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Abstract

In the PV Fleet Performance Data Initiative, high-frequency data from commercial

and utility-scale photovoltaic (PV) systems have been collected to examine perfor-

mance loss rates (PLRs) at a fleet scale. To date, performance data from more than

7.2-gigawatt (GW) capacity, 1700 sites and 19,000 inverters—approximately equiva-

lent to 6% to 7% of the entire US PV market—have been collected. An overall PLR of

�0.75%/year was found, which is in line with historical and recent findings. Tracked

silicon (Si) and cadmium telluride (CdTe) performed comparably with all fixed-tilt sys-

tems. Higher PLRs were found for hotter temperature zones; cooler climates exhibit

a median �0.48%/year loss, which increases to �0.88%/year in hotter climates.

High-efficiency module technologies showed median PLRs in line with conventional

Si technologies but demonstrated markedly different PLR behavior when filtered only

for low-light conditions <600 W/m2. Causes for this technology-dependent behavior

are under investigation.
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1 | INTRODUCTION

Utility-scale photovoltaic (PV) net generation across the United States

exceeded 3% in June of 2021 with higher penetration in certain

locales, for example, California exceeding 20% during the same time.1

With PV rapidly increasing its share of generation, dependable elec-

tricity production is of utmost importance especially in an age of more

extreme weather events. Accurately assessing the extent of PV per-

formance loss over the lifetime of a plant helps to highlight reliability

and durability deficits. Most components and products gradually lose

their functionality over time consistent with the second law of ther-

modynamics.2 For PV modules and systems, this gradual loss over the

intended lifetime is typically very small compared with diurnal and

seasonal fluctuations. However, the small relative size is financially

magnified by (1) the size of the system, (2) the number of systems,

and (3) the long-expected lifetime of 25–30 years. Reducing the size

of this gradual loss leads to increased net present value and increased

lifetime.3 Moreover, warranty validation is very important, as more

module manufactures are adopting warranties based on the gradual

performance loss. In addition, understanding the mechanisms behind

the observed degradation will provide insights for improved future

products. Therefore, correctly quantifying performance loss over time

is an integral part of accurate and dependable electricity generation

for current and future PV generations. Some of the authors have pro-

vided a summary of published literature on the topic of performance

loss rates (PLRs) to provide a guideline to the community.4 Other prior

summaries of failures, typically characterized by sudden performance

loss, have also been published for a large fleet of 100,000 systems;

however degradation effects could not be assessed because only

5 years of annual performance data were available.5
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Valuable insights from literature can be glimpsed, but the investi-

gated products tend to be older and the variety in technology and

location may be limited. Investigations of a large number of modules

and systems providing a general overview of the state of the industry

in a particular location are difficult to do but have seen an increased

interest.6–9 Because it takes several years to accumulate high-quality

data, it is important to remember that studies on PLRs or curves only

provide a temporary glimpse into the state of systems and may be

subject to change. In this study, we use the large database from the

PV Fleet initiative to investigate performance loss for thousands of

systems across the United States and provide insights to PV

stakeholders.

2 | PV FLEET INITIATIVE

In the PV Fleet initiative, high-frequency data are aggregated into one

database to provide PV plant owners, operators, analysts, and

researchers an opportunity to study PV performance on a large scale

across the United States, as shown in Figure 1. The most common

data frequency of the entire database is 15-min intervals with the

data frequency extremes extending for some systems from 1- to

60-min intervals. The effort is distinctive because of the large number

of systems; more than 1700 sites, with approximately 19,000 individ-

ual inverter data streams, provide a high-level perspective of PV sys-

tems performance. The total monitored capacity has surpassed

7.2 gigawatts (GW) or between 6% and 7% of the entire installed

capacity in the United States10 depicted in Figure 1. In addition, the

fleet consists of primarily large-scale commercial and utility-scale sys-

tems with an average size of 4.1 megawatts (MW) and nonresidential

systems, which may have different performance and reliability chal-

lenges.11 The majority of the systems fall between 100 kilowatt

(kW) and 1 megawatt (MW) with long tail extending above 100 MW

and shorter tail towards 10 kW. The technology breakdown in the pie

chart of Figure 1B illustrates a majority in crystalline silicon (c-Si) PV

with a small percentage of thin-film technology, mostly cadmium tellu-

ride (CdTe)-based modules. Additionally, more than 20% consists of

high-efficiency technologies such as passivated emitter and rear cell

(PERC) and n-type technologies that the industry is increasingly

adopting.12

As suggested by the broad geographic distribution in Figure 1B,

the fleet covers a range of climate types. Rather than displaying the

well-known, but agriculture-focused Köppen–Geiger climate classifi-

cation, we show instead the PV-specific temperature zones (rack) of

Karin et al.13 Temperature and humidity are two main drivers of PV

performance and loss, although other environmental factors such as

wind, thermal cycling, irradiance and ultraviolet light in particular are

important too.14 The equivalent temperature zone represents an

Arrhenius-weighted equivalent temperature, and the humidity zones

are based on the specific humidity. Higher numbers represent hotter

and more humid regions, respectively. The composition of this dataset

with respect to PV-specific climate zones is shown in Table 1, along

with the broader US fleet as represented by the April 2020 utility-

scale power plant database from the US Energy Information Adminis-

tration.15 In general, we have close but not exact match to the

broader US fleet by climate zone.

F IGURE 1 (A) Geographical distribution of
the PV systems considered here (gray dots,
turning black with collocated sites) with color-
coded PV-specific temperature zones (rack) in the
United States. (B) Technology pie chart by
number of inverters and (C) system size
distribution
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3 | METHOD AND DATA QUALITY
ASSURANCE

With a dataset of this size, automatic data quality assurance

(QA) routines are essential to obtain accurate information. Data qual-

ity outcomes for each data stream in the fleet are shown in Figure 2,

tabulated by anomaly type. PLRs can be particularly influenced by

nonphysical shifts in the observed quantities such as power, irradi-

ance, or temperature and in time. This can be caused by sensor issues

(replacement, misalignment, and drift) or computer error (time zone or

scale change). Changepoint detection routines are used to detect data

shifts and automatically correct time shifts in individual inverter and

energy meter data streams. Data shifts in observables are partitioned

into sections where only the longest continuously passing time period

is retained and used for further analysis. Future QA versions could

potentially include automated correction to shifts in the observ-

ables16,17 which should increase the percentage of passing systems.

Data shifts were the most common reason for rejection of a data

stream, followed by systems with less than 2 years of normalized per-

formance data—the minimum requirement for using the year-on-year

methodology in RdTools.18,19 Missing data are the next highest cate-

gory; data streams are rejected if they contain a substantial percent-

age of data gaps (>25% of daytime data) because of the resulting

inflated uncertainty in PLR.20 Sometimes, metadata such as the orien-

tation of the system was inaccurate leading to erroneous performance

projections. We employ unsupervised machine learning routines to

determine system orientation more accurately, with additional manual

validation before applying any azimuth modifications.21 Higher direct

current (DC)-to-alternating current (AC) ratios or inverter loading

ratios have become more common, which causes the inverter to limit

the output of the system. This phenomenon is referred to as

“clipping,” as the daily power output curve appears to be trimmed

during the most productive days. Because excessively high DC-to-AC

ratios can mask underlying degradation trends, we reject data streams

where more than 10% of the points are clipped. Even after passing

the data QA, approximately 10% of inverter data streams were erro-

neously influenced by data issues, specifically data shifts. In this case,

the normalized performance traces for three analysis methods in

RdTools were examined to find the best PLR not affected by data

shifts. The three analysis types are discussed in detail below.

Accepted data were then analyzed to estimate PLR. Typically,

PLR is understood to quantify the total recoverable (e.g., operational)

and nonrecoverable losses.22 In this study, we use the term to refer to

DC and AC subsystem degradation where a negative value constitutes

a loss. Compared with a naïve approach, data are initially filtered to

remove the impact of outages and clipping prior to extracting a PLR.

Outages would generally increase performance loss, while clipping

can obfuscate module and DC-side degradation. The analysis methods

used here have been previously described and are available open-

source in RdTools.19 Briefly, the workflow begins by normalizing the

raw inverter energy to the expected energy based on irradiance and

module temperature. The data are then filtered to remove outages,

plane of array irradiance outside of 200–1200 W/m2, anomalous tem-

perature outside the range �50�C to 110�C, and times of clipping

using a geometric (i.e., logic-based) clipping filter.23 After filtering, data

are aggregated daily, and the RdTools year-on-year method is used to

estimate annual degradation. Except where specifically noted, we use

AC power or energy in this study.

The three common normalization methods of the PV performance

data used in RdTools are (1) local irradiance and temperature sensors,

(2) satellite irradiance and data from the National Solar Radiation

Database (NSRDB), and finally, (3) modeled irradiance under detected

clearsky time periods.24 Each method has distinct advantages and dis-

advantages. The most precise method is to use locally sited sensors

F IGURE 2 Data quality assurance chart of various anomalies of
inverter time series passing or affected by a quality issues

TABLE 1 PV climate zone comparison between the broader US
PV fleet (second column) and systems studied here in the PV Fleet
initiative (third column)

PV climate zone label

(temperature/humidity)

Power plants

USA (%)

PV Fleet

(%)

T2:H2 0.2 0

T3:H2 1 0.6

T4:H2 0.5 0

T5:H2 0.1 0

T6:H2 0 0

T3:H3 0.1 0

T4:H3 2.1 0.6

T5:H3 3.5 4.8

T6:H3 2.8 1.6

T7:H3 0.9 5.1

T3:H4 0.9 0

T4:H4 35.7 34.6

T5:H4 35.4 34.5

T6:H4 7.8 12.8

T7:H4 0.5 3.4

T5:H5 2.8 0.8

T6:H5 5.6 1.1
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after passing aforementioned quality checks. However, physical sen-

sors can be prone to drift and measurement bias if not regularly

cleaned and calibrated. In addition, some systems are not equipped

with local sensors, necessitating one of the other two normalization

methods. In the clearsky model method, consistent annual environ-

mental conditions are assumed; thus, real environmental trends such

as pollution from nearby wildfire can unintentionally bias PLR results.

Modeled clearsky assumptions are reasonable for systems with over

5 years of performance data, but the method tends to be less accurate

over shorter time periods.25 Using satellite irradiance data avoids the

local sensor susceptibility to drift and real environmental changes over

short time periods. However, the accuracy over short time periods is

also not ideal for PLR assessment, particularly since all-sky conditions

are considered.25 We therefore stick to sensor-based analysis where

possible. Indeed, we determined 73% of PLRs using the sensor

method, with only 22% and 5% of PLRs determined with the NSRDB

and clearsky methods, respectively. Measured back-of-module tem-

perature is preferred for the sensor and clearsky methods when avail-

able; in cases with no measured module temperature data passing QA

(29% of sensor PLRs, 15% of clearsky PLRs), modeled values based on

ambient conditions are substituted. NSRDB PLRs all use modeled

module temperature for the normalization. Two-sigma confidence

intervals are also calculated, with uncertainty generally decreasing

with increasing data length. The confidence interval assumes a critical

role, as further fleet-scale analyses are weighted by the inverse of the

confidence interval. Therefore, more weight is given to PLRs with

small confidence intervals. This allows trends to be distilled even if

some PLRs happen to be contaminated by latent data problems.

Finally, it is important to disclose how the data for this study were

obtained, because this apparently ordinary detail can have consider-

able impact on the presented results. Large studies can easily but

unintentionally be biased if the investigated sample is not representa-

tive of the overall population. In general, we may not know the perfor-

mance of all PV systems at large, but the intent is to obtain a stratified

sample, representative of climates, mounting configurations, technolo-

gies, and so on. It is important to note that the systems included here

were not randomly selected and as such latent unintentional bias

could still exist in our database. We attempt to minimize unintended

bias by engaging with multiple PV fleet owners and collecting their

entire fleet of data (not just a few problematic or well-performing sys-

tems). This may not eliminate bias, but it should help to minimize it. As

more partners and systems are added to our database, that bias

should diminish over time. We will also work to assess and reduce any

bias introduced by our automated data QA process (if any).

4 | DEGRADATION DISTRIBUTION

The aggregated PLR distribution from the entire fleet is displayed in

blue in Figure 3 with a histogram of individual inverter-level PLRs.

Median PLR for the fleet is �0.75%/year based on 4915 inverters

passing automated data quality checks. The left skew of Figure 3

resembles other distributions occurring in the reliability sciences and

is approximated by a Gumbel or extreme value distribution.26 A sec-

ond histogram is shown in red displaying previously published litera-

ture values of module-level and system-level degradation values

from our 2016 degradation summary paper.27 These previously pub-

lished literature values used “high-quality” data, that is, studies in

which two or more measurements were used to determine the PLR.

The data making up our fleet-level histogram are available for

download, along with some nonattributable system configuration

details.28

While our current analysis is based on system PLR, the smaller

median PLR of �0.5%/year for the previously published results may

be attributable to the different composition of measurements, pre-

dominantly (�80%) based on module-level measurements rather than

system PLRs. In contrast to the current work, which is based on con-

tinuous high-frequency production data for systems, the previous dis-

tribution contained only 24% of data points based on continuous data,

42% were based on discrete IV curve measurements, with in some

F IGURE 3 Performance loss rate distribution for the PV Fleet
initiative (blue) compared with values aggregated from high-quality
values (two or more measurements) from the literature (red)

TABLE 2 Weighted performance loss
rate statistics for the PV Fleet database
compared with high-quality (greater than
or equal to two measurements)

Type Median (%/year) Mean (%/year) P90 Data points

Inverters �0.75 �0.88 �1.90 4915

Sites �0.68 �0.86 �1.73 585

Literature (≥2 data pts) �0.50 �0.70 �1.40 2161

Note: The P90 is the PLR value above which 90% of all systems fall.
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cases as few as two measurements (34%). Compared with module-

only measurements, system-level PLR (as determined from inverters

or site interconnect energy meters) also include other degradation or

recoverable losses such as availability, soiling, and snow. Table 2

provides additional summary statistics for inverter, site, and literature

distributions. The site distribution is obtained as the median PLR at

each site, that is, taking the median over multiple inverter PLRs. Com-

pared with the inverter-level median, this is only slightly smaller at

�0.68%/year. P90 values, which serve as cutoff points that 90% of all

systems outperform, are also given. The median and the P90 values

are unaffected by our weighting by confidence interval, but the mean

values are shifted immaterially by 0.01%/year to a higher PLR because

of a left skew of the distribution, that is, fewer weights with high

values. The median value of �0.75%/year is important because it is

within the warranty level of a typical 25-year linear warranty used in

the last 10 years. (Although with more stringent warranties being

introduced, it will be interesting to see whether this remains true in

the future.)

When comparing with other published studies, our median

findings are in good agreement with a recent large study on resi-

dential systems in Europe9 and 200 commercial-scale European sys-

tems from 2020.29 On the other hand, the value is substantially

smaller than a recent utility-scale study in the United States.30

However, the data frequency for the study of Bolinger et al.30 was

predominantly monthly performance data making it difficult to

account for all recoverable losses through operations and

maintenance practices. In contrast, this study used high-frequency

data, allowing for better distinction between outages and long-term

performance loss.

5 | AC AND DC PERFORMANCE LOSS

Most sites more frequently contained AC data than DC data. When

both AC and DC data streams for the same inverter were present,

PLRs for both were obtained and compared. The difference between

AC and DC PLR is centered on zero, indicating that changes in

inverter performance over time does not generally contribute to sys-

tem PLR. This is shown in Figure 4A, and this finding is supported by

other recent publications.31 However, the general trend obscures

manufacturer and technology-specific tendencies. The cumulative dis-

tribution function (CDF) of Figure 4B shows that for most inverter

manufacturers and technologies, the difference is close to zero. How-

ever, the central inverters of Manufacturer 1 show an added inverter

degradation component to the overall system PLR. Unfortunately,

F IGURE 4 (A) Histogram of the difference between AC and DC
performance loss rates. (B) Cumulative distribution function of the
performance loss difference color coded by different technologies
and inverter manufacturer

F IGURE 5 (A) Cumulative distribution of ground-mounted

systems PLRs. All Si technologies on single-axis tracked systems (blue)
and CdTe technologies on single-axis tracked systems (orange) are
contrasted to all fixed-tilt systems (dashed black). The median and
zero PLR are shown as guide to the eye as horizontal and vertical
dashed gray lines, respectively. (B) Example of the normalized daily
performance of a heavily soiled system that was excluded in the
comparison along with two degradation trendlines
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without details of the DC measurements accuracy, drift in the DC

measurements cannot be ruled out as an alternative explanation. In

addition, DC data are more likely instantaneous data compared with

the more commonly time-averaged AC data that could contribute to

some of the data noise that can be seen.

6 | MOUNTING CONFIGURATION

More large-scale ground-mounted systems installed today use

single-axis trackers to increase energy yield. The dataset in this study

allowed for the PLR comparison between fixed-tilt systems and

single-axis tracking systems, as shown in Figure 5 and additional

information provided in Table 3. The data are divided by module

technology, separating CdTe module technology from Si technologies

for tracked systems. Fixed-tilt systems have a great variety of sizes,

whereas tracking systems tend to be larger. Unfortunately, the

tracked systems could not be separated by technology that allowed

statistically significant conclusions. The PLR for tracked versus

fixed-tilt systems and CdTe versus Si systems does not show any

statistical difference (p value > 0.49) although potential tracker fail-

ures have affected PLRs of tracked systems.32 We should note that

three tracked CdTe sites have been excluded from this comparison,

all of which reside in a high-soiling area in California, and all of which

exhibit signs of considerable seasonal soiling loss (Figure 5B). Yearly

differences in soiling patterns are known to bias the year-on-year

method of calculating degradation rates, especially when losses

occur in the first or last year of the dataset. The combined degrada-

tion and soiling algorithm (CODS), which separates recoverable

soiling loss from nonrecoverable PLRs, shows distinctly slower PLR

when soiling is accounted for in heavily soiled systems.33

Consequently, to avoid biasing the technology and mounting com-

parisons, we exclude these systems from the analysis. Because of

computational requirements, the CODS algorithm could not be run

on all systems but only on a few particularly high-soiling systems.

Further investigation is required to enable appropriate treatment of

significantly soiled PV systems.

7 | CLIMATE

Several studies have shown that climate is an important consider-

ation for PV performance loss.11,34–37 Because the details of the

mounting configuration can also affect PLRs, we only investigated

the impact of climate by selecting ground-mounted systems. Utilizing

the PV climate zones introduced above, Figure 6 shows the PLR

trend for conventional c-Si module (high-efficiency modules

excluded) as a function of equivalent rack temperature zone. The

equivalent rack temperature zone represents an Arrhenius-weighted

equivalent temperature; the transition values between each zone are

given in Table 4. A significant trend (p value < 0.001) of higher per-

formance loss with hotter temperature climates can be discerned.

The data are also color coded by the number of busbars used in the

modules; however, no statistically significant trend with the busbars

could be determined. As the industry transitions to higher number of

busbars and multibusbars and deploys more systems in areas

exposed to extreme climate, further investigation of PLRs with

respect to number and type of busbars is warranted. Because of an

uneven distribution of aluminum back surface field (Al-BSF) systems

F IGURE 6 Boxplot of conventional Al-BSF systems as a function
of PV temperature climate zone color coded by the number of
busbars used in the modules. PV temperature zones are shown in
Figure 1

TABLE 3 Performance loss rate statistics for different mounting configurations

Mounting Median (%/year) Mean (%/year) Inverters Sites Cumulative capacity (MW)

Fixed �0.68 �0.79 3873 538 966

Tracked Si �0.76 �0.76 252 37 124

Tracked CdTe �0.61 �0.72 235 6 381

TABLE 4 Performance loss rate statistics for different PV-specific
temperature zones

PV
temperature zone Inverters Sites

Median
(%/year)

Mean
(%/year)

T3 904 44 �0.48 �0.63

T4 407 43 �0.78 �0.91

T5 217 25 �0.88 �1.14
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across zones, a trend with respect to humidity zones could not be

determined with confidence.

8 | MODULE TECHNOLOGY

As the PV industry is undergoing a major technological shift, a more

detailed investigation by technology is necessary. Conventional c-Si

technology based on Al-BSF cell technology has been rapidly replaced

by PERC technology. Although PERC cell technology was developed

in the laboratory decades earlier, it became the mainstream Si tech-

nology only recently.38 When the technology was first introduced as a

commercial product, it was not always clear from the provided

datasheet whether this particular cell technology was used in a given

module. To aid in the identification of high-efficiency cell technology

modules, a contour plot of the data sheet values for short current

density (Jsc), open circuit voltage (Voc), and maximum power (Pmax) is

depicted in Figure 7 for all the modules in the PV Fleet. Because the

number of cells per module and the cell size has increased over time,

the simple Pmax output of a module is not necessarily indicative of the

cell technology utilized. Therefore, in the contour plot Figure 7, the

current–voltage (I–V) parameters from commercial module datasheets

are normalized by the number and size of the cells. Cell technologies

are indicated by different colors while symbols are used for mono-Si

and multi-Si, respectively.

Several clusters of technologies can be identified; particularly,

high-efficiency n-type technologies interdigitated back contact (IBC)

and silicon heterojunction (SHJ) are easily identified through the

higher Voc per cell values. In contrast, Al-BSF technology—the domi-

nant cell technology for many decades—is typically not explicitly spec-

ified on commercial datasheet and can be identified by the lower

Pmax, Jsc, and Voc values. Indicated in red, it has developed along a

diagonal of Jsc and Voc but has reached its technological limits. PERC

technology continues the evolution along the diagonal with greater

gains apparent in voltage than before. If the cell technology is not

known otherwise, the technology can be identified by its higher Jsc,

Voc values, and lower temperature coefficients compared with con-

ventional technology. Because of a similarity in performance, a

F IGURE 7 Contour plot of short-circuit current density, open
circuit voltage, and maximum power per cell for all PV modules in the
PV Fleet database normalized by the number of cells and cell size.

Different cell technology is indicated by the color and crystallinity
type indicated by symbols

F IGURE 8 Performance loss rates for (A) PERC and
(B) conventional Al-BSF containing systems in the first year of
operation in similar climate in California

TABLE 5 Performance loss rate statistics for PERC and Al-BSF in
the first few years (CA temperature zones T3 and T4)

Technology

Field

exposure
(years)

Median

PLR
(%/year)

Mean

PLR
(%/year) Inverters Sites

PERC 2 �1.36 �1.64 23 6

PERC 3 �0.95 �1.12 353 53

PERC 4 �0.89 �0.89 103 18

Al-BSF 3 �0.39 �0.50 38 4

Al-BSF 4 �1.12 �1.01 215 19

Al-BSF 5 �0.64 �0.87 157 5
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transition region exists between Al-BSF and PERC in which the graph

may be inconclusive for some systems. However, we have verified

most technologies in this range by private communication with former

manufacturer employees. Another variant of the PERC family, the n-

type passivated emitter and totally diffuse (PERT), is typically identi-

fied as such on datasheets and is characterized by higher Voc and Jsc

values compared with Al-BSF.

With the high-efficiency technologies identified with reasonable

accuracy, we can start investigating the performance loss for the dif-

ferent technologies in more detail. In Figure 8, we examined PERC

and Al-BSF-based ground-mounted fixed-tilt systems in the first few

years of field exposure in the same temperature zones T3 and T4 in

California, USA, with additional details provided in Table 5. It appears

that the PERC systems show an improving degradation trend within

the first few years of field exposure. However, the small number of

data points, especially with 2 years of field exposure, is inconclusive.

It is unclear if higher initial degradation may be caused by typical

start-up issues or if a technology-inherent affect such as light and ele-

vated temperature-induced degradation (LeTID) may be responsible.39

In addition, most of the data in the first 2 years come from only one

manufacturer. The Al-BSF on the other hand shows performance loss

that does not show a clear trend with time.

Figure 9A depicts 3-year-old PERC systems from the two most

prevalent manufacturers in our fleet with a consecutive comparison

to other technologies. The solid green lines indicate the CDF analyzed

in the normal way, that is, with an upper irradiance limit of 1200 W/

m2 intended to eliminate only extreme cloud brightening or erroneous

values. The default lower irradiance limit is 200 W/m2 and the two

different manufacturers are indicated by different shades of green

consistent with color usage in Figure 7. Manufacturer 2 shows a

higher magnitude PLR at the median than Manufacturer 1 and also

displays a much wider distribution indicated by the interquartile range

given in Table 6. When the same systems are examined at low light

only with an upper irradiance limit of 600 W/m2, the PLR is signifi-

cantly larger in magnitude for both manufacturers, as found by a

paired t test (p value < 0.001). Shunts that typically manifest them-

selves at low light may or may not be responsible, or a different degra-

dation mechanism entirely may be taking place.40 It is also

conceivable that this effect may be due to errors in the low-light

model of performance used for energy normalization (PVWatts).

The median PLR for Al-BSF-based systems under normal (all-light)

analysis conditions is similar to that of PERC systems under normal

analysis. However, in contrast to the PERC systems, the low-light PLR

for Al-BSF differs only by 0.09%/year from the normal analysis. The

difference is almost an order of magnitude below that for the PERC

manufacturers and is within the measurement uncertainty for

individual PLR calculations. Interestingly, and possibly due to the large

sample size, this small PLR difference is still statistically significant

(p value = 0.001). It should be noted that a broader geographic

distribution for Al-BSF systems had to be used due to the lack of man-

ufacturer variation in the Los Angeles, CA area. Al-BSF systems were

all located in California in PV equivalent temperature zones 3 and

4, which should provide at least similar behavior.

The same California-wide sourcing applies to distributions of

high-efficiency technologies SHJ and IBC in Figure 9C. SHJ shows

behavior similar to PERC with a higher performance loss at low-light

while IBC appears to show a less severe PLR at low light.

F IGURE 9 Cumulative distribution function of performance loss
rates for (A) PERC containing systems from two different
manufacturers, (B) Al-BSF, and (C) silicon heterojunction and

interdigitated back contact systems. All systems are located in
California in PV climate zones 3 and 4. All PERC systems were fixed
tilt and ground mounted while all other technologies included a
variation of mounting configurations. For normal (solid line)
evaluation, the upper irradiance limit is set to a default value of 1200
and 600 W/m2 for low-light assessment (dashed line)
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9 | CONCLUSION

The PV Fleet database, encompassing over 7 GW of mostly larger PV

installations in the United States was examined for PLRs. The median

system PLR was found to be �0.75%/year consistent with prior and

other recent work. In general, inverter degradation did not contribute

to system PLR, however certain manufacturers did demonstrate more

rapid AC performance loss than DC performance loss. Tracked Si and

CdTe systems showed no statistical difference versus fixed-tilt systems

in the median range of �(0.6–0.8)%/year. Conventional Al-BSF tech-

nology showed a trend with higher magnitude PLR in higher tempera-

ture climates. Insufficient samples were available to identify any trend

versus climate for other module technology. No trend was observed

with the number of busbars used in Al-BSF modules; however, with the

shift of the industry towards higher number and different topology bus-

bars, that is a trend that should be investigated further in the future.

High-efficiency module types (PERC, SHJ, and IBC) showed PLR

generally in the same range as conventional Al-BSF systems. How-

ever, low-light degradation trends are different, suggesting that

unique performance loss mechanisms may be present in some of

these module types. PERC systems showed markedly more rapid PLR

at low light compared with normal evaluation conditions. SHJ also

showed significantly higher magnitude PLR at low light, but IBC

showed the opposite trend with reduced low-light PLR. This remains

an open avenue of investigation.

Compared with prior module-level studies that have shown PLRs

on the order of �0.5%/year, our results here are slightly more elevated.

This may be caused by our system-level versus module-level measure-

ments that may include additional losses such as series mismatch,

soiling, and cabling which may account for the increase to �0.75%/

year. On the other hand, our methodology using high-frequency data,

automated data quality screening and filtering for availability, clipping,

and some seasonal effects corrects for factors that a coarse analysis

based only on annual energy generation might neglect. With our results

to date, we can report good health of the US PV fleet, along with some

minor variations due to climate, racking configuration, and some inter-

esting trends in newer module technologies.
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