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Evaluate the Potential for Hybridized Nuclear Power

Project Goal Plants to Economically Generate Hydrogen — One Aspect
of the H2@Scale Vision

Quantify the potential financial impact of hybridizing Xcel Energy’s Prairie
Island and Monticello nuclear power plants to produce hydrogen

Prairie Island — 1096 MW

Credit: Xcel Energy Credit: Xcel Energy NREL | 3




Add itional Evaluate the Potential for Hybridized Nuclear Power
Plants to Economically Generate Hydrogen — One Aspect
of the H2@Scale Vision

Objectives

* Provide investment grade information for supporting Xcel Energy’s
greenhouse gas (GHG) reduction efforts to be used for internal and
external stakeholder reviews and approvals.

e Quantify opportunity while considering impacts on generation required
to meet all loads in the region

* Improve understanding of the potential for hybridized nuclear power
plants to achieve the $2/kg hydrogen production cost target

* Develop tools and capabilities that better characterize hybridized
hydrogen production on the grid so new opportunities can be analyzed.
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Interest in Using Nuclear Energy to Produce Hydrogen is a Key

Hyd rOgen Opportunity for H2@Scale

Reference
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https://www.energy.gov/eere/fuelcells/h2scale

https://www.nrel.gov/docs/fy21osti/77610.pdf

Analysis of the economic potential of H2@Scale indicates that nuclear energy
may provide a large quantity of hydrogen in the future (yellow bars in the
righthand figure). This project is analyzing the economics of that opportunity
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Overall Use Best-in-Class Analysis Tools and Transfer

Information Between them to Address Analysis
Questions

Approach
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Figures of Merit

Previous analyses* used a price-taker approach for grid modeling. This approach addresses the impacts of changing NPP generation

on grid operations — essential to estimate impacts on an integrated utility like Xcel Energy.
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https://www.hydrogen.energy.gov/pdfs/review20/sa175_boardman_2020_p.pdf

Figures of Merit

1. Annual Adjusted Production Cost (APC): total variable cost of non-NPP
generation in Northern States Power (NSP) footprint, accounting for
sales/purchases with neighboring zones (which may have different
locational prices), summed across all hours.

* Adapted from Midcontinent Independent System Operator (MISO) metric

2. Annual NPP Net Operating Income: difference between the annual
income (energy + operating reserves + H2) and annual operating cost
(fixed costs + additional FlexOps cost) of an individual NPP

e Standard pro forma calculation

3. System-wide market costs: APC plus Annual NPP Operating Cost. Two

methods:
A. Total Cost —do not include H2 revenue (i.e., does not benefit end rate
payers)

B. Net Cost —include H2 revenue (i.e., benefits end rate payers)
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Overall Use Best-in-Class Analysis Tools and Transfer

Information Between them to Address Analysis
Questions

Approach
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Figures of Merit

Previous analyses* used a price-taker approach for grid modeling. This approach addresses the impacts of changing NPP generation

on grid operations — essential to estimate impacts on an integrated utility like Xcel Energy.
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Approach Demand Curve Development Methodology

* Hydrogen demand for refineries: based on reported average H, use/BBL of crude
processed at refinery

* Hydrogen for steel refining (direct reduction of iron - DRI): based on capacity of
exiting steel plants, assuming 30 kg_H,/MT of steel (i.e., 30% H,/70% NG by energy)

* Hydrogen for synthetic hydrocarbon production: based on CO, available from
adjacent ethanol plants and 3:1 H,:CO, mole ratio

* Hydrogen for blending with natural gas for power generation: assuming 30%
blending ratio by volume

AN

Demand curve is adjusted with H, compression and delivery cost

AN

Threshold H, price set to breakeven with steam methane reformed-H, for refineries,
fuel cell electric vehicles and DRI, and to breakeven with NG on (higher heating value
- HHV) Btu cost basis for blending

» Assumed $22.2 tax per metric ton of CO, NREL | 9



H2 Applications and Developed Delivery-& Carbon Cost-

Adjusted Demand Curves for Prairie Island
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Primary hydrogen demands: petroleum refining and blending for power generation
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H2 Applications and Developed Delivery-& Carbon Cost-

Adjusted Demand Curves for Monticello

Hydrogen Demand Curve (Future)
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Delivery adjusted demand curve for Monticello shown on right
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Overall Use Best-in-Class Analysis Tools and Transfer

Information Between them to Address Analysis

Approach Questions
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Figures of Merit

Previous analyses* used a price-taker approach for grid modeling. This approach addresses the impacts of changing NPP generation

on grid operations — essential to estimate impacts on an integrated utility like Xcel Energy.
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Electricity System Modeling: Nodal Hourly Production

Cost Models for NSP and Zonal for Neighboring Regions

e Generation and transmission
e Xcel Energy’s Integrated Resource
Plan within the Northern States
Power (NSP) Territory
e ReEDS capacity expansion model
results for other regions
e Operating strategy and costs
e PLEXOS Production Cost Modeling
* Nodal resolution within the black
boundary: 15,605 nodes with full
unit commitment and operating
reserves representation
e All other zones: zonal resolution
(i.e., copperplate inside of zone),
no unit commitment, and generally
no operating reserves

g ) .—Nodal Border
: LS i " \ *Approximate
a v 25 | Detailed approach for grid modeling in supplemental slides " ! *3
S,

N
<



PLEXOS modeling for hourly system operation

¢ Commercial-grade production cost software ﬁ‘ \ S |
*  Hourly chronological optimization (f._—ﬁ_, -:.:—f | Locational prices,
— Minimizes system wide variable cost b=\ [~ 5| Pproduction cost
 Commits and dispatches generating units based N e
on: i T
— Electricity demand HNREL
— Operating parameters of generators (ramp
rates, minimum generation level, outages, Dispatch
etc.)

o information,
— Transmission grid parameters (flow limits, curtailment,

contingencies) fuel usage . S .
— Operating reserve requirements . Lt G
* Used for system generation and transmission g N 4
planning ]/V oy ST :\ g
— Increasingly used for real-time operation < %4: S ; Transmission

rir s

congestion
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Monticello LMP Heat Map

600005 MNTCE31G 22

W adienm |E|JILI‘IIIII'PI wan 1R ! e e |

100 150 200 250 300

Q
[72]
g
o
=
O
st

lI ! |l ! miEnm IEI J'Lﬂllll' e Iill III :lli

50 100 150 200 250 300 350

Difference

50 100 150 200 250 300 350 150 200 250 300 350
2030 2034

Day




LMP {$/MWh) at NPP node

Price Duration Curves
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Minimum prices across the scenarios range from
-0.00005 to -0.41 $/MWh (just negative enough
to cause the NPPs to flex)
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Hour (EST)

Used Production Cost Modeling to Estimate Hourly

Locational Marginal Prices (LMPs)

Estimated LMPs for each hour of the years 2026, 2030, and 2034 at both NPPs
under business-as-usual (BAU) (must-run) and FlexOps (reduce generation

when revenue<cost —i.e., LMP<S0/MWh) operating strategies.

Hourly Prices at Prairie Island in 2026 (BAU)
oSy

Price Duration Curves for Prairie Island
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Ramping is minimal (<48 hours/yr) in FlexOps scenarios over all years
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Approach

Use Best-in-Class Analysis Tools and Transfer

Information Between them to Address Analysis
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Figures of Merit

Previous analyses* used a price-taker approach for grid modeling. This approach addresses the impacts of changing NPP generation

on grid operations — essential to estimate impacts on an integrated utility like Xcel Energy.

* https://www.hydrogen.energy.gov/pdfs/review20/sal75 boardman 2020 p.pdf
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Approach

Characterization

HTSE Cost and Performance

HTSE Cost and Performance Characterization

 Light Water Reactor (LWR)-integrated HTSE process model developed using AspenTech HYSYS software to
evaluate system mass & energy balances; model results used as basis for calculation of system performance
parameters including specific energy consumption and system efficiency

— Thermal Delivery Loop (TDL) used to supply LWR nuclear process heat for HTSE process feed water
vaporization

— Electrical power supplied by LWR for electrolyzer and balance of plant power demands; LWR power cycle
model used to estimate reduction in electrical power generation resulting from diverting LWR power cycle
steam to TDL to meet HTSE plant thermal demands.

* System capital costs obtained based on equipment sizing parameters computed by HYSYS process model.
AspenTech Process Economic Analyzer and cost data from previous HTSE system design reports used to
estimate HTSE system capital costs for present analysis.

— Modular construction system design basis: 25 MW-dc HTSE modules assembled in offsite manufacturing
facility and installed in parallel to achieve specified H, production capacity. Each HTSE module specified to
include feed stream conditioning, heat recuperation, product purification, and sweep gas supply equipment.
Cost reductions for modular components achieved through economies of mass production; 95% learning
curve used to estimate modular system component costs for Nth-of-a-kind HTSE plant.

— Scalable (non-modular) equipment used to provide nuclear process heat to HTSE modules, high-pressure
compression of hydrogen product, and common plant support functionality (water purification, process
control, etc.). Scalable equipment sizing varies with HTSE plant capacity, and capital cost reductions are
realized through conventional economies of scale

Parameter Large Scale Production
System Design Basis

Stack Operating T

Stack Operating P

Cell Voltage

Stack Inlet H,0 Composition
Steam Utilization

Cell Area

HTSE modular block capacity

Cells per HTSE modular block
Current Density

Area Specific Resistance
Operating Mode

Sweep Gas

Sweep Gas Inlet Flow Rate

H, Product Purity

H, Product Pressure
TDL Heat Transfer Fluid
TDL transport distance

800°C [1]

5 bar

1.285 V/cell
90 mol% [1]
80%

144 cm? [1]

25 MW-dc
(1000x capacity increase
from [1])

136,000

1.0 A/cm?
0.375 Q-cm?
Constant V
Air [1]

Flow set to achieve 40
mol% O, in anode
stream outlet

99.9 mol%

69 bar (1000 psi)
Therminol-66 [2,3]
1.0 km [4]

[1] O’Brien et al, Intl J Hydrogen Energy 45 (2020)
[2] O’'Brien et al, INL/EXT-17-43269 (2017)
[3] Frick et al, INL/CON-18-46075 (2019)

[4] Vedros et al, INL/EXT-20-60104 (2020)
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Approach

HTSE Cost and Performance
Characterization
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Process Operating Mode Simulations
*Normal Operating Mode
o 'c«'w_:lna Ebenrcns —Design point operating specifications listed in Table (right)
—Constant voltage SOEC stack operating mode results in
decrease in stack operating current associated with cell
degradation; Effect of stack degradation captured in capacity
factor specification - HTSE process availability (95%) x cell
degradation adjustment factor (95.3%) = 90.5%
—Economic model includes allowance for annual stack

replacements to restore design capacity at the start of each
operating year

K-400_sigd

*Hot Standby Operating Mode

—Stack operating temperature, pressure, inlet composition,
and inlet flow rate (process gas and sweep gas) maintained at
nominal values using TDL steam generator, process and
sweep gas blowers, electric topping heaters, and recycle of
H,/H,0 process gas from stack outlet and H, from product

!

recovery

—0% stack power during hot standby mode; stack inlet and
Iopping oot outlet compositions equal during hot standby operating mode
(zero steam utilization)
—H,0 component flow rate into product recovery subprocess
maintained at design point value NREL | 21



: Updated High Temperature Steam Electrolysis (HTSE)
Accom pl ishment Performance and Cost Estimates to Improve

Characterization of “Hot Standby Mode” and Credibility

_ Improved process modeling to better estimate energy requirements
(including "Hot Standby” requirements)

Plant Design Capacity 1086 MW-e
Design Hydrogen Production Capacit: 697 tpd . . . . .
gn rverog pacty P Established non-proprietary capital cost estimates using stack costs
Process Power Requirement, Normal 1086 MW-ac based on HFTO HTSE H, Production Record and balance-of-plant
Thermal 187 MW-t equipment costs estimated from AspenTech Process Economic
Process Power Requirement, Hot Standby Analyzer and literature data sources
Electrical ﬁﬂ 9.3 MW-ac (0.9% nominal)
Thermal .so‘b: 35.5 MW-t (19% nominal) 1200 o $1,000
° ©
Specific Energy Consumption A = < 1000 = im
Electrical Q"e\ \)\" 37.4 kWh-ac/kg H, s § = 5800
Thermal o 6.4 kWh-t/kg H, 2 300 ==
= S & $600
System H, Production Efficiency (energy content 88.9% HHV basis g. 600 |9 =
of product H, divided by electrical energy - 2 o $400
equivalent input) o 400 s £
= a un
. o v 9 5200
System CAPEX (Nth-of-a-kind — NOAK)* a 200 < 2
Stack Cost $155/kW-dc - % - $0
Direct Capital Costs $514/kW-ac 0 BN WS NG N O
Total Capital Investment $656/kW-ac electrical thermal 838888888 8 8
s
Annual Operating & Maintenance (O&M) Costs* W steam generators HTSE Plant Capacity (MW-dc)
Fixed (labor, maintenance, overhead) $17.95/kWe-yr M electrolyzers
Variable (stacks, water, energy excluded) $5.06/MWh-e M topping heaters ® Modular Equip
compressors W Scalable Equip
NREL | 22

* 2016 USD, scales with plant capacity M pumps Indirect Costs



Overall Use Best-in-Class Analysis Tools and Transfer

Information Between them to Address Analysis
Questions

Approach
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Figures of Merit

Previous analyses* used a price-taker approach for grid modeling. This approach addresses the impacts of changing NPP generation

on grid operations — essential to estimate impacts on an integrated utility like Xcel Energy.

NREL | 23
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Price-Taker Co-optimization:

Demand Curve, Electrolyzer Size, and Storage Size

- 5:‘:"55&':"22:5.3%/ e
* H2demand curve s s an 0 = e S| e
. . . outer loop e = tond - om |
— Sets “electricity price threshold” | for the below ;.‘-:->—l
BT R, 7
* Electrolyzer size \
— Sets minimum and maximum generation £ =y
— Tradeoff between electrolyzer capital cost and H2
production/storage/revenues - ot
e
* Storage size s o vz o lcaye

— Tradeoff between storage capital cost, electrolyzer capital
cost, H2 revenues, and constant H2 output constraint

MO N E R MO N AR M AN S MR Mm@

R R R R R R i R

N

- Final result: fixed NPP generation profile that achieves an:l_ V_/‘\ﬁ\ \ A J\
equilibrium between all of these dimensions - - o

NREL | 24



Accomplishment

Hybrid NPP Producing Hydrogen:
Price-Taker Optimization Results

A hydrogen price greater than
those in the demand curves is
necessary to pay back a near-
term investment.

Constant hydrogen production
is found to be more profitable
than hybridization. A later
construction date increases the
value of hybridization

When hybridized, net present
value (NPV) is maximized with
short storage residence times
(4-8 hr) and minimum
oversizing of the electrolyzer

Impact of Electrolyzer Oversizing and Storage Residence Time on NPV

P Electrolyzer
Oversizing

Illustrative NPVs of hybridized systems and one with
constant hydrogen production

o 1

6 48 &0 ks
Storage Residence Time (hr)

I i vl [ ey
Size Sales Factor in 2026
713 MW, 166,100 kg/yr 98% '3‘0
Hydrogen \3(0 \&5

1,037 MW, 143,608 kg/yr 58% Q'&e‘ 690
1,037 MW, 136,769 kg/yr 56%
1,037 MW, 130,552 kg/yr 54%
1,037 MW, 114,886 kg/yr 48%

259

NREL | 25



Overall Use Best-in-Class Analysis Tools and Transfer

Information Between them to Address Analysis
Questions

Approach
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Figures of Merit

Previous analyses* used a price-taker approach for grid modeling. This approach addresses the impacts of changing NPP generation

on grid operations — essential to estimate impacts on an integrated utility like Xcel Energy.
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Figure of Merit: Adjusted
Production Cost

Net Exchange with
Generator variable cost (VO&M, emissions, and NSP

8760 : \ - i import (LMP)

r———k———j f___l___w
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Energy Alliance, LLC ( the Manager and Operator of the Idaho National Laboratory), the Electric Power Research Institute, Inc., and Northern States Power Company. Distribution of these slides is limited to the CRADA participants and may not be shared with any
other person, company, or entity.

NREL | 27



Figure of Merit: Annual NPP Net
Operating Income

Approach
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These values will all be taken from PLEXOS outputs, with the addition of the H2 demand curve (H2
price for a given amount of H2 produced) from ANL
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Energy Alliance, LLC ( the Manager and Operator of the Idaho National Laboratory), the Electric Power Research Institute, Inc., and Northern States Power Company. Distribution of these slides is limited to the CRADA participants and may not be shared with any
other person, company, or entity.
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Figure of Merit: Annual System

Approach Wide Market Costs

Since Xcel NSP currently does not have a formal policy for how to incorporate the H2 revenues into rate case
accounting, we calculate two variants to bookend the benefit that H2 revenues provide to the system wide
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Overall Use Best-in-Class Analysis Tools and Transfer

Information Between them to Address Analysis
Questions

Approach
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Figures of Merit

Previous analyses* used a price-taker approach for grid modeling. This approach addresses the impacts of changing NPP generation
on grid operations — essential to estimate impacts on an integrated utility like Xcel Energy.
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Detailed Workflow for Power System Modeling

Approach

Only for NSP footprint

Model/process
Output
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NREL Power
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NPP operating and bid
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ANL INL

Inputs from INL and ANL

Entire study area Focus area*** only

*Some additional modifications were made, including assuming an 80-year NPP lifetime and low battery storage costs
**Including min up/down time, forced outage rates, start costs, minimum generation level, max ramp rates
***”Eocus area” zones are run at a nodal resolution with full unit commitment and operating reserve representation
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Preliminary Estimates of Figures of Merit for BAU and

FlexOps Scenarios

_ st ’
\.& 3> S :::tnual NPP Annual System Annual System
Qﬁe 6‘}’\& Annual APC Oberatin Wide Market Wide Market Cost

2 .niome 9 Cost (Total) (Net)
BAU 2026 516.1 151.3 835.5 835.5
BAU 2030 34262 28.1 662.02 662.02
BAU 2034 237.7 -14.0 557.1 557.1
Poae P 5180 1519 837.4 837.4 .
;:g;olos 342.55 28.4 661.96 661.96
;:)Z);OPS 236.7 -15.1 556.1 556.1 o
H2 2026
H2 2

030 Under Development
H2 2034

Values shown with more significant figures than is warranted by the method and
data so that the viewer can see very small differences between results.

All metrics decrease as
between 2026 and 2034
due to an increase in
lower marginal cost
resources (e.g., wind and
solar PV)

FlexOps more favorable
than BAU in 2030+2034
NPP loses money in 2034
for both BAU & FlexOps
due to a reduction in
energy prices
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Summary

 Multiple inputs are important to estimate the potential for hybridization
— Existing and potential regional hydrogen markets
— Future electricity market prices

— Equipment costs and performance especially when operated flexibly (high
temperature steam electrolyzers)

e Business structures and cases inform key metrics and potential for investments

— Variations in structures will inform technique for optimizing the scale and
operating strategy of hybrid production systems

e Analysis can

— Identify key parameters for making hybrid nuclear power plants profitable for
utility owners

— Identify key performance parameters where additional R&D is needed for
these technologies to be profitable NREL | 33



Thank You
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ApprOaCh Developed a Unique Iterative Methodology for Hybrid

System Optimization with Varying Electricity Prices
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