

COLORADOSCH

Atomic Layer Deposition for Materials-Based H₂ **Storage: Opportunities and Limitations**

Noemi Leick,^a Wade A. Braunecker,^a Rachel E. Mow,^{a,b} Nicholas A. Strange,^c Steven T. Christensen,^a Thomas Gennett,^{a,b}

240th ECS Fall Meeting: October 10th-14th, 2021

a: National Renewable Energy Laboratory; Golden, CO b: Colorado School of Mines; Golden, CO

c: SLAC Accelerator Laboratory; Menlo Park, CA

A future built on renewable energies relies on hydrogen storage

Hydrogen storage technologies

NREL | 3 **02/22**

Hydrogen storage technologies

Atomic Layer Deposition (ALD)

- Coating retains nanostructure: increased mass and heat transfer
- Atomically thin to maintain the gravimetric capacity the carrier
- Manipulation of the thermodynamic pathway
- Catalyst additive to enhance reaction rates

Schematic of ALD

First half-cycle: metal-precursor

Second half-cycle: reactive-precursor

Examples of how ALD can benefit H_2 storage materials

Cu(I) sites into a 2D COF

O Cuⁿ

Encapsulation of $Mg(BH_4)$

Catalysis for de-/rehydrogenation of LOHCs

65.4 kJimal H

Hydrogenatio

Dehydrogenation

 $+9H₂$

 $-9H₂$

ean LOHC)

Covalent organic frameworks for $H₂$ storage

Covalent organic frameworks for H_2 storage: wet-chemical approach

Covalent organic frameworks for H_2 storage: wet-chemical approach

Covalent organic frameworks for H_2 storage: wet-chemical approach

Opportunity for ALD to simultaneously…

- ...target specific binding sites for Cu-precursors, and …
- …deposit atomically dispersed copper
- …in a non-reduced state, e.g. -Cu(II) formate, -Cu(I)

Cu₂O ALD:

Prec. A: copper(I) hexafluoro-2,4 pentanedionate cyclooctadiene aka: Cu(hfac)(cod)

Prec. B: H_2O

Sekkat et al., *Commun Mater* 2, [78 \(2021\)](https://doi.org/10.1038/s43246-021-00181-8)

Examples of how ALD can benefit H_2 storage materials

65.4 kJ/mol H $+9H$ Hydrogenatio ean LOHC) Dehydrogenatio

ALD is a promising technique to engineer open metal sites in COFs

Cu^l

Encapsulation of $Mg(BH_4)$

Catalysis for de-/rehydrogenation of LOHCs

Complex hydride: $Mg(BH_4)_2$

$Mg(BH_A)$ ₂ vs. DOE targets

- Exceeds DOE targets:
	- Volumetric H_2 capacity (82 g/L)
	- Gravimetric H_2 capacity (14.9 wt%)

Y. Filinchuk [et al., Angew. Chem. Int. Ed. \(2011\), 50, 11162 –11166](https://doi.org/10.1002/anie.201100675)

- Requires improvements:
	- Kinetics
	- Reversibility:
		- Suppression of B_2H_6 liberation: fuel cell damage and material loss
		- Suppression of $B_{12}H_{12}$ formation: thermodynamic energy well
	- Desorption temperature: 300˚C for neat material

N. Leick et al., *[ACS Appl. Energy Mater.](https://doi.org/10.1021/acsaem.0c02314)* 2021, 4, 2, 1150–1162 **12/22** G. Severa et al., *[Chem. Commun.](https://doi.org/10.1039/B921205A)*, 2010, 46, 421-423

$Mg(BH_4)_2 + ALD$ of Al_2O_3

Temperature Programmed Desorption

Room temperature ALD to prevent phase change and H₂ release of γ- Mg(BH₄)₂

Al-precursor: 8 s Trimethylaluminum $(TMA, AI(CH₃)₃)$

O-Precursor: 8 s Water $(H₂O)$

$\log(BH_4)$ ₂ + ALD of Al₂O₃ Temperature Programmed Desorption

$\overline{\textsf{Mg}}\overline{\textsf{(BH)}_4}$ ₂ + ALD of Al₃O₃

Porosimetry based on N₂ physisorbtion

N. Leick et al., *[ACS Appl. Energy Mater.](https://doi.org/10.1021/acsaem.0c02314)* 2021, 4, 2, 1150–1162

$Mg(BH_4)_2 + ALD$ of Al_2O_3

X-Ray Diffraction - *in situ* heating

N. Leick et al., *[ACS Appl. Energy Mater.](https://doi.org/10.1021/acsaem.0c02314)* 2021, 4, 2, 1150–1162

$Mg(BH_4)$, + TMA: not self-limiting $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{8}$ $\frac{vdw \text{ radius}}{8H_4 = 2.05 \text{ Å}}$

From 11B, 27Al NMR, DRIFTS, TPD: \triangleright No reaction with B – pure exchange of BH₄⁻ and CH₃ \triangleright No incorporation if Al-containing species

 $\text{Al}_2(\text{CH}_3)_6 + 3 \text{ Mg(BH}_4)_2 \rightarrow 2 \text{ Al(BH}_4)_3 + 3 \text{ Mg(CH}_3)_2$

N. Strange, N. Leick, S. Shulda, A. Schneemann, V. Stavila, A. Lipton, M. Toney, T. Gennett, S. Christensen - Reactive Vapor-Phase Additives towards **18/22**
Destabilizing γ-Mg(BH₄)₂ for Improved Hydrogen Release (subm

Examples of how ALD can benefit H₂ storage materials

ALD is a promising technique to engineer open metal sites in COFs

Encapsulation of metal hydrides and/or infiltration of additives can be tuned using ALD

Catalysis for de-/rehydrogenation of LOHCs

Hydrogenatio

Dehydrogenatio

ean LOHC

Liquid Organic Hydrogen Carriers (LOHC)

D. Teichmann et al., *[Energy Environ. Sci.](https://doi.org/10.1039/C1EE01454D)*, 2011, 4, 2767-2773

Examples of LOHC uses

Atomic Layer Deposition of heterogenous catalysts

pubs.acs.org/acscatalysis

Review

Interface Tailoring of Heterogeneous Catalysts by Atomic Layer **Deposition**

Bin Zhang[®] and Yong Qin^{*®}

Annual Review of Chemical and Biomolecular Engineering

Nanoengineering Heterogeneous Catalysts by Atomic Layer Deposition

Joseph A. Singh,^{1,*} Nuoya Yang,^{2,*} and Stacey F. Bent³

Singh JA, et al. 2017. Annu. Rev. Chem. Biomol. Eng. 8:41-62

ALD can benefit H₂ storage materials

ALD is a promising technique to engineer open metal sites in COFs

Encapsulation of metal hydrides and/or infiltration of additives can be tuned using ALD

The ALD catalyst development can be leveraged for optimized de-/rehydrogenation of **LOHCs**

Acknowledgements

The authors gratefully acknowledge research support from the Hydrogen Materials - Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract Number DEAC36- 08-GO28308.

NREL/PR-5900-81276

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.