
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

  

Conference Paper  
NREL/CP-2C00-81333  
March 2022 

Grassmannian Shape Representations 
for Aerodynamic Applications 
Preprint 
Olga A. Doronina,1 Zachary J. Grey,2 and Andrew Glaws1 

1 National Renewable Energy Laboratory 
2 National Institute of Standards and Technology 

Presented at the 36th AAAI Conference on Artificial Intelligence (AAAI-22) 
February 22-March 1, 2022 



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

Conference Paper  
NREL/CP-2C00-81333  
March 2022 

Grassmannian Shape Representations 
for Aerodynamic Applications 
Preprint 
Olga A. Doronina,1 Zachary J. Grey,2 and Andrew Glaws1 

1 National Renewable Energy Laboratory 
2 National Institute of Standards and Technology 

Suggested Citation 
Doronina, Olga A., Zachary J. Grey, and Andrew Glaws. 2022. Grassmannian Shape 
Representations for Aerodynamic Applications: Preprint. Golden, CO: National 
Renewable Energy Laboratory. NREL/CP-2C00-81333. 
https://www.nrel.gov/docs/fy22osti/81333.pdf.  

https://www.nrel.gov/docs/fy22osti/81333.pdf


 

 

NOTICE 

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable 
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding partially 
provided by the Advanced Research Projects Agency-Energy (ARPA-E) Design Intelligence Fostering Formidable 
Energy Reduction and Enabling Novel Totally Impactful Advanced Technology Enhancements (DIFFERENTIATE) 
program. The views expressed herein do not necessarily represent the views of the DOE or the U.S. Government. 
The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. 
Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published 
form of this work, or allow others to do so, for U.S. Government purposes. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,  
NREL 46526. 

NREL prints on paper that contains recycled content. 

http://www.nrel.gov/publications
http://www.osti.gov/


Grassmannian Shape Representations for Aerodynamic Applications

Olga A. Doronina,1 Zachary J. Grey, 2 Andrew Glaws 1

1 National Renewable Energy Laboratory, Golden, CO, USA
2 National Institute of Standards and Technology, Boulder, CO, USA

olga.doronina@nrel.gov, zachary.grey@nist.gov, andrew.glaws@nrel.gov

Abstract

Airfoil shape design is a classical problem in engineering
and manufacturing. Our motivation is to combine principled
physics-based considerations for the shape design problem
with modern computational techniques informed by a data-
driven approach. Traditional analyses of airfoil shapes em-
phasize a flow-based sensitivity to deformations which can
be represented generally by affine transformations (rotation,
scaling, shearing, translation). We present a novel represen-
tation of shapes which decouples affine-style deformations
from a rich set of data-driven deformations over a submani-
fold of the Grassmannian. The Grassmannian representation,
informed by a database of physically relevant airfoils, offers
(i) a rich set of novel 2D airfoil deformations not previously
captured in the data, (ii) improved low-dimensional param-
eter domain for inferential statistics informing design/man-
ufacturing, and (iii) consistent 3D blade representation and
perturbation over a sequence of nominal shapes.

Introduction
Many AI-aided design and manufacturing algorithms rely
on shape parametrization methods to manipulate shapes in
order to study sensitivities, approximate inverse problems,
and inform optimizations. Two-dimensional cross-sections
of aerodynamic structures such as aircraft wings or wind tur-
bine blades, also known as airfoils, are critical engineering
shapes whose design and manufacturing can have signifi-
cant impacts on the aerospace and energy industries. Re-
search into AI and ML algorithms involving airfoil design
for improved aerodynamic, structural, and acoustic perfor-
mance is a rapidly growing area of work (Zhang, Sung, and
Mavris 2018; Li, Bouhlel, and Martins 2019; Chen, Chiu,
and Fuge 2019; Glaws et al. 2021; Jing et al. 2021; Yonekura
and Suzuki 2021; Yang, Lee, and Yee 2021).

While airfoil shapes can appear relatively benign, their
representation and design are complex due to their extreme
operating conditions in use and the highly sensitive rela-
tionship between deformations to the shape and changes in
aerodynamic performance. The current state-of-the-art for
airfoil shape parametrization is the class-shape transforma-
tion (CST) method (Kulfan 2008). In this approach, the up-
per and lower surfaces of an airfoil are each defined us-
ing a class function to set the general class of the geome-
try to an airfoil, and a shape function that usually takes the

form of a Bernstein polynomial expansion to describe a spe-
cific shape. The coefficients in this polynomial expansion
are typically treated as tuning parameters to define new air-
foil shapes. However, defining a meaningful design space of
CST parameters across a collection of airfoil types is diffi-
cult. That is, it is challenging to interpret how modified CST
parameters will perturb the shape and thus difficult to con-
tain or bound CST parameters to produce “reasonable” aero-
dynamic shapes. Furthermore, CST representations couple
large-scale affine-type deformations—deformations result-
ing in significant and relatively well-understood impacts to
aerodynamic performance—with undulating perturbations
that are of increasing interest to airfoil designers across
industries. This coupling between physically meaningful
affine deformations and undulations in shapes resulting from
higher-order polynomial perturbations complicates the de-
sign process.

In this work, we explore a data-driven approach that uses
a Grassmannian framework to represent airfoil shapes. The
resulting set of deformations to airfoil shapes is independent
of the very important and often constrained affine deforma-
tions. Modern airfoil design often incorporates constrained
design characteristics of twist (or angle-of-attack) and scale
which must be fixed or treated independently of higher-
order deformations to a shape such as a rich set of chang-
ing inflections. Our approach decouples these two aspects
of airfoil design and offers new interpretations of a space of
shapes, not previously considered. In what follows, we pro-
vide a brief overview of the airfoil representation scheme
and demonstrate its flexibility over current methods, includ-
ing the capability to extend from two-dimensional airfoils to
full three-dimensional wind turbine blades.

Discrete representation & deformation
In general, a shape can be represented as a boundary de-
fined by the closed (injective) curve c : I ⊂ R → R2 :
s 7→ c(s) over a compact domain I which can be arbitrarily
reparametrized to [0, 1]. In practice, we represent the 2D air-
foil shape as an ordered sequence of n landmarks (xi) ∈ R2

for i = 1, . . . , n. That is, given some curve c(s), we have
landmark points xi = c(si) for 0 ≤ s1 < s2 < · · · <
sn ≤ 1. Moving along the curve, this sequence of pla-
nar vectors defining the airfoil shape results in the matrix
X = [x1, . . . ,xn]

⊤ ∈ Rn×2
∗ , where Rn×2

∗ refers to the
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Figure 1: Collection of cross-sectional airfoils defining IEA
15MW blade in physical (left) and Landmark-Affine stan-
dardized coordinates (right).

space of full-rank n × 2 matrices. This full-rank restriction
ensures that we do not consider degenerate X as a feasible
discrete representation of an airfoil shape.

The innovative characteristic of the proposed approach
is representing airfoil shapes as elements of a Grassmann
manifold (Grassmannian) G(n, 2) paired with a correspond-
ing affine transformation (invertible 2-by-2 matrices and
translation) representing a subset of rotation, scaling, and
shearing shape deformations. This definition of the airfoil
shape makes important subsets of deformations indepen-
dent, allowing designers to make interpretable and system-
atic changes to airfoil shapes. For example, one may seek to
preserve the average airfoil thickness or camber while inde-
pendently studying all remaining deformations as perturba-
tions over the Grassmannian.

Affine deformations
Affine deformations of an airfoil have the form M⊤c(s)+b,
where M ∈ GL2 is an element from the set of all invertible
2 × 2 matrices1 and b ∈ R2. For a discrete shape repre-
sentation, affine deformations can be written as the smooth
right action with translation XM + 1diag(b), where 1 de-
notes the n-by-2 matrix of ones. The translation of the shape
b does not change the intrinsic characteristics of the shape
(i.e., it has no deforming effect) and is generally of little in-
terest if not to locate shapes relative to one another (e.g., in
3D blade design) or to define a center of rotation. Focusing
on the linear term M , we can identify four types of physi-
cally meaningful deformations as one-parameter subgroups
through GL2: (i) changes in thickness, (ii) changes in cam-
ber, (iii) changes in chord, and (iv) changes in twist (rotation
or angle-of-attack) or some composition thereof. These de-
formations can be represented by specific forms Mt with
t ∈ (0, 1), respectively, as

(i) Mt
∆
=

[
1 0
0 t

]
, (ii) Mt

∆
= 2

[
(1− t) 0

0 t,

]
,

(iii) Mt
∆
=

[
t 0
0 1

]
, (iv) Mt

∆
=

[
cos( tπ2 ) − sin( tπ2 )
sin( tπ2 ) cos( tπ2 )

]
.

Sensitivity analysis involving CST parameters (Grey and
Constantine 2018) has revealed certain shape deformations
that change transonic coefficients of lift and drag the most,
on average, are very similar to physical deformations of

1For brevity, we simply refer to GL2(R) as GL2 since all data
and computation is over the reals.

the form (i) and (ii)—a result that resonates with laminar
flow theory. The dominating impact of these perturbations
on aerodynamic quantities of interest inhibits the study of
a richer set of perturbations to airfoil shapes. Note that a
set of “dents” and “dings” (changing inflection) common to
damage and manufacturing defects in an airfoil shape are
not well described by affine deformations. This motivates
the need for a set of parameters describing deformations in-
dependent of those in the dominating class of affine trans-
formations (more precisely, transformations as smooth right
actions over GL2). This line of research was initially pro-
posed as an extension of (Grey and Constantine 2018) in
(Grey 2019).

Although the presented affine deformations only consti-
tute a subset of important aerodynamic deformations over
GL2, we contend that aerodynamic quantities will be sig-
nificantly influenced by any other combination, composi-
tion, or generalization of the presented affine deformations
so long as they remain elements in GL2—deformations by
rank deficient M , which collapse landmarks to a line or the
origin, are not considered physically relevant. These affine
deformations are important for design and are usually con-
strained or rigorously chosen when selecting nominal def-
initions of shapes for subsequent numerical studies and 3D
blade definition. We seek to decouple and preserve these fea-
tures through a set of inferred deformations over the Grass-
mannian that are independent of GL2.

Grassmannian representation
The Grassmannian2 G(n, q) is the space of all q-dimensional
subspaces of Rn. Note that for (planar) airfoil design, we
consider q = 2. Formally, G(n, q) ∼= Rn×q

∗ /GLq and
X̃ ∈ Rn×q

∗ is a full-rank representative element of an equiv-
alence class [X̃] ∈ G(n, q) of all matrices with equivalent
span (Absil, Mahony, and Sepulchre 2008). In this way, ev-
ery element of the Grassmannian is a full-rank matrix mod-
ulo GLq deformations, and elements of the Grassmannian
are (by definition) decoupled from the aerodynamically im-
portant affine deformations (e.g., variations in camber or
thickness) discussed in the previous section. This enables
deformations over G(n, q) that are independent of affine de-
formations. Furthermore, we can sample a data-driven sub-
manifold of G(n, q) preserving these important affine trans-
formations or parametrizing them independently.

It is common (Edelman, Arias, and Smith 1998; Gallivan
et al. 2003) to view the Grassmannian as a quotient topol-
ogy of orthogonal subgroups such that X̃⊤X̃ = Iq—i.e.,
the n landmarks in Rq have sample covariance proportional
to the q×q identity Iq . Therefore, a representative computa-
tional element of the Grassmannian is an n × q matrix with
orthonormal columns (Edelman, Arias, and Smith 1998).3
This offers certain computational advantages and motivates
a scaling of airfoil landmark data for computations over
G(n, 2) for airfoil design (Bryner et al. 2014; Grey 2019).

2We assume the Riemannian metric tr(A⊤B) inherited from
embedding space (Absil, Mahony, and Sepulchre 2008).

3In our case, n is equal to the number of landmarks and q = 2
is the dimension of the ambient space where the shape lives.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

2



Figure 2: Example of a wire frame of a perturbed IEA-15MW blade obtained from interpolation of the solid-color cross-
sections. Note that consistent perturbations to the shape are applied to all of the baseline airfoils in the blade.

To represent physical airfoil shapes as elements of the
Grassmannian, we apply Landmark-Affine (LA) standard-
ization (Bryner et al. 2014). LA-standardization normalizes
the shape such that it has zero mean (without loss of general-
ity) and sample covariance proportional to I2 over the n dis-
crete boundary landmarks defining the shape. Given an air-
foil shape X ∈ Rn×2

∗ , let M be the 2-by-2 invertible matrix
computed via the thin singular value decomposition (SVD)
of X⊤ and b ∈ R2 is the two-dimensional center of mass
of X . Then, the mapping between discrete airfoil X and
the paired LA-standardized representation (denoted by X̃)
is yet another affine transformation, X = X̃M +1diag(b).
Recall that [X̃] ∈ G(n, 2) and X̃ is merely a representa-
tive element of the Grassmannian defined uniquely up to
any GL2 deformations. Figure 1 shows the transformation
between these two representations.

Grassmannian blade interpolation
The Grassmannian framework for airfoil representation has
the additional benefit of enabling the design of three-
dimensional wings and blades. In the context of wind en-
ergy, full blade designs are often characterized by an ordered
set of planar airfoils at different blade-span positions from
hub to tip of the blade as well as profiles of twist, chord
scaling, and translation. Current approaches to blade design
require significant hand-tuning of airfoils to ensure the con-
struction of valid blade geometries without dimples or kinks.
Our proposed approach enables the flexible design of new
blades by applying consistent deformations to all airfoils and
smooth interpolation of shapes between landmarks.

The mapping from airfoils to blades amounts to a
smoothly varying set of affine deformations over dis-
crete blade-span positions—a common convention in next-
generation wind turbine blade design. The discrete blade can
be represented as a sequence of matrices (Xk) ∈ Rn×2

∗ for
k = 1, . . . , N . However, the challenge is to interpolate these
shapes from potentially distinct airfoil classes to build a re-
fined 3D shape such that the interpolation preserves the de-
sired affine deformations along the blade (chordal scaling
composed with twist over changing pitch axis).

Given an induced sequence of equivalence classes
([X̃k]) ∈ G(n, 2) for k = 1, ..., N at discrete blade-span
positions ηk ∈ S ⊂ R from a given blade definition (see
the colored curves in Figure 2), we can construct a piece-
wise geodesic path over the Grassmannian to interpolate
discrete blade shapes independent of affine deformations.

That is, we utilize a mapping γ̃k,k+1 : [X̃k] 7→ [X̃k+1]
as the geodesic interpolating from one representative LA-
standardized shape to the next (Edelman, Arias, and Smith
1998).4 Thus, a full blade shape can be defined by interpo-
lating LA-standardized airfoil shapes using these piecewise-
geodesics over ordered blade-span positions ηk along a non-
linear representative manifold of shapes. Finally, to get in-
terpolated shapes back into physically relevant scales, we
apply inverse affine transformation based on previously con-
structed splines defining the carefully designed affine defor-
mations,

X(η) = X̃(η)M(η) + 1diag(b(η)). (1)
An important caveat when inverting the shapes in (1) back

to the physically relevant scales for subsequent twist and
chordal deformations is a Procrustes clustering. From the
blade tip shape X̃N to the blade hub shape X̃1, we se-
quentially match the representative LA-standardized shapes
via Procrustes analysis (Gower 1975). This offers rotations
that can be applied to representative LA-standardized air-
foils for matching—which do not fundamentally modify the
elements in the Grassmannian. Consequently, we cluster the
sequence of representative shapes X̃k by optimal rotations
in each [X̃k] to ensure they are best oriented from tip to hub
to mitigate concerns about large variations in M(η).

Grassmannian parametrization
To demonstrate these shape representations, we use a data
set containing 1,000 perturbations of 16 baseline airfoils
from the NREL 5MW, DTU 10MW, and IEA 15MW ref-
erence wind turbines (Jonkman et al. 2009; Bak et al. 2013;
Gaertner et al. 2020). The baseline airfoils are defined by the
nominal 18 CST coefficients with the trailing edge thickness
coefficients set to zero. We then perturb these 18 coefficients
by up to 20% of their original value to create the data set.

Figure 3(a) shows a marginal 2D slice through the 18-
dimensional space of CST coefficients defining the collec-
tion of shapes under consideration. Note that across the 16
baseline shapes, the groups of perturbations to nominal CST
coefficients create a complex, highly disjoint design domain.
This can significantly impact the performance of various
AI/ML algorithms to analyze airfoils across this domain. We
next demonstrate how the proposed representation addresses
these issues with CST parametrization.

4A geodesic γ̃k,k+1 is the shortest path between two points of a
manifold and represents a generalized notion of the “straight line”
in this non-linear topology.
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Figure 3: Comparison of the airfoil data over (a) 2 of the 18
total CST parameters and (b) 2 of the 4 total normal coordi-
nates with colors indicating different classes of airfoils.

Principal geodesic deformations
To infer a parametrized design space of airfoils over
the Grassmannian, we use Principal Geodesic Analysis
(PGA) (Fletcher, Lu, and Joshi 2003), a generalization
of Principal Component Analysis (PCA) over Riemannian
manifolds. PGA is a data-driven approach that determines
principal components as elements in a central tangent space,
T[X̃0]

G(n, 2), given a data set represented as elements in a
smooth manifold. In this way, PGA constitutes a manifold
learning procedure for computing an important submanifold
of G(n, 2) representing a design space of physically relevant
airfoil shapes inferred from provided data (Grey 2019).

First, we compute the Karcher mean [X̃0] by minimiz-
ing the sum of squared (Riemannian) distances to all shapes
in the data (Fletcher, Lu, and Joshi 2003). Second, we per-
form an eigendecomposition of the covariance of samples in
the image of the Riemannian inverse exponential, Log[X̃0]

:

G(n, 2) → T[X̃0]
G(n, 2). This provides principal compo-

nents as a new basis for a subspace of the tangent space.
Finally, we map LA-standardized airfoils to normal coor-
dinates of the tangent space at the Karcher mean via inner
products with the computed basis—where [X̃0] corresponds
to the origin in normal coordinates, analogous to centering
the data.

Based on the strength of the decay in eigenvalues, we take
the first r eigenvectors as a reduced basis for PGA defor-
mations. Specifically, at a central airfoil [X̃0] (e.g., Karcher
mean), PGA results in an r-dimensional subspace of the tan-
gent space, denoted span(Ur) ⊆ T[X̃0]

G(n, 2). We define
normal coordinates t ∈ U ⊂ Rr where compact U con-
tains the PGA data with appropriate distribution, e.g., uni-
form over an ellipsoid containing the data. Then, the set
of all linear combinations of the principal components Urt
defines an r-dimensional domain over T[X̃0]

G(n, 2). This
parametrizes a section of the Grassmannian (r-submanfiold)
given by the image of the Riemannian exponential map, for
all t ∈ U ⊂ Rr,

Ar =
{
[X̃] ∈ G(n, 2) : [X̃] = Exp[X̃0]

(Urt)
}
. (2)

Truncating the principal basis to the first r = 4 compo-
nents (based on the rapid decay in PGA eigenvalues), we
significantly reduce the number of parameters needed to
define a perturbation to an airfoil. Consequently, we have

Figure 4: A series of random corner-to-corner sweeps
through (a) the CST and (b) principal geodesic design spaces
partially visualized in Figure 3.

“learned” a 4-dimensional data-driven manifold of airfoils,
A4, which are independent of affine deformations. New pa-
rameters are now coordinates of this four-dimensional sub-
space t ∈ T0A4

∼= R4 over the tangent space at the Karcher
mean (our analogous origin for Ar).

Figure 3(b) shows a 2D marginal slice of the airfoil data
projected onto the four-dimensional PGA basis—i.e., a dis-
crete distribution of t ∈ T0A4. Note that this design space
roughly resembles a mixture of overlapping Gaussian dis-
tributions across the diverse family of airfoils. Compared to
the CST representation, such a design space is significantly
easier to infer or represent in the context of AI and ML al-
gorithms. Further, extrapolation to shapes beyond the point
cloud is significantly less volatile in this framework com-
pared to CST. Figure 4 shows four random corner-to-corner
sweeps (defined by bounding hyperrectangles) through the
CST and principal geodesic design spaces. In CST space,
it is difficult to define a single design space that covers
the range of airfoils under consideration while allowing for
smooth deformations between them. Conversely, all shapes
generated using the proposed Grassmannian methodology
result in valid airfoil designs while creating a rich design
space worth investigation.

Consistent blade deformations
Blade perturbations are constructed from deformations to
each of the given cross-sectional airfoils in consistent di-
rections over t ∈ T0A4. Since a perturbation direction
is defined in the tangent space of Karcher mean, we uti-
lize an isometry (preserving inner products) called parallel
transport to smoothly “translate” the perturbing vector field
along separate geodesics connecting the Karcher mean to
each of the individual ordered airfoils. The result is a set
of consistent directions (equal inner products and conse-
quently equivalent normal coordinates in the central tangent
space) over ordered tangent spaces T[X̃k]

G(n, 2) centered on

each of the nominal [X̃k] defining the blade. An example of
consistently perturbed sequence of cross-sectional airfoils is
shown in Figure 2. Finally, these four principal components
are combined with three to six independent affine parame-
ters constituting a full set of 7-10 parameters describing a
rich feature space of 3D blade perturbations.

The benefits of coherent shape deformations coupled with
a natural framework for interpolating 2D shapes into 3D
blades and the decoupling of affine and higher-order de-
formations make Grassmann-based shape representation a
powerful tool enabling AI/ML-driven aerodynamic design.
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