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A future built on renewable energies relies on hydrogen storage
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Hydrogen storage technologies

02/22

700 bar, 40 g/L 20 K, 71 g/L

Wieliczko, M., & Stetson, N. (2020). Hydrogen technologies for energy 
storage: A perspective.

MRS Energy & Sustainability , 7, E43

https://dx.doi.org/10.1557/mre.2020.44
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Hydrogen storage technologies

03/22

700 bar, 40 g/L 20 K, 71 g/L

H2 carriers are materials that:

 hydrogen-rich 
(near ambient conditions)
 liquid- or solid-state
 release H2 on demand

Application requirements:

 hydrogen uptake and release
 thermodynamics rates

 kinetic rates 
 cyclability

 mass of the carrier
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Atomic Layer Deposition (ALD)

• Coating retains nanostructure: 
increased mass and heat transfer

• Atomically thin to maintain the 
gravimetric capacity the carrier

• Manipulation of the thermodynamic 
pathway

• Catalyst additive to enhance reaction 
rates 

First half-cycle: metal-precursor

Schematic of ALD 

Second half-cycle: reactive-precursor

04/22
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Cu(I) sites 
into a 2D COF

Encapsulation of 
Mg(BH4)2

Catalysis for
de-/rehydrogenation

of LOHCs

Examples of how ALD can benefit H2 storage materials
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Covalent organic frameworks for H2 storage
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700 bar, 40 g/L 20 K, 71 g/L

Material used in this work:
2D imine-based 

covalent organic framework (COF)
for simultaneous tuning of

surface area and H2 binding

 High surface area:
~1 H2 wt%/ 500 m2.g-1

 H2 adsorption enthalpy: 
15-25 kJ/mol W. Braunecker et al., 

Cryst. Growth Des. 2018, 18, 7, 4160–4166

https://doi.org/10.1021/acs.cgd.8b00630
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Covalent organic frameworks for H2 storage:
wet-chemical approach

07/22W. Braunecker et al., ACS Materials Lett. 2020, 2, 3, 227–232

HAADF carbon copper

https://doi.org/10.1021/acsmaterialslett.9b00413
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Covalent organic frameworks for H2 storage:
wet-chemical approach

08/22W. Braunecker et al., ACS Materials Lett. 2020, 2, 3, 227–232

Cu(I) needed as the H2 binding site

Cu(I) is atomically dispersed

https://doi.org/10.1021/acsmaterialslett.9b00413
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Covalent organic frameworks for H2 storage:
wet-chemical approach

1. Partial fluorination of COFs
stabilizes the structure

2. Fluorination to increase isosteric 
heat of adsorbtion with H2

09/22
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Opportunity for ALD to 
simultaneously…

• …target specific binding sites 
for Cu-precursors, and …

• …deposit atomically dispersed 
copper

• …in a non-reduced state, e.g. 
-Cu(II) formate, 
-Cu(I)

3-step Cu(0) ALD:

Prec. A: Cu-(OCHMeCH2NMe2)2
Prec. B: formic acid

Prec. C: hydrazine 

T. Knisley et al., 
Chem. Mater. 2011, 23, 20, 4417–4419

Cu(II) formate

Cu(0)

Cu2O ALD:

Prec. A: copper(I) hexafluoro-2,4-
pentanedionate cyclooctadiene 
aka: Cu(hfac)(cod)

Prec. B: H2O

Sekkat et al., 
Commun Mater 2, 78 (2021)

10/22

https://doi.org/10.1021/cm202475e
https://doi.org/10.1038/s43246-021-00181-8
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Encapsulation of 
Mg(BH4)2

Catalysis for
de-/rehydrogenation

of LOHCs

Examples of how ALD can benefit H2 storage materials

ALD is a promising 
technique to 

engineer open metal 
sites in COFs
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Complex hydride: Mg(BH4)2

11/22

700 bar, 40 g/L 20 K, 71 g/L

Material used in this work:
porous and nanostructured 

γ-Mg(BH4)2
for increased H2 diffusion 

and reaction rates
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Mg(BH4)2 vs. DOE targets

• Exceeds DOE targets:
– Volumetric H2 capacity (82 g/L)
– Gravimetric H2 capacity (14.9 wt%)

Y. Filinchuk et al., Angew. Chem. Int. Ed. (2011), 50, 11162 –11166

• Requires improvements:
– Kinetics
– Reversibility:

• Suppression of B2H6 liberation: 
fuel cell damage and material loss

• Suppression of B12H12 formation: 
thermodynamic energy well

– Desorption temperature: 300˚C for 
neat material

N. Leick et al., ACS Appl. Energy Mater. 2021, 4, 2, 1150–1162 
G. Severa et al., Chem. Commun., 2010, 46, 421-42312/22

https://doi.org/10.1002/anie.201100675
https://doi.org/10.1021/acsaem.0c02314
https://doi.org/10.1039/B921205A
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Mg(BH4)2 + ALD of Al2O3
Temperature Programmed Desorption

0.6 wt%

1.6 wt%

13/22

Al-precursor:
8 s

Trimethylaluminum 
(TMA, Al(CH3)3)

O-Precursor:
8 s

Water (H2O)

Room temperature ALD 
to prevent phase change and 

H2 release of γ- Mg(BH4)2

N. Leick et al., ACS Appl. Energy Mater. 2021, 4, 2, 1150–1162 

https://doi.org/10.1021/acsaem.0c02314
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Mg(BH4)2 + ALD of Al2O3 Temperature Programmed Desorption

Higher amounts of H2 desorbed at 
lower temperature with ALD 

 Suppression of diborane 
(toxic to people, damages fuel cells)

H2 desorption B2H6 (diborane) desorption

0.6 wt%

1.6 wt%

14/22N. Leick et al., ACS Appl. Energy Mater. 2021, 4, 2, 1150–1162 

https://doi.org/10.1021/acsaem.0c02314
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Mg(BH4)2 neat
SSA: 680 m2/g

Mg(BH4)2 3c. Al2O3
SSA: 487 m2/g

Mg(BH4)2 10c. Al2O3
SSA: 316 m2/g

Mg(BH4)2 100c. Al2O3
SSA: 73 m2/g

Mg(BH4)2 100c. Al2O3
Mg(BH4)2 10c. Al2O3
Mg(BH4)2 3c. Al2O3
Mg(BH4)2 neat

SSRL BL 1-5; 1m, 
E = 15.5keV 

(i.e. lower-Q)

region sensitive to 
~ 10 Å pores

Small angle X-ray spectroscopy on 
Al2O3 ALD-coated γ-Mg(BH4)2

Porosimetry based on N2 physisorbtion

15/22

Mg(BH4)2 + ALD of Al2O3

 Pores ~10 Å are accessible to TMA and H2O 
throughout the entire deposition process  
(“swelling” of the 𝛾𝛾-Mg(BH4)2 framework)

 ALD allows for the selectivity between 
infiltration and encapsulation by using 
size-exclusive ALD precursors.

N. Leick et al., ACS Appl. Energy Mater. 2021, 4, 2, 1150–1162 

https://doi.org/10.1021/acsaem.0c02314
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Mg(BH4)2 + ALD of Al2O3

N. Leick et al., ACS Appl. Energy Mater. 2021, 4, 2, 1150–1162 

 First desorption performs better with Al2O3 than 
without it

Desorption kinetics were improved by a factor of 3

Absorption of H2 remains challenging, with or 
without Al2O3 ALD

https://doi.org/10.1021/acsaem.0c02314


NREL    |    19

↑exo
𝜆𝜆=0.885415 Å

20˚C

100˚C

175˚C

225˚C

Differential Scanning Calorimetry

loss of crystalline 
structure

X-Ray Diffraction - in situ heating

Hydrolysis:

During ALD:
Mg(BH4)2 + 2H2O Mg(OH)2 + B2H6 + 2H2

After ALD – during heating:
Mg(BH4)2 + nH2O Mg(BO2)2 x (n-4)H2O + 8H2

17/22

Mg(BH4)2 + ALD of Al2O3

N. Leick et al., ACS Appl. Energy Mater. 2021, 4, 2, 1150–1162 

https://doi.org/10.1021/acsaem.0c02314
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Mg(BH4)2 + TMA: not self-limiting vdW radius
BH4

- = 2.05 Å
-CH3 = 2.0 Å

Al2(CH3)6 + 3 Mg(BH4)2 → 2 Al(BH4)3 + 3 Mg(CH3)2

complete 
reaction

partial reaction 
forming mainly 

MgBH4CH3

From 11B, 27Al NMR, DRIFTS, TPD:
 No reaction with B – pure exchange of BH4

- and CH3
 No incorporation if Al-containing species

N. Strange, N. Leick, S. Shulda, A. Schneemann, V. Stavila, A. Lipton, M. Toney, T. Gennett, S. Christensen - Reactive Vapor-Phase Additives towards 
Destabilizing γ-Mg(BH4)2 for Improved Hydrogen Release (submitted)

18/22
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Catalysis for
de-/rehydrogenation

of LOHCs

Examples of how ALD can benefit H2 storage materials

ALD is a promising 
technique to 

engineer open metal 
sites in COFs

Encapsulation of 
metal hydrides 

and/or infiltration of 
additives can be 
tuned using ALD
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Liquid Organic Hydrogen Carriers (LOHC)

13/3019/22
D. Teichmann et al., Energy Environ. Sci., 2011, 4, 2767-2773 

LOHCs…

Have a high energy density

 Store H2 at ambient 
temperatures and pressures

Can have low (eco)toxicity

Conformable different types 
of tanks

https://doi.org/10.1039/C1EE01454D
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Examples of LOHC uses

13/3020/22

10 – 50 bar
> 150 ° C

1 – 5 bar
250 – 350 °C

H. Jorschick et al., Int. J. Hydro. Energ. 2019, 44, 59, 31172-31182
S. Duerr et al., ChemSusChem 2017, 10, 42 – 47

https://www.greencarcongress.com/2017/07/20170728-
ahead.html

dibenzyltoluene

https://doi.org/10.1016/j.ijhydene.2019.10.018
https://dx.doi.org/10.1002/cssc.201600435
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Atomic Layer Deposition of heterogenous catalysts

13/3021/22
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ALD is a promising 
technique to 

engineer open metal 
sites in COFs

Encapsulation of 
metal hydrides 

and/or infiltration of 
additives can be 
tuned using ALD

The ALD catalyst 
development can be 

leveraged for optimized
de-/rehydrogenation of 

LOHCs
22/22

ALD can benefit H2 storage materials
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