Transforming ENERGY

Renewable Hydrogen: A Key Enabler for the Energy Transformation

Bill Tumas

Associate Lab Director Materials, Chemical and Computational Sciences National Renewable Energy Laboratory—NREL

Keith Wipke, Bryan Pivovar, Mark Ruth, Huyen Dinh, Jennifer Kurtz, Kevin Harrison, Randy Cortright

International Conference on Hydrogen

Global Energy Cooperation Center (GECC) Ministry of Foreign Affairs in the Republic of Korea

September 30, 2021

WWW.Nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

H2@Scale

https://www.energy.gov/eere/fuelcells/h2scale

Link clean energy and and chemicals for a wide range of applications *transportation, grid, industry, buildings, agriculture (cross-sector coupling)*

- Grid firming/integration
- Long-term energy storage
- Feedstock and fuel
- Transportation
- Low-carbon energy dense fuels
- Chemicals, materials, products
- Electrification of industrial processes
- Reactive capture and conversion of CO₂

MAKE, STORE, MOVE, and USE

H2@Scale

www.hydrogen.energy.gov

https://www.energy.gov/eere/fuelcells/h2scale

H₂ for Grid Integration and Support

Supporting grid stability

- Typical utility profile to validate performance
- System response, not just stack
- 120 kW PEM stack operating on NREL's electrolyzer stack test bed
- Flexible demand side management tool could be used to provide frequency response service

Electrolyzer systems are flexible electrical loads that can help stabilize the electricity grid and enable higher penetrations of renewable electricity

Analysis of Technical & Economic Potential of H2@Scale

	Serviceable	2015 Market		Demand	Supply
Application	Consumption Potential	for On- Purpose H2	Reference		
	(MMT/yr)	(MMT/yr)	R&D Advances + Infrastructure		
Refineries and the chemical processing industry (CPI) ^a	7	6	Low NG Resource / High NG Price		
Metals	12	0			
Ammonia	4	3	Electrolysis R&D		
Biofuels	9	0	Lowest-Cost		
Synthetic hydrocarbons	14	1	Electrolysis		
Natural gas supplementation	16	0	0 5	10 15 20 25 30 35 40	0 0 5 10 15 20 25 30 35 40
Seasonal energy storage for the electricity grid	15	0	Refinerie	Hydrogen (Million MT/yr) es Methanol	Hydrogen (Million MT/yr) SMR
Industry and Storage Subtotal	77	10	Ammoni	a Medium/Heavy	Duty FCEVs Nuclear HTE
Light-duty fuel cell electric vehicles (FCEVs)	21	0	Dioluei		
Medium- & Heavy-Duty FCEVs	8	0			
Transportation Fuel Subtotal	29	0			
Total	106	10			

Reference (Oct. 2020): <u>https://www.nrel.gov/docs/fy21osti/77610.pdf</u>

Hydrogen Shot: "1 1 1" Second State Sta

One of several pathways

Hydrogen

- Reduce electricity cost from >\$50/MWh to
 - \$30/MWh (2025)
 - \$20/MWh (2030)
- Reduce capital cost >80%
- Reduce operating & maintenance cost >90%

All pathways for clean hydrogen included: Thermal conversion w/ CCS, advanced water splitting, biological approaches, etc.

2020 Baseline: PEM low volume capital cost ~\$1,500/kW, electricity at \$50/MWh. Need less than \$300/kW by 2025, less than \$150/kW by 2030 (at scale)

Pathway to Economical Generation of H₂ by Electrolysis

Pathway to Economical Generation of H₂ by Electrolysis

Research and Development Needs

Electrocatalysts

Improved performance and durability Thrift/replace precious metals

Membranes

Resistance to differential pressures/cycling Alkaline systems (AEM)

Durability/Testing

Degradation mechs; accelerated testing Bankability

Cell/Electrode Layer

Impact of operating conditions Electrode structure/performance Manufacturing/Scale-up

Bipolar Plates/Porous transport layers

Structure/performance; Corrosion Manufacturing/Scale-up

Learning curves

Balance of Plant

Power supplies, inverters; DC systems High temperature compatible materials Impact of operating conditions

From Powders to Power—Fundamental Science to Large-Scale Testing

Catalyst Development for Water Electrolysis

H2NEW Consortium: <u>H2</u> from <u>Next-generation</u> <u>Electrolyzers of Water</u>

A comprehensive, concerted effort focused on overcoming technical barriers to enable affordable, reliable & efficient electrolyzers to achieve <\$2/kg H₂

- Launched in FY21
- Both low- and high-temperature electrolyzers
- \$50M over 5 years

The focus is not new materials but addressing components, materials integration, and manufacturing R&D

Clear, well-defined stack metrics to guide efforts.

Draft Electrolyzer Stack Goals by 2025

	LTE PEM	HTE
Capital Cost	\$100/kW	\$100/kW
Elect. Efficiency (LHV)	70% at 3 A/cm ²	98% at 1.5 A/cm ²
Lifetime	80,000 hr	60,000 hr

Durability/lifetime is most critical, initial, primary focus of H2NEW

- Limited fundamental knowledge of degradation mechanisms.
- Lack of understanding on how to effectively accelerate degradation processes.
- Develop and validate methods and tests to accelerate identified degradation processes to be able to evaluate durability in a matter of weeks or months instead of years.
- National labs are ideal for this critical work due to existing capabilities and expertise combined with the ability to freely share research findings.

H2NEW's Approach to Addressing LTE Durability

Operando cell studies

- ✓ Determine key stressors accelerating degradation
- ✓ Identify relevant degradation mechanisms at the component level

Ex situ component studies Membrane

- Limits of durability and the impact of different membrane chemistry
- ✓ Variables: Side chain, equivalent weight, pre-aging, reinforcements, recombination layers and/or radical scavenging
- ✓ Impact of seal area/edges, pressure

Accelerated Stress Tests

- ✓ Orders of magnitude acceleration of component degradation rates
- ✓ Assess cost and durability trade-offs, accelerate materials development, MEA integration, and optimal operating strategies for LTEs

Understanding and Evaluation

2025 80,000 h 2.24 μV/h $0.5 \text{ mg}_{PGM}/\text{cm}^2$

Understanding

✓ Quantify losses associated with different operating conditions

✓ Propose and demonstrate degradation mitigation measures

Catalyst

- ✓ Aqueous electrochemical cell coupled with ICP-MS
- ✓ Potential and potential profile dependence of the dissolution of anode catalysts
- ✓ Correlation with oxidation state

Mitigation Strategies

Solutions

- ✓ Develop and implement operational, materials, and cell design-based degradation mitigation strategies
- \checkmark Coordinate with AST development, technoeconomic analysis, and cell fabrication tasks

In-cell Diagnostics:

I-V curves, impedance spectroscopy, cyclic voltammetry, fluoride emission Voltage loss breakdown/modeling

Ex situ component characterization:

SEM, TEM, X-ray spectroscopy, scattering, tomography

Consortia are an Important Part of DOE Strategy for Green Hydrogen Challenges

- Analysis
- *Crosscutting:* Manufacturing
 - Codes & Standards

www.h2new.energy.gov www.awsm.org www.h-mat.org www.hymarc.org www.millionmilefuelcelltruck.org www.electrocat.org

Energy Material Network Data Hubs: Software Platforms for Advancing Collaborative Energy Materials Research

White, Munch, Wunder, Guba, Van Allsburg, Dinh, *et al.* International Journal of Advanced Computer Science and Applications, 12(6), 2021. <u>http://dx.doi.org/10.14569/IJACSA.2021.0120677</u>

https://www.energy.gov/eere/energy-materials-network/energy-materials-network

disseminate them the community.

HydroGEN Advanced Water Splitting Consortium

Materials Theory/Computation

Bulk & interfacial models of aqueous electrolytes

High-throughput spray pyrolysis system for electrode fabrication

Advanced Materials Synthesis

Conformal ultrathin TiO₂ ALD coating on bulk nanoporous gold

Characterization & Analytics

Stagnation flow reactor to evaluate kinetics of redox material at high-T

TAP reactor for extracting quantitative kinetic data

Key Accomplishments

- Achieved 70% PEM electrolyzer cell efficiency while improving durability & reducing cost
- Scaled up baseline cell by 8X with 9% STH efficiency & 100 h stability integrated PV-PEC system
- Discovered new STCH compounds with H₂ production capacities > state of the art at lower temperatures
- Demonstrated a metal-supported o-SOEC cell with dramatically improved stability

Solar Fuels (Direct sunlight to chemical energy) Approaches to Solar Hydrogen (Photoelectrochemistry): $H_2O \rightarrow H_2 + \frac{1}{2}O_2$

Adapted from: Ager et al. EES 8, 2811 (2015)

Huyen Dinh, NREL
https://h2awsm.org

http://mission-innovation.net/wp-content/uploads/2021/03/Converting-Sunlightinto-Solar-Fuels-and-Chemicals-MI-Challenge-5-roadmap-Feb-2021-final.pdf

https://science.osti.gov/bes/Community-Resources/Reports

Hydrogen Utilization: Renewable Methane Production from H₂ and CO₂

- Utilize excess electricity production for the electrolysis of water to H₂ and O₂
- Optimized strain of methanogenic archaea to perform methanation under industrial conditions
- 98% Carbon conversion of CO₂ to CH₄
- Post-processing for pipeline quality natural gas

Significance and Impact

- Potential long term storage strategy via conversion of electricity & CO2 to CH4
- High efficiency CO2 capture and conversion strategy
- Demonstrated route to renewable methane

K. Harrison, N. Dowe ,...

Key Regions and Market Growth - Examples

1. Includes early stage capacity deployment of projects with full commission after 2030; 2. Nel and Nikola announced a project with 1 GW electrolyzer capacity; project timeline TBD (not included in projects to the right)

3. Electrolyzer will be built in stages, scaling up over time to reach up to 3 GW capacity and with first production in 2025; 4. Scheduled to be on stream in 2025. Deployment timeline not announced.

5. A pilot plant will become operational by 2024, the potential upscaling to 1.6 GW will start in 2026

(From Sunita Satyapal, DOE EERE-HFTO)

McKinsey & Company

U.S. Hydrogen Electrolyzer Locations and Capacity

To report a planned or installed PEM electrolyzer with a capacity of 0.5 MW or greater in your state, please contact fuelcells@ee.doe.gov ^F

U.S. DEPARTMENT OF

ENERGY EFFICIENCY &

Office of

Technology R&D in a System

Grid and Renewables Coupling

Electrolyzers as dispatchable loads in power systems, dynamic operations and integration with renewable production

Hydrogen Production

Full stack scale electrolyzer and BOP performance, system optimization when coupled to grid/renewables and end uses Distribution and Storage

System scale distribution and storage challenges, vehicle and ground storage performance and modeling

End Use Applications

Transportation applications, industrial applications, natural gas blending, renewable synthetic molecules

Safety and Sensors

Development and evaluation of safety and sensor systems, component failure characterization

Enabler: Center for Hydrogen Safety

Global Center for Hydrogen Safety established to share best practices, training resources and information

High Priority: Lessons learned and best practices on safety

Encourage membership (industry, govt, universities, labs) to join CHS

Advanced Research on Integrated Energy Systems (ARIES)

https://www.nrel.gov/aries/

Collaborations and partnership

Getting to Gigatons and Terawatts: Challenges and Opportunities

Hydrogen can play a major role in all energy sectors: grid, transportation, industry, buildings, agriculture

- Interconversion of electrical and chemical energy
- Grid integration
- Pathway to electrify energy sectors—cross-sector coupling
- Fuel, feedstocks, chemicals/materials

Hydrogen Earthshot (1 1 1)

Opportunity for parallel development and deployment

 Accelerate innovation for MAKE, MOVE, STORE, USE

International Collaboration