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HPC Environment

ESIF Data Center

 Warm water cooling

* Focus on energy efficiency
Eagle

e 2168 Node (Intel Skylake)

* 50 Node (Intel Skylake, Nvidia V100
GPU)

* Infiniband EDR
e 17 PB Lustre Filesystem




Stratus Environment

Big Data Analytics
*  data warehousing
* data management tools

Containerized Applications
*  multiple scheduling systems

*  Docker containers at the edge

*  Docker serverless functions

Growth In

*  loT support for field experiments
*  grid management studies

Ongoing Support for

* data processing workflows

*  public web applications

*  publishing of large open data sets
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High Performance Computing (HPC)

Highly optimized compute for simulation
— Numerically intensive
— Parallelized
— Tightly coupled
Scheduled & Allocated resource
Optimized for long running resulting in low cost per flop
* Periodic incremental investment
— Systems “on the floor” 4~5 years
— Fixed cost
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* Dynamic cost * High Availability
— Spot — Data streams
— Reserved — Multiple cloud sites
— On-demand — Dynamic scaling

* Big Data — Scheduling for ML
— Analysis pipelines
— Distribution
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Edge

* Deploying computational resources “close” to the loT device
* Driven by
— Real or Near-realtime
— Data reduction
* Highly dynamic
* Challenges around fault tolerance
— Multiple single points of failure expected
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Edge
* Low Latencies
* Smart aggregation

Cloud

High availability
 Manage to the edge
Security

Dynamic Scale

HPC

e Large scale modsim
e MLtraining &
Inference

* Process very large
datasets

Edge Source

Devices
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loT Device
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loT Device
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Devices

FedRAMP Moderate
Greengrass Gateway
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ML Inference

Data Collector

with API Support
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Areas of Concern Reference

Architecture

 Edge
— Highly constrained compute capabilities
— Data separated by location or devices
— Intermittent connectivity and potential signal points of failure
 Cloud
— Complexity
— Variable costs
— Complex deployments
— Data transfer costs
* HPC
— Scheduling and scheduling contention
— Wall time limits and policies
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/ Hame\ /Energ?\ '4h ermost\z}'. ,/ Washing\-.l 1. Device data is collected from sensors: power use, temp

l Ten;eperature | I' é" sage -l |\ Control | { I'hc"l.ac h'"le | 2. Devices receive control instructions: schedule wash, turn uptemp
nsor \ ensor / \, ontrol

\\ / \\._‘ L — 3. Devices respond to control instructions: SUCCESS / FAIL

4. Devices emit events: wash started

Overview

* Improve smart
controls

Point Data / Events Events / Control Confirmations

i\ Home Devices

° Measure satisfaction & \‘_\_> Apphcatton Stream | : ; ( Application W 1. Gateway receives or polls for device data: temperature, FAIL events

=
§ QE’ MUM"W Manager Inta ke Contrals 2. Inference is performed on real-time data: Will home need more energy at 87
° M h H KT8 S (B Anomaly Detection) A J ) ‘
easure cnanging E: — 3. Gateway packages data into data streams: washer data stream, aggregate data stream
{ S Sl " N
= £ \‘m,:,} 4. Gateway application issues control instructions: start wash at 9 PM
energy usage o~ Events / Points / Aggregate Data
= ML Inference o
(Ex Energy Predications) 5. Data streams (aggregated, gated, relevant data) sent to cloud: if FAIL send all data
e Simulation of effects =8¢ — " *+*~—— "+~
CI I o — P\t Can | Pt l‘t ——., 1. Receives secure data streams: washer, aggregate, gated
ou oT Timeseries oT Data ol Monitorin ) ) ) )
atla rge sca le '_{ S(orage _ Database/ Analytics ) | Streams | | Portal ’ | 2 Inference is performed on near rea-time data: is home effiient?

M T 2. Analysis across larger number of sources: is neighborhood efficient?
Near Real Time
Inference / H-uhe' 4. Data used to re-train models: weather impact on energy use

Scale or G
l‘;@w& 5. Data stored in timeseries database for analytics: when were last 4 washes?

Scheduled N
. MLTraining |

Goals

. Optimize energy usage
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1. Data synced to HPC storage to support HPC jobs: temp, wash, controls, events

~
ki HPC HPC | HPC
for current and future %  Modeling | _ Analysis | | Modeling | 2. Large scale modeling jobs run during allocated time: grid impact study
i nfr astructure E l . N J (B ﬁm} 3. HPC jobs used to train and evaluate initial models: add surrounding neighborhoods
% HPC 4. HPC modeling jobs leveraging inference performed: new energy optimization model eval.

® Im prove the ene rgy 5. HPC analysis jobs leverage cloud timeseries and ML: did new model work at scale?

usage profile for
adoption of renewable
energy resources

[ L 1. Operators monitor homes, grid responses: washer didn't run as expected, home offline
[ Analysts J [ Researchers J [ Site Operators ]ﬂ 2. Researchers run modeling jobs and re-train models: weather impacts integrated into grid study
3. Analysts perform inference and analytical HPC work: test impact of device responses at scale

Operators and
Researchers
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Workflow Components

* Data Generation and Intake * Machine Learning Inference
— Live access to data streams — Assist future behavior

* Data Cleaning/Transformation (prediction)
— Multiple device integration — Anomaly detection
— Data quality checks — Create simulation data

— Aggregation
* Synthetic Data/Modeling
— Tuning strategic model
— Forecasting or policy simulation
— Data often provided up to cloud

* Machine Learning Training
— Regular scheduling
 Edge Device Management
— AWS GreenGrass

Transforming ENERGY through computational excellence

NREL | 15



Edge Device
Management

 Deployment of
ML to the Edge

* Management of
Large footprint

e Monitor streams
e Live dashboards
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Smart Home

—
Smart Home
L Reported State
_

Home Gateway Appliance

* Edge gateway devices in the homes are responsible

Certificate Management

and Authorization and inferrence

Data stream applications

for electric device controls and schedules.
@ « Application code is built into a tested image for
docker deployments of code updates to edge gateways.
ML Thermastat Control Containerized Application « Machine Learning models are also deployed
tothe edge gateways for inferance on live data:
°\‘. ~ Anomaly detection
= ~ Smart controls
~ Smart scheduling
ML Electrical Workload Scheduling Greengrass V2 Gateway ~ Mlerting
Device management:
@ . Device shadows Device security Data stream Monitoring
- Application deployments monitoring analytics and alerting
- ML model deployments

Secure MQTT endpoints
to receive encrypted data
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Challenges

Complexity
— Incrementally built upon highly available
and scalable services

— Development of patterns and practices
— AWS costs and limits

Data flow and Data management
— Published data streams with APIs

— Compressed files
— Query access via DBMS systems
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