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Abstract— This paper presents the performance evaluation 
of a peer-to-peer microgrids coordination algorithm for sub-
transmission systems.  As distributed energy resources (DERs) 
in distribution system start to show negative impact to the bulk 
power system, a paradigm shift is needed for transmission 
planning and operation. Because distribution substations are 
located far from the sub-transmission system, and it is hard to 
use traditional centralized control for real-time control and 
coordination. Thus, distributed control is a natural choice 
because it requires less communication and central 
computation. In this paper, each distribution substation is 
treated as a microgrid, and the peer-to-peer distributed 
microgrids control is formulated as a real-time optimal power 
flow problem to reduce the negative impact in sub-transmission 
systems. A distributed primal-dual optimization algorithm is 
adopted to solve the problem. Validation of the peer-to-peer 
algorithm is performed through the simulation of a real-world 
sub-transmission system composing of many distribution 
systems with high renewable penetration. Simulation results 
show that the peer-to-peer algorithm can achieve satisfactory 
voltage regulation performance in sub-transmission system by 
coordinating and controlling DERs in distribution systems. 

Index Terms—Microgrid coordination, distributed control, 
HELICS, peer-to-peer control algorithm, voltage regulation. 

I. INTRODUCTION  
The increasing penetration of distributed energy resources 

(DERs) in distribution systems has created new challenges 
and opportunities in power systems. Although most DERs are 
connected to the distribution systems, their impacts could 
reach sub-transmission and transmission systems, creating 
challenges such as intermittent power generation, stochastic 
operating conditions, and reverse power flow [1]. This 
requires transmission system planners and operators to 
explore grid operation and control solutions to maintain 
transmission system stability and to cope with the ever-
increasing integration of DERs [2]. The grid operation and 
control solutions usually require coordination and control 
between transmission and distribution systems, which 
imposes challenges for control systems, especially 
communication networks, because distribution substations 
are located far from the sub-transmission system, and it is 

hard to use traditional centralized control for real-time 
control and coordination [3]. 

Distributed control architecture is a promising option to 
achieve this goal of coordinating DERs for maintaining 
reliable operation of sub-transmission systems. It does not 
require a central controller; local controllers exchange 
information with neighbors to achieve network level 
objectives [4]. Due to these advantages, distributed DER 
control and coordination has received attentions in many 
studies, for example, [5-6]. However, they are mostly 
considered in the distribution system context. Grid control 
solution for DERs at the sub-transmission and transmission 
level, which includes many distribution systems, is not well 
studied. To bridge this gap, this paper aims to develop a 
distributed control framework for microgrids coordination 
that enables neighboring distribution substations to share 
information and help each other for system level objectives 
(e.g., voltage regulation), while reducing the need for 
communication in the system. 
 The main contributions of this paper are as follows: i) A 
distributed control framework is applied to coordinate 
distribution substations as microgrids to achieve network-
level objectives while maintaining system constraints. ii) The 
peer-to-peer control algorithm is tested with a real-world sub-
transmission system; detailed design, implementation, and 
tuning of the algorithm are provided; and the case study 
provides insights into how a distribution system with a high 
penetration of renewable generation impacts the sub-
transmission system and demonstrates the ability of DERs in 
distribution systems to maintain sub-transmission system 
voltage stability through distributed controls. iii) Two 
communication scenarios—all-to-all and neighbor-to-
neighbor—are investigated, and the results show that the 
neighbor-to-neighbor communication has similar control 
performance to the all-to-all communication but with less 
need for communication networks. 

II. PEER-TO-PEER ALGORITHM DESCRIPTION 
A. Problem Formulation 

We consider a power system of 𝑁𝑁 nodes, which is divided 
into 𝑁𝑁𝑀𝑀𝑀𝑀  microgrids. Each microgrid has a microgrid 
controller (MGC), which controls the local DERs, collects 
local measurements, and communicates with other MGCs. 
Our objective is to coordinate the microgrids in a distributed 
fashion while achieving certain network objectives and 
satisfying system constraints. The generic optimal power 
flow (OPF) problem can be formulated as follows: 

min
𝑥𝑥

�𝑓𝑓𝑘𝑘(𝒙𝒙𝑘𝑘) 
𝑁𝑁

𝑘𝑘=1

                                    (1𝑎𝑎) 

𝑠𝑠. 𝑡𝑡.     𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒        (1𝑏𝑏) 

This work was authored in part by the National Renewable Energy Laboratory, 
operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of 
Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided 
by the U.S Department of Energy Office of Energy Efficiency and Renewable 
Energy Solar Energy Technologies Office under Award Number DE-
EE0008769. The views expressed in the article do not necessarily represent 
the views of the DOE or the U.S. Government. The U.S. Government retains 
and the publisher, by accepting the article for publication, acknowledges that 
the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide 
license to publish or reproduce the published form of this work, or allow others 
to do so, for U.S. Government purposes. 

mailto:Jing.Wang@nrel.gov


 

2 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

                          𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙                        (1𝑐𝑐) 
                          𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙                          (1𝑑𝑑)  

where 𝑥𝑥  are the decision variables; 𝑓𝑓(∙) are the objective 
functions. Note that the formulation in (1) is generic; the 
choice of decision variables, objectives, and constraints 
depends on the specific interests of the user. Different choice 
also leads to different level of complexity and requires 
different algorithm to solve. In this work, 𝑥𝑥 are chosen to be 
the real and reactive power of the controllable DERs; the 
objective is to minimize real power curtailment and reactive 
power injection; a linearized power flow from [7] is adopted 
for constraint (1b); lower and upper bounds are set for (1c); 
and upper bounds for the apparent power of the DERs are set 
for (1d).    
B. Peer-to-Peer Algorithm 

To solve the OPF in peer-to-peer fashion, we adopted a 
distributed primal-dual gradient algorithm from [9]. In the 
standard primal-dual algorithm, global information of the 
dual variable is needed, making it a centralized algorithm [8]. 
In the distributed algorithm, each MGC keeps a local estimate 
of the dual variables, 𝜆̂𝜆𝑘𝑘. The dual estimates are updated with 
local measurements and communication with the other 
MGCs, resulting in a fully distributed algorithm. Also, the 
algorithm uses real-time measurements to update the 
optimization iterations, which reduces the impacts of 
modeling errors and computation costs [7].  

The primal variable update is given by the following: let 
𝒩𝒩𝐷𝐷  be the set of indexes for controllable DERs, ∀𝑘𝑘 ∈ 𝒩𝒩𝐷𝐷: 

𝑥𝑥𝑘𝑘,𝑡𝑡+1 = Proj𝒳𝒳�𝑥𝑥𝑘𝑘,𝑡𝑡 + 𝛼𝛼�∇𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘,𝑡𝑡) + 𝐴𝐴𝑘𝑘𝜆̂𝜆𝑘𝑘,𝑡𝑡��     (2) 
and the dual variable estimate update is given by the 
following: let 𝒩𝒩𝑣𝑣  be the set of indexes for the constraints,   
∀𝑗𝑗 ∈ 𝒩𝒩𝑣𝑣: 

𝜆̂𝜆𝑗𝑗,𝑡𝑡+1 = Projℝ+�𝜆̂𝜆𝑗𝑗,𝑡𝑡 +  𝛽𝛽𝛽𝛽�𝑦𝑦𝑗𝑗,𝑡𝑡 − 𝑏𝑏𝑗𝑗�� −  𝛾𝛾𝛾𝛾𝜆̂𝜆𝑗𝑗,𝑡𝑡 (3) 
where Proj𝒮𝒮 [∘]  is the projection operator which finds the 
closest point to the operand in the set 𝒮𝒮; 𝐴𝐴𝑘𝑘 is calculated from 
the linearized power flow equation; 𝝀𝝀�𝑗𝑗 collects all the copies 
of estimate for the 𝑗𝑗𝑡𝑡ℎ  constraint; 𝑦𝑦  and 𝑏𝑏  are the voltage 
measurements and the corresponding voltage limits; 𝛼𝛼,𝛽𝛽, 𝛾𝛾 
are the step sizes for the primal variable update, dual variable 
estimate update, and communications, which can be tuned to 
ensure convergence and improve the algorithm’s 
performance; 𝑀𝑀  is a connection matrix specifying which 
measurements each MGC has; and 𝐿𝐿 is the graph Laplacian 
of the communication graph.  

At each time step, the MGC will (i) update the primal 
variables with the local estimate of the dual variables 
according to (2) and (ii) collect local measurements of the 
constraints and dual variable estimates from other MGCs and 
update its local dual variable estimate following (3). More 
analysis on the algorithm can be found in [9].  

III. DESCRIPTION OF THE EVALUATION SETUP 
 This work validates the performance of the peer-to-peer 
control algorithm under a simulated real-world sub-
transmission system of Holy Cross Energy (HCE), a local 
utility company in Colorado. When distribution systems have 
large amounts of renewable generation, reverse power flow 
might occur, which could lead to voltage issues in the sub-
transmission systems. In this study, we aim to optimize DER 
operations while ensuring voltage constraints are satisfied.  

Fig. 1 shows the overall diagram of the peer-to-peer 
evaluation setup. The sub-transmission system model is 

simulated in OpenDSS and measurements and control 
setpoints are exchanged with MGCs; the MGC is the 
distributed microgrid controller; and the data manager is to 
simulate the communication between MGCs. All the 
elements are implemented in the Hierarchical Engine for 
Large-scale Infrastructure Co-Simulation (HELICS) 
platform. HELICS is used because it allows each main 
element to execute in its own time step in real time, and it 
allows for real-time data exchange between elements, which 
is important for testing real-time controls interacting with the 
simulation model [10]. The following subsections explain 
each main component in detail. 

 
Fig. 1. Overall diagram of the HELICS platform for the peer-to-peer 

algorithm performance evaluation. 

A. Simulation of Sub-transmission System in OpenDSS 
The topology of the sub-transmission system under study is 

shown in Fig. 2. The system is simplified with lumped loads 
and DERs while still retaining the network topology, 
generation, and demand to accurately represent the real-
world HCE sub-transmission system. The system has 84 
three-phase nodes and a peak load of 249.86 MW. Note that 
T1, T2, and T3 are three nodes connecting to upstream 
transmission systems. T2 and T3 are modeled as generators to 
allow the power flow to converge. There are 11 substations, 
and each substation is considered as a microgrid with 
controllable nodes. Each node has both load and photovoltaics 
(PV) connected. The PV generation at each node is set to meet 
half of the peak load. Hourly load profiles for a year are 
obtained from the utility supervisory control and data 
acquisition (SCADA) system at HCE. The PV profiles are 
calculated based on the net profile from the advanced 
metering infrastructure and the load profiles, and the solar 
irradiance data are interpolated into 1-minute resolution.  

 
Fig. 2. Topology of the sub-tranmission system under study. 

B. Peer-to-Peer Control Architecture 
A high-level representation of the algorithm for each MGC 

is shown in Fig. 3. Following the algorithm described in 
Section II-B, each MGC updates the primal and dual 
variables locally with local measurements and dual variable 
estimates by communicating with other MGCs.  

In this case study, the primal variables are a collection of 
the power set points 𝒙𝒙 = [𝑃𝑃1,𝑃𝑃2 … ,𝑃𝑃𝑛𝑛, 𝑄𝑄1,𝑄𝑄2 …𝑄𝑄𝑛𝑛]𝑇𝑇  for all 
PV, which are dispatched by an MGC. The objective function 
is set to minimize the real power curtailment and the reactive 
power injection from the PV, i.e., 𝑓𝑓(𝑃𝑃𝑖𝑖 ,𝑄𝑄𝑖𝑖) =  𝑐𝑐𝑝𝑝�𝑃𝑃𝑎𝑎𝑎𝑎,𝑖𝑖 −
𝑃𝑃𝑖𝑖�

2 + 𝑐𝑐𝑞𝑞(𝑄𝑄𝑖𝑖)2, where 𝑃𝑃𝑎𝑎𝑎𝑎,𝑖𝑖  is the available active power for 
the ith PV, and 𝑐𝑐𝑝𝑝 and 𝑐𝑐𝑞𝑞 are the weighting factors for the real 
and the reactive power costs. Note that, as shown in (3), 
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updating the estimation of the dual variable, 𝜆̂𝜆, includes two 
parts: 𝛽𝛽𝛽𝛽(𝑦𝑦 − 𝑏𝑏) and 𝛾𝛾𝛾𝛾𝜆̂𝜆. The first part relates to constraint 
violation, where a voltage violation vector, 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 , is defined as 
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚�

𝑇𝑇 , where 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  and 
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  are defined to capture the difference 
between the voltage measurements, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 , and the target 
operation limit. Next, 𝛽𝛽𝛽𝛽𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 is calculated. The second part 
of the dual variable update is calculated based on 𝛾𝛾𝛾𝛾𝜆̂𝜆, where 
𝜆̂𝜆  includes the estimated dual variables collected from the 
other MGCs. Note that the first term is related to local 
control, and the second term is related to communications 
with other MGCs control. If a voltage violation happens in 
one MGC, the peer-to-peer algorithm will control both the 
local PV and PV from neighboring MGCs to contribute to the 
voltage regulation. This is a great advantage of the peer-to-
peer control algorithm. 

 
Fig. 3. Peer-to-peer algorithm for dispatching distributed PV. 

C. Data Manager 
 In this primal and dual optimization scheme, each MGC 
needs to update its local dual variable estimate by requesting 
dual variables from other MGCs. A data manager as seen 
from Fig. 1 is implemented in HELICS as a storage to receive 
dual variables from all MGCs and to send the needed dual 
variables to the corresponding MGC. Note that the data 
manager is added to the simulation only for the convenience 
of communication implementation and it does not change the 
distributed nature of the algorithm; in practice, the data are 
exchanged in peer-to-peer fashion without centralized data 
management. When an MGC updates its dual variable 
estimate, the controller requests the data manager to send 
dual variables from the connected MGCs. The data manager 
processes this request and searches through the graph 
Laplacian L (communication graph among MGCs) to find the 
connected MGCs and collect the dual variables. The data 
manager then sends updated dual variables back to the MGC. 

IV. IMPLEMENTATION OF THE PEER-TO-PEER ALGORITHM 
 Defining the graph Laplacian L is the first step to 
implement the peer-to-peer algorithm. The sub-transmission 
system is divided into 11 zones based on the number of 
substations and interconnections, and each MGC controls all 
the PV units in that zone. The zone definitions are shown in 
Fig. 4. Zone 0 and 10 include one substation and transmission 
system(s), and the rest of the zones have only one substation.  

 
Fig. 4. Zone definition of peer-to-peer distributed MGCs. 

The main function of the graph Laplacian L is to describe 
the communications between MGCs. In this work, we 

consider two types of communications: neighbor-to-neighbor 
and all-to-all. In the neighbor-to-neighbor communication, 
the MGC communicates with neighboring MGCs; and in the 
all-to-all communication, the MGC communicates with all 
other MGCs in the network. For example, Zone 0 connects 
with zones 1, 5, 7, 8, and 10, so the neighbor-to-neighbor 
communication of Zone 0 is described by the graph Laplacian 
L shown in Table 1. 

Table 1. Graph Laplacian for neighbor-to-neighbor communication 
 Z0 Z1 Z2 Z3 Z4 Z 5 Z 6 Z7 Z8 Z9 Z10 

Z0 5 -1 0 0 0 -1 0 -1 -1 0 -1 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Z10 -1 0 0 0 0 0 0 0 0 -1 2 

For the all-to-all communication, the graph Laplacian L of 
Zone 0 is defined as shown in Table 2. 

Table 2. Graph Laplacian for all-to-all communication 
 Z0 Z1 Z2 Z3 Z4 Z 5 Z 6 Z7 Z8 Z9 Z10 

Z0 10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Z10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10 

After setting up the L, the peer-to-peer controller agents are 
configured in the HELICS framework. Fig. 5 presents a high-
level structure of HELICS framework. Three types of agents 
are included in the framework: the OpenDSS agent, the MGC 
agents, and the data manager agent. For real-time simulation, 
the data manager agent runs every 0.1 second, the OpenDSS 
agent runs every 1 second, and the MGC agents run every 1 
second. All the agents use HELICS’s built-in publishing and 
subscription function to exchange data. As shown in Fig. 5, 
each MGC agent receives voltage measurements belonging 
to its zone from the OpenDSS agent, it also receives the 
requested dual variables from other MGCs, and the optimal 
P and Q set points are then sent to the OpenDSS agent. The 
data manager agent receives the dual variables from all the 
MGC agents and sends the requested dual variables to the 
corresponding MGC agents. Python is the programming 
language in HELICS and more details of the HELICS 
implementation can be found in reference [10].  

 
Fig. 5. HELICS framework of the peer-to-peer algorithm. 

Once all the agents are integrated, a communication test is 
performed to ensure that the data are correctly transferred 
between agents. Then, a significant effort is spent on tuning 
the algorithm. The tunable variables include 𝛼𝛼 and 𝛽𝛽, with 
𝛼𝛼,𝛽𝛽 set to 0.1 as a starting point. The goals of the parameter 
tuning are to ensure that the algorithm converges and to find 
a good response speed (e.g., reactive power of PV and system 
voltages). Starting from 0.01 for both α and β, the reactive 
power outputs of the PV units are stable, but the system 
voltages are regulated very slowly, which indicates that the 
step size is too small. The values of α and β are gradually 
increased until the system voltages and reactive power output 
of the PV units start to oscillate when 𝛼𝛼 = 𝛽𝛽 = 1.8. Between 
0.01 and 1.8, different values of 𝛼𝛼, 𝛽𝛽 are tested. If both α and 
β range from 0.01–1, the algorithm achieves a relatively 
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acceptable convergence time and voltage regulation 
performance. Finally, α and β are set to 0.05 to balance the 
convergence time and performance of the algorithm. 

Y-matrix validation is another important aspect to ensure 
that the algorithm works correctly. Following [7], the 
coefficients in the linearized power flow constraint (1b) are 
calculated from the Y-matrix.  The Y matrix is extracted from 
OpenDSS by disabling all voltage sources, PV units, and 
loads; then it is per-unitized. To have a sanity check on Y, we 
calculated the nominal voltage 𝑣𝑣0  from Y and compare it 
with the voltage at the secondary of the transformer T1. The 
validation result shows that 𝑣𝑣0 is very close to 1.04 p.u., with 
an acceptable error of 0.02%, indicating an accurate Y-
matrix. Finally, the real-time simulation is performed to 
evaluate the voltage regulation performance against the target 
voltage operation limits and to ensure that the sub-
transmission system model is stable with the applied power 
set points from the MGCs. 

V. SIMULATION RESULTS 
 This section presents the real-time simulation results to 
demonstrate the performance of the peer-to-peer control 
algorithm. In particular, the performances of the all-to-all and 
neighbor-to-neighbor communications are evaluated, and the 
differences between them are compared. For the evaluation, 
we select a 4-hour simulation window from 11:00 a.m.–15:00 
p.m. to capture voltage issues that might result from large 
injections from PVs. Note that the power generated by PVs 
is approximately half of the active power demand. For 
comparison, we simulate a baseline scenario with PVs 
working in unity power factor control mode and there is no 
control actions for the system.  
System Voltages: Fig. 6 shows the system voltages 
(maximum, average, and minimum) of the baseline scenario 
together with two communication scenarios. Note that in the 
baseline case, the voltages are within the common safe 
operation range (0.95 p.u.–1.05 p.u.); thus, for demonstration 
in this simulation, the lower and upper voltage limits are set 
to 0.95 p.u. and 1.038 p.u. to test the voltage regulation of the 
peer-to-peer algorithm. Compared to the baseline scenario, 
the system voltages with peer-to-peer control (all-to-all and 
neighbor-to-neighbor) show the regulation effect with the 
maximal voltage, and the average and minimal voltages are 
similar to the baseline scenario. Note that the voltage 
regulation performances of the two scenarios (all-to-all and 
neighbor-to-neighbor) resemble each other. Both scenarios 
cannot regulate the maximal voltage below the upper limit 
because the sub-transmission system is a very stiff grid, and 
the installed PV capacity might not have sufficient influence 
on the node with the maximal system voltage. 

 
             (a)                                (b)        (c) 

Fig. 6. System voltage measurements: (a) baseline (b) all-to-all 
communications, and (c) neighbor-to-neighbor communications. 

Voltages of Two Selected Buses with High Voltages: Two 
buses, Bus R421B from Zone 9 and Bus BA411 from Zone 
7, are selected because the voltages of these two zones 

violated the upper voltage limit, 1.038 p.u. The voltages of 
these two buses under three scenarios (baseline, all-to-all, and 
neighbor-to-neighbor) are presented in Fig. 7. Both control 
scenarios show the two buses being regulated compared to 
the voltage under the baseline scenario. Bus voltage 
V_R421B is still above the upper limit, whereas bus voltage 
V_BA411 is regulated within the limit. This is because the 
location of R421B is close to T2, which in the model is a big 
generator, and BA411 is downstream from the slack bus, T1. 
Note that BA411 is regulated within the limits in 10 minutes. 
Using the neighbor-to-neighbor communication, BA411 is 
regulated within the limits in 19 minutes. This shows that the 
peer-to-peer control algorithm takes longer to converge under 
the neighbor-to-neighbor communication.  

 

 

 
Fig. 7. Voltage measurements of buses: R421 (left) and BA411 (right). 

Outputs of PVs of Two Selected Buses: Further 
demonstrating the peer-to-peer algorithm, the active and 
reactive power of the PV connected to two buses mentioned 
above are shown in Fig. 8 and Fig. 9, respectively. As shown 
in Fig. 8, PV at R421B has a large amount of active power 
curtailment (>30%) compared to the PV at BA411 (0.21%) 
for two scenarios. The curtailment of R421B keeps increasing 
because the measured voltage at R421B continuously 
violates the upper voltage limit. While BA411 can closely 
regulate its voltage without reducing active power.  

 

 
Fig. 8. Active power of PV at bus R421B (left) and bus BA411 (right). 

As for the reactive power, the PV at R412B keeps increasing 
its reactive power output, and it stops at 4.192 MVar (near its 
capacity) for both communication scenarios. The PV at 
BA411 shows more dynamics in reactive power output, and 
it keeps increasing to certain value and then decreases to a 
near-zero value. The responses of the PV units at these two 
buses are expected because the peer-to-peer algorithm 
outputs reactive power as a priority and then curtails active 
power for voltage regulation. 
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Fig. 9. Ractive power of the PV at R421B (left) and BA411 (right).  

Dual Variables of PVs Connected to the Two Selected 
Buses: To further show the voltage regulation performance, 
dual variables (λ) related to the upper voltage violation are 
presented in Fig. 10. Each PV unit under one MGC receives 
the dual variables from peer MGCs. The dual variables of the 
PV at bus R421B keep increasing, as expected. The dual 
variables of PV at bus BA411 increase to their maximal, then 
start to decrease when bus BA411’s voltage is below the 
upper voltage limit, and finally reduce to zero. Compared to 
the all-to-all scenario, the neighbor-to-neighbor scenario 
takes 14 minutes longer to reach zero. We can also see that 
the higher the overvoltage violation, the larger the dual 
variables. The results in Fig. 10 indicate that the dual 
variables respond correctly and dynamically to the system 
voltages; and as shown in Fig. 9. 

 
       (a)                                                  (b) 

 
              (c)                                                  (d) 

Fig. 10. Dual variables λ (a) and (b) all-to-all communication and (c) and 
(d) neighbor-to-neighbor communication. 

Voltage Regulation Support from Neighboring MGCs: To 
investigate the contribution of the neighboring MGC to the 
voltage regulation at bus BA411, Fig. 11(a) presents the 
voltages of three buses that are selected from neighboring 
microgrids: ASPEN, SNOWMASS, and CRYSTAL. The 
voltage measurements of these buses are below the upper 
voltage limit, which requires no voltage regulation action.  
Fig. 11(b), however, shows that the PV at each bus absorbs a 
small amount of reactive power, which means that the 
neighboring microgrids contribute slightly to the voltage 
regulation at BA411. This further coincides with the 
mechanism of the peer-to-peer algorithm that the MGC shall 
contribute voltage regulation to interconnected peer MGCs. 

 

 
Fig. 11. Measurements of neighboring microgrids: voltage measurement (top) 

and reactive power output (bottom).  

VI. CONCLUSIONS 
 This paper presented a distributed control algorithm for 
coordinating microgrids in sub-transmission systems with 
reduced need for communication. The algorithm was tested 
with a realistic sub-transmission system. The implementation 
of the control algorithm and simulation model is carried out 
through HELICS to ensure that the power system model and 
the distributed controllers run in real time. The detailed 
implementation and tuning of the peer-to-peer algorithm 
were described. Finally, the voltage regulation performance 
with two communication scenarios, all-to-all and neighbor-
to-neighbor, were evaluated with 4-hour simulation of high 
solar production. The results demonstrate that (i) the peer-to-
peer algorithm can regulate voltages of a sub-transmission 
system using aggregated DERs in distribution systems and 
the performance can be limited by a stiff power system and 
limited DER capacities, and (ii) the neighbor-to-neighbor 
communication has comparable control performance to the 
all-to-all scenario and requires less communications. We will 
investigate the peer-to-peer algorithm with asynchronous 
commutation in the future work. 
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