

destPort:| 22 [_id:) 1370mmQ8znBK1ny_oLE _type: doc |_index: idsalerts [_sc

timestanp:| 89/17/2620-06:39:13.497974 (type suricata (message:| [1:2260807:1] Suricata rule - Flood type detected [clossification: Web Application Attack (priority: 1 protocol: TCP (srcIP: 10.0.1.16 (srcPort:| 36878 [destIp:|10.0.0.6
destport: 22 [_id: -H7BenQSznBKIny_oLoX _type: °

adsalerts _sc

> [tinestanp: 09/17/2020-06:39:22.434205 [type: s </ [1:2260007:1] Suricata rule - Flood type detected (classification: Web Application Attack [priority:| 1 (protocol: TCP (srclP: 10.0.1.16 (srcPort: 36074 (destIP: 10.6..6

adsalerts [_score: @

destport: 22 (_id: 0X7BmmG8zhEKIny_x7HU _type!

timestanp? 09/17/2020-06:32:62.069048 [type: s
destPort:| 22 |_id:| gn7DungszhBkiny _ToDs _type:

£ [1:2260007:1] Surdcst rule - Flood type detected (classification: Neb Application Attack [priorityi| 1 (protocols TCP (srclP: 16.8.1.16 (srcPorks| 36962 destiP: 10.8.8.6

> [tinestanp:| 09/17/2020-06:32:24.576529 [type: s
dastrort: 22 (Lid: A7DmGSzhEKIny_HIU _type!

Flood type detected classification: Web Application Attack priority: 1 [protocol: TCP [srcIPi| 10.8.1.16 [srcPort: 36086 (destIP:|10.9.0.6

> [timestanp: 09/17/2020-86:52:22.526423 [type: s
destport: 22 [_id: FX7DmmQSzhBKIny_nMIc _type:

Flood type detected [classification: Web Application Attack priority: 1 [protocol: TCP srcIP:| 10.8.1.16 [srcPort: 36864 (destip:| 10.9.0.6

> [tinestanp:| 09/17/2020-06:32:24.576822 [type: s ez [1:2260007:1] Suricata rule - Flood type detected (classification: Neb Application Attack [priority:| 1 (protocol: TCP (srclP: 10.8.1.16 [srcPort:| 36088 (destIP: 10...6

destrort:| 22 [ Lid: Ma7DmmQ8zhEKImy_nHIc _type! adsalerts _score:

Fig.13: Some alert logs available in historical database (elasticsearch)

6 Conclusions and Future Research

This study capitalized on SDN control centralization to develop single machine
learning algorithms capable of detecting DoS and DDoS attacks targeting any
host, or combination of hosts, in an SDN. Optimal machine learning classifiers
were determined for DoS and DDoS attacks in both a targeted (TCP-specific)
and a general (multi-protocol) case, with general case algorithm accuracy > 97%,
rivaling that of competing single-protocol algorithms.

The study also demonstrated the favorable effects of using modern enhanced
classification-based decision tree methods, such as gradient-boosted decision
trees. While random forests require little tuning to produce high-accuracy clas-
sifications, the additional tuning opportunities available for gradient-boosted
decision trees provided an avenue for increased detection performance in this
study, providing a > 1% increase in recall in the multi-protocol case.

Finally, this study laid the groundwork for DoS and DDoS attack mitigation
within an SDN framework and provided guidance for future research. Specifi-
cally, the creation of a single gradient-boosted decision tree algorithm capable
of detecting DoS and DDoS attacks across a variety of protocols has provided
a foundation upon which attacks from additional protocols can be detected.
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Likewise, the implementation of a scalable simulated SDN environment with
preliminary mitigation measures has provided a foundation for the construction
of more complex network topologies and more robust mitigation measures.
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