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Phase Identification in Real Distribution Networks 

with High PV Penetration Using Advanced 

Metering Infrastructure Data

Abstract—Many distribution network monitoring and 

control applications—including state estimation, Volt/VAr 

optimization, and network reconfiguration—rely on accurate 

network models; however, the network models maintained by 

utilities can become outdated because of restoration activities, 

network reconfiguration, and missing data. With the 

widespread deployment of advanced metering infrastructure 

(AMI), abundant measurement data from low-voltage 

secondary networks are available. The AMI measurement data 

can be used for phase identification to improve the network 

models. Although the existing phase identification techniques 

work well in passive distribution feeders that do not have 

photovoltaic (PV) generation, they can fail to accurately identify 

the phases in the presence of PV. This paper proposes a robust 

phase identification algorithm based on supervised machine 

learning that accurately identifies the AMI meter phase 

connectivity in the presence of significant PV generation. The 

proposed algorithm does not require network topology 

information or feeder-head measurement data. The algorithm is 

validated using the AMI measurement data collected in the field 

and the field-validated phase connectivity database on two real 

distribution feeders from San Diego Gas & Electric Company 

that have significant PV generation. 

Keywords—Advanced metering infrastructure (AMI), 

distribution network, machine learning, phase identification, 

photovoltaic systems, smart meter, supervised learning. 

I. INTRODUCTION 

The penetration of distributed energy resources (DERs) 
has continued to increase in recent years. The integration of 
DERs helps to meet increasing load demand and reduce the 
fossil fuels needed for generation. However, the high 
penetration of DERs also requires electric utilities to have 
better monitoring applications of their distribution systems 
because of the uncertainty from some types of DERs, such as 
photovoltaics (PV) [1]. In the United States, electric utilities 
have started to deploy advanced metering infrastructure 
(AMI) as a part of ongoing advancements in their systems [2]. 
The introduction of AMI smart meters provides opportunities 
for data analytics because the meters record a large amount of 
data on the customer side [3]. The AMI data analytics 
examples include primary voltage estimation [4], phase 
identification [5], [6], transformer identification [6], topology 
estimation [7], [8] and load disaggregation [9], [10]. 

Among these analyses, phase identification is a critical 
aspect because it gives an accurate distribution network and 
phase connectivity model. Typically, electric utilities do not 
have accurate phase connectivity information of their 
distribution system because this information can keep 

changing when new customers are connected to the feeder. 
The phase identification problem is defined as identifying the 
phase connectivity of each smart meter and structure in the 
power system network. With phase identification results, 
electric utilities can update their phase connectivity 
information in their models so they can make more accurate 
simulation and control decisions [11].  

Several works in the literature have attempted to address 
the phase identification problem. The techniques reported in 
[12]-[14] use special equipment to identify the phase 
connectivity in distribution feeders. Although they provide 
accurate results, these techniques are time consuming and 
expensive because they involve manual processes and 
additional equipment. The data-driven methods that use linear 
regression and voltage correlation [5], [7] as well as supply 
and load balancing approaches [15], [16] are applicable to 
distribution feeders that have only phase-to-neutral 
connections. These techniques cannot be applied to feeders 
that have a mix of phase-to-neutral and phase-to-phase 
connections. In [17]-[20], the phase identification is 
performed in the feeders having phase-to-neutral connections 
only. Their application to the feeders having a mix of phase-
to-neutral and phase-to-phase connections is not shown. 
Further, the works [5], [7] assume the availability of reliable 
substation supervisory control and data acquisition (SCADA) 
data. The clustering-based phase identification algorithms 
reported in [21]–[23] require network topology information to 
define must-link constraints in their algorithms. However, the 
topology information derived from a geographic information 
system or a utility planning network model can be inaccurate, 
which is a primary reason to develop a data-driven phase 
identification method. The works [17], [24]-[26] used 
numerical simulations for the validation of phase 
identification algorithms. While the simulations are a good 
starting point for the algorithm development, the performance 
must be validated on the field AMI data for practical 
application. Further, all these works are validated on passive 
distribution networks only that do not include PV generation. 
As shown in [6], the PV generation can adversely impact the 
accuracy of the phase identification. Thus, the research gaps 
in the existing phase identification works are: (a) application 
to passive distribution networks only without PV (b) 
validation using numerical simulations only without testing on 
real data (c) application to feeders having phase-to-neutral 
connections only, and (d) dependency on topology and/or 
SCADA data. 

This paper proposes a robust phase identification 
algorithm to address the research gaps. The phase 
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identification is treated as a data classification problem, and 
supervised learning is applied. Specifically, a random forest 
classifier is used to perform the phase identification. The 
advantages of a random forest classifier include efficient 
handling of large data sets, large number of variables, and 
faster computational time [27]. Since these features are 
desirable for phase identification application, we used the 
random forest classifier in this work. The proposed algorithm 
offers the following advantages over the existing works: 

1. The algorithm is robust and provides high phase 
identification accuracy in the presence of significant PV 
generation, a mix of phase-to-neutral and phase-to-phase 
meter connectivity, and overhead/underground lines. To 
our knowledge, our work is the first to validate such robust 
performance on real distribution feeders. 

2. The algorithm does not require network topology 
information, SCADA data, or AMI data from all the meters 
connected to a given secondary. It can accurately 
determine the phase connectivity even when the AMI data 
from some customers are missing. 

3. The performance of the algorithm is demonstrated using 
real field AMI data collected from our utility partner.  

 In the remainder of this paper, Section II describes the 
distribution feeder characteristics and the AMI data sets used 
in this study. Section III presents the proposed phase 
identification algorithm. Section IV discusses the results, and 
Section V presents the conclusions and future work. 

II. DISTRIBUTION FEEDERS OF SDG&E AND FIELD DATA 

A. Feeder Details 

The phase identification is performed on two distribution 

feeders of San Diego Gas & Electric Company (SDG&E) 

using the proposed algorithm. The topology of the first 

feeder, referred to as Feeder 1, is shown in Fig. 1. This is a 

12-kV feeder with a peak load of 10.3 MW. The substation 

transformer is equipped with a load tap changer (LTC). Three 

capacitor banks are available on the feeder for reactive power 

support. The feeder serves more than 5,000 customers using 

341 service transformers. Most of this feeder comprises 

overhead lines. Further, this feeder has an existing PV 

penetration of nearly 70% relative to the peak load in the 

field. The PV locations are highlighted in Fig. 1. It is 

observed that the PV systems are present across the feeder 

and are not confined to any specific feeder neighborhoods. 

 
Fig. 1. Topology of the distribution Feeder 1. 

The topology of the second feeder (Feeder 2) is shown in 

Fig. 2. This is a 12-kV feeder with a peak load of 13.3 MW. 

An LTC and two capacitor banks provide voltage regulation 

and reactive power support in this feeder. An existing PV 

generation of 3.14 MW is present in the field, which is nearly 

24% relative to the peak load. The customers on this feeder 

are served using 657 service transformers. Feeder 2 is an 

underground distribution feeder, i.e., all the customers are 

served using underground distribution cables. 

B. Field Data 

The AMI data sets collected in the field include the 

minimum, maximum, and average voltage magnitude time-

series data at 5-minute resolution and the net real power 

consumption data for each AMI meter for the entire year of 

2019. Of these data, only the 5-minute average voltage 

magnitude data are used by the phase identification 

algorithm. The AMI data for two meters per service 

transformer are available in the data sets for both feeders. 

Further, the field-validated phasing information is collected 

from all the meters through manual field verification. These 

data are used as the ground truth for validating the phase 

identification results. The ground truth data represents the 

actual AMI meter phase connectivity in the field confirmed 

through the field verification. The phase connectivity 

distributions of both feeders from the ground truth data are 

shown in Fig. 3. It is observed that although Feeder 1 has a 

considerable number of AMI meters associated with all six 

types of phase connectivity, Feeder 2 has AMI meters 

primarily associated with phase-to-neutral phase connectivity 

only. Only 28 of 857 AMI meters in Feeder 2 have phase-to-

phase connectivity. 

 
Fig. 2. Topology of the distribution Feeder 2. 

 

 
Fig. 3. Phase connectivity distributions of meters from ground truth data. 

III. PROPOSED PHASE IDENTIFICATION ALGORITHM 

This section presents a brief overview of the random forest 
classifier and the proposed phase identification algorithm 
steps. 

A. Random Forest Classifier 

In recent years, the ensemble method has been widely used 
for classification and regression among different machine 
learning methods [28], [29]. The main idea of the ensemble 
method is to aggregate multiple weighted models to obtain a 
combined one with improved performance. A random forest 
is an ensemble learning method for classification consisting of 
multiple decision trees [30]. It provides an estimation that can 
capture different levels of relationships among variables.  
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A random forest generates the training data set by 
randomly drawing with replacement N examples, where N is 
the size of the original training data set [31]. These training 
data sets will be used for the feature and feature combination 
selection. A random forest usually uses the Gini index as a 
measure for the best split selection, which measures the 
impurity of a given element with respect to the rest of the 
classes. For a given training data set, T, the Gini index can be 
expressed as [32]: 

∑∑(
𝑓(𝐶𝑖 , 𝑇)

|𝑇|
)(
𝑓(𝐶𝑗 , 𝑇)

|𝑇|
)

𝑗≠𝑖

 

where 
𝑓(𝐶𝑖,𝑇)

|𝑇|
 is the probability that the selected case belongs 

to class 𝐶𝑖 . By using a given combination of features, a 
decision tree is made to increase to its maximum depth. Users 
will define the maximum depth and the number of trees to be 
grown. The number of trees will be equal to the number of 
features because only the selected features will be searched for 
the best split at each node. 

B. Phase Identification Using Random Forest Classifier 

The steps in the proposed phase identification algorithm 
are shown in Algorithm 1. In the first step, the AMI voltage 
time-series data collected from the meter data management 
system for a selected feeder and duration are read. 
Specifically, the average voltage magnitude data at 5-minute 
resolution are loaded. The data preprocessing is performed in 
the second step. This includes the data cleanup and data 
standardization. The meters having missing data for more than 
half the selected duration or having voltages beyond a 
reasonable range (50%–150% of nominal voltage) are 
removed from the data set. Further, the voltage time-series 
data from all the meters are aligned based on the time stamps. 
If a data point for a given time stamp is missing from a meter, 
the corresponding data points of all the meters are removed 
from the data set for the analysis. After the data cleanup, the 
AMI data set is standardized by performing mean centering 
and normalizing by the standard deviation. 

In the third step, 30% of the meters selected for the training 
along with their known phase labels are read. These phase 
labels can be obtained preferably through field verification. 
They can also be obtained from an existing connectivity 
database that is known to be accurate or by applying existing 
clustering techniques. The higher the training data the higher 
is the phase identification accuracy. However, this also 
requires higher time and effort in verifying the phase labels of 
more AMI meters used in the training dataset. Therefore, a 
trade-off needs to be made between the efforts required in 
creating the training dataset and the expected level of phase 
identification accuracy. We observed the phase identification 
accuracy levels above 80% with 20% meters and around 90% 
accuracy with 30% meters in the training dataset. While 
increasing the meters in the training dataset further can 
improve the phase identification accuracy, it may not be worth 
the effort. Thus, we used 30% meters in the training dataset. 

In the fourth step, a random forest classifier is constructed 
using the training data set. This classifier is used to identify 
the phase connectivity of the meters in the testing data set. In 
the fifth step, the voltage time-series data in the testing data 
set are supplied to the random forest classifier to identify the 
phase connectivity of the meters in this data set. The output of 
this step is a list of AMI meters and the corresponding phase 

connectivity labels identified by the algorithm. These results 
are saved in the last step for post-processing, such as 
visualization and model corrections. 

Algorithm 1 Phase identification using random forest 
classifier 

1: Load AMI data set. 

2: Perform data preprocessing: data cleaning and 
standardization. 

3: Load training data, including field-validated phase labels 
for the AMI meters in the training data. 

4: Construct a random forest classifier using the training data. 

5: Input the voltage time-series testing data to the random 
forest classifier and obtain the corresponding phase 
connectivity. 

6: Save the phase identification results for post-processing. 

 

C. Assumptions and Limitations 

The proposed phase identification algorithm assumes that 

the number of phase connections in the feeder is known. This 

is a reasonable assumption since the utility engineers typically 

have this information in their database. It is assumed that the 

training data including the accurate phase labels for the meters 

in the training dataset are available. The proposed phase 

identification algorithm uses voltage time series data from the 

AMI meters. As the conventional meters used for billing only 

record the power consumption data, this algorithm cannot be 

applied to the feeders that do not have the AMI meters 

installed. The training data parameters such as data duration, 

granularity, number of meters etc. influence the phase 
identification accuracy.  

IV. RESULTS AND DISCUSSION 

The proposed phase identification algorithm is 
implemented in Python using scikit-learn package on a 
Windows machine with i7 processor and 32 GB memory. The 
algorithm is applied on the AMI data sets collected in the field 
for two SDG&E feeders. The identified phase connectivity 
labels from the algorithm are validated against the ground 
truth phase connectivity data for each AMI meter obtained 
through field verification. The computation time for both 
training and testing is less than a minute for the datasets used 
in this work. The results are discussed in this section. 

A. Feeder 1 

 The phase identification results of Feeder 1 are shown in 
Fig. 4. For each type of phase connectivity, the number of 
meters that the algorithm has identified as pertaining to that 
connectivity is shown against the ground truth in this figure. 
The results show that the phase identification algorithm can 
accurately identify all the types of phase connectivity. 

 

Fig. 4. Phase identification results of Feeder 1. 
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 The detailed breakdown of the AMI meter counts in each 
of the training, testing, and full data sets of the phase 
identification is shown in TABLE I. The phase label column 
indicates whether the AMI meter connectivity labels for the 
meter counts are obtained from the ground truth or from the 
phase identification (Correct phase ID) results. For each type 
of phase connectivity, 30% of the meters are randomly 
selected along with their ground truth phase connectivity for 
the training data set. The full data set includes both the training 
and testing data sets together. With the phase connectivity 
accurately identified for 347 of 401 meters in the testing set 
alone, the phase identification accuracy is 86.5% on the testing 
set. The phase identification accuracy on the training and full 
data sets are 100% and 90%, respectively. Note that the meter 
counts in the ‘Correct phase ID’ row in TABLE I represent the 
number of meters for which the phase connectivity is 
identified correctly. These meter counts do not match with the 
phase identification meter counts in Fig. 4 as the meter counts 
in Fig. 4 also include meters for which the phase connectivity 
is identified incorrectly. 

TABLE I. PHASE IDENTIFICATION RESULTS OF FEEDER 1. 

Data set 
Phase 

label 

Phase connectivity 
Total 

A B C AB BC CA 

Full 

Ground 
truth 

63 102 99 77 136 91 568 

Correct 

phase ID 
55 98 98 56 126 81 514 

Testing 

Ground 

truth 
45 72 70 54 96 64 401 

Correct 

phase ID 
37 68 69 33 86 54 347 

Training 

Ground 

truth 
18 30 29 23 40 27 167 

Correct 

phase ID 
18 30 29 23 40 27 167 

The geographic locations of the AMI meters and the 

corresponding match/mismatch with the ground truth in the 

phase identification results are shown in Fig. 5. The meters 

are distributed all over the feeder; thus, the algorithm can 

detect the correct phase connectivity in all the neighborhoods 

of Feeder 1. In Fig. 5, the meter locations for which the phase 

connectivity is identified incorrectly are highlighted by the 

purple squares. The locations of the meters for which the 

phase connectivity is identified correctly are highlighted by 

the corresponding phase markings in the legend. It is 

observed that the phase identification errors are not clustered 

or confined to any specific feeder neighborhoods. 

 

Fig. 5. Geographic distribution of phase identification match/mismatches in 

Feeder 1. 

B. Feeder 2 

The phase identification results of Feeder 2 are shown in 
Fig. 6 and TABLE II. As noted in Section II.B, Feeder 2 has 
predominantly phase-to-phase meter connectivity. The phase 
identification accuracy is low for phase connectivity BC and 
CA. This is because of the lack of sufficient training data for 
the algorithm with the low number of AMI meters with this 
connectivity. Further, as observed in TABLE II, the phase 
connectivity is correctly identified for 809 of 857 meters in the 
full data set, which includes both training and test data sets, 
which represents 94.4% accuracy. The phase identification 
accuracy on the training and full data sets are 100% and 92%, 
respectively. 

The geographic locations of the AMI meters for which the 

algorithm correctly and incorrectly identified the phase 

connectivity are shown in Fig. 7. It is evident that the phase 

connectivity is correctly identified in the entire feeder and 

that the phase identification errors are not confined to any 

specific feeder neighborhoods. 

 

Fig. 6. Phase identification results of Feeder 2. 

 
TABLE II. PHASE IDENTIFICATION RESULTS OF FEEDER 2. 

Data 

set 

Phase 

label 

Phase connectivity 
Total 

A B C AB BC CA 

Full 

Ground 

truth 
268 310 251 17 1 10 857 

Correct 

phase ID 
260 293 241 12 0 3 809 

Testing 

Ground 

truth 
188 217 176 12 1 7 601 

Correct 

phase ID 
180 200 166 7 0 0 553 

Training 

Ground 
truth 

80 93 75 5 0 3 256 

Correct 

phase ID 
80 93 75 5 0 3 256 

 

Fig. 7. Geographic distribution of phase identification match/mismatches in 

Feeder 2. 

V. CONCLUSIONS AND FUTURE WORK 

This paper proposed a robust phase identification 
algorithm based on supervised machine learning. The 
algorithm can be applied to distribution feeders having 
significant PV generation and a mix of phase-to-neutral and 
phase-to-phase meter connectivity. The performance of the 
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proposed phase identification algorithm is demonstrated using 
the AMI data collected in the field from two real distribution 
feeders of SDG&E having significant PV generation and 
varied characteristics. The phase identification results are 
validated against the field-verified phase connectivity data. 
The results show that the proposed algorithm accurately 
identifies the phase connectivity, in a high percentage of cases 
but not universally. In future work, we will explore the 
sensitivity of the algorithm to different parameters—such as 
AMI data resolution, duration, PV penetration level—and 
ways to minimize the training data requirements. We will also 
consider additional analysis including exploration of other 
methods and comparison as part of the future work. 
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