

Atomic Layer Deposition for Materials-Based H₂ Storage: Opportunities and Limitations

Noemi Leick,^a Wade A. Braunecker,^a Rachel E. Mow,^{a,b} Nicholas A. Strange,^c Steven T. Christensen,^a Thomas Gennett,^{a,b}

240th ECS Fall Meeting: October 10th-14th, 2021

a: National Renewable Energy Laboratory; Golden, CO

b: Colorado School of Mines; Golden, CO

c: SLAC Accelerator Laboratory; Menlo Park, CA

A future built on renewable energies relies on hydrogen storage

Hydrogen storage technologies

MRS Energy & Sustainability, 7, E43

Hydrogen storage technologies

Atomic Layer Deposition (ALD)

- Coating retains nanostructure: increased mass and heat transfer
- Atomically thin to maintain the gravimetric capacity the carrier
- Manipulation of the thermodynamic pathway
- Catalyst additive to enhance reaction rates

Schematic of ALD

First half-cycle: metal-precursor

Second half-cycle: reactive-precursor

Covalent organic frameworks for H₂ storage

Covalent organic frameworks for H₂ storage: wet-chemical approach

Covalent organic frameworks for H₂ storage: wet-chemical approach

Covalent organic frameworks for H₂ storage: wet-chemical approach

- Partial fluorination of COFs stabilizes the structure
- 2. Fluorination to increase isosteric heat of adsorbtion with H₂

. oDCB, nBuOH, 3M Acetic Acid 120 °C, 3 Days

> 2. Cu(II)formate, MeOH 60 °C, 24 h

Opportunity for ALD to simultaneously...

- ...target specific binding sites for Cu-precursors, and ...
- ...deposit atomically dispersed copper
- ...in a non-reduced state, e.g.
 - -Cu(II) formate, -Cu(I)

Cu₂O ALD:

Prec. A: copper(I) hexafluoro-2,4pentanedionate cyclooctadiene

aka: Cu(hfac)(cod)

Prec. B: H₂O

Sekkat et al., Commun Mater 2, 78 (2021)

engineer open metal sites in COFs

of LOHCs

Complex hydride: Mg(BH₄)₂

$Mg(BH_4)_2$ vs. DOE targets

- Exceeds DOE targets:
 - Volumetric H₂ capacity (82 g/L)
 - Gravimetric H₂ capacity (14.9 wt%)

Y. Filinchuk et al., Angew. Chem. Int. Ed. (2011), 50, 11162 –11166

- Requires improvements:
 - Kinetics
 - Reversibility:
 - Suppression of B₂H₆ liberation: fuel cell damage and material loss
 - Suppression of B₁₂H₁₂ formation: thermodynamic energy well
 - Desorption temperature: 300°C for neat material

N. Leick et al., <u>ACS Appl. Energy Mater.</u> 2021, 4, 2, 1150–1162 G. Severa et al., <u>Chem. Commun.</u>, 2010, 46, 421-423

$Mg(BH_4)_2 + ALD \text{ of } Al_2O_3$

Temperature Programmed Desorption

$Mg(BH_4)_2 + ALD \text{ of } Al_2O_3$

$Mg(BH_4)_2 + ALD \text{ of } Al_2O_3$

loss of crystalline structure

$\overline{Mg(BH_4)_2}$ + TMA: not self-limiting

 $\frac{\text{vdW radius}}{\text{BH}_4^-} = 2.05 \text{ Å}$ -CH₃ = 2.0 Å

From ¹¹B, ²⁷Al NMR, DRIFTS, TPD:

- \triangleright No reaction with B pure exchange of BH₄ and CH₃
- ➤ No incorporation if Al-containing species

 $Al_2(CH_3)_6 + 3 Mg(BH_4)_2 \rightarrow 2 Al(BH_4)_3 + 3 Mg(CH_3)_2$

ALD is a promising technique to engineer open metal sites in COFs

Encapsulation of metal hydrides and/or infiltration of additives can be tuned using ALD

Catalysis for de-/rehydrogenation of LOHCs

Liquid Organic Hydrogen Carriers (LOHC)

LOHCs...

- ➤ Have a high energy density
 - ➤ Store H₂ at ambient temperatures and pressures
- ➤ Can have low (eco)toxicity
- Conformable different types of tanks

D. Teichmann et al., *Energy Environ. Sci.*, 2011, 4, 2767-2773

Examples of LOHC uses

Atomic Layer Deposition of heterogenous catalysts

Review

Cite This: ACS Catal. 2018, 8, 10064-1008

pubs.acs.org/acscatalysis

Interface Tailoring of Heterogeneous Catalysts by Atomic Layer Deposition

ALD overcoating

ALD modification

Interface tailoring of heterogeneous catalysts by ALD

In confined nanospaces In synergetic environments

Annual Review of Chemical and Biomolecular Engineering

Nanoengineering Heterogeneous Catalysts by Atomic Layer Deposition

Singh JA, et al. 2017.

Annu. Rev. Chem. Biomol. Eng. 8:41–62

ALD is a promising technique to engineer open metal sites in COFs

Encapsulation of metal hydrides and/or infiltration of additives can be tuned using ALD

The ALD catalyst development can be leveraged for optimized de-/rehydrogenation of LOHCs

Acknowledgements

The authors gratefully acknowledge research support from the Hydrogen Materials - Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract Number DEAC36-08-GO28308.

NREL/PR-5900-81276

www.nrel.gov

