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A Hybrid Reinforcement Learning-MPC Approach for Distribution
System Critical Load Restoration

Abinet Tesfaye Eseye, Xiangyu Zhang, Bernard Knueven, Matthew Reynolds, Weijia Liu, and Wesley Jones

Abstract— This paper proposes a hybrid control approach
for distribution system critical load restoration, combining
deep reinforcement learning (RL) and model predictive control
(MPC) aiming at maximizing total restored load following an
extreme event. RL determines a policy for quantifying operating
reserve requirements, thereby hedging against uncertainty,
while MPC models grid operations incorporating RL policy
actions (i.e., reserve requirements), renewable (wind and solar)
power predictions, and load demand forecasts. We formulate
the reserve requirement determination problem as a sequential
decision-making problem based on the Markov Decision Process
(MDP) and design an RL learning environment based on the
OpenAI Gym framework and MPC simulation. The RL agent
reward and MPC objective function aim to maximize and
monotonically increase total restored load and minimize load
shedding and renewable power curtailment. The RL algorithm
is trained offline using a historical forecast of renewable
generation and load demand. The method is tested using a
modified IEEE 13-bus distribution test feeder containing wind
turbine, photovoltaic, microturbine, and battery. Case studies
demonstrated that the proposed method outperforms other
policies with static operating reserves.

Index Terms— Distribution system, model predictive control,
operating reserve, reinforcement learning, restoration.

I. INTRODUCTION

As modern power systems host an increasing share of
new generation from variable and uncertain renewable energy
(VURE) sources like wind and solar, the need for adequate
operating reserves has increased to hedge against the vari-
ability and uncertainty of these sources. Operating reserves
are also vital for improved load restoration after extreme
event-caused outages. They help power systems effectively
schedule and dispatch generation and storage assets to restore
prioritized critical loads and increase the total load restora-
tion over a look-ahead control horizon (outage duration).
When these reserves are not sufficient to keep the frequency
stability of the power system, load shedding may become
necessary.
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Critical load restoration is one of the power system au-
tomation technologies. Augmenting it with intelligent and
robust operating reserve management technique can enable
the system to restore more critical loads after an extreme
event-caused disaster. References [1] and [2] propose classi-
cal optimization formulation and model predictive control
(MPC) approaches for critical load restoration in distri-
bution systems under extreme events. The latter considers
the co-optimization of power and reserve products of dis-
tributed energy resources (DERs). However, although this
work demonstrated the impact of reserves in improving
the load restoration process, the reserve requirements were
determined by a fixed ad hoc rule, so they may not be suitable
when the system operating condition changes.

Reinforcement learning (RL)-based control methods have
been applied to a number of control problems such as games,
robotics, transportations, etc. In the area of power (distribu-
tion) systems, RL has been applied to voltage control [3],
DER scheduling [4] and load restoration [5], [6]. However,
these studies do not consider the notion of reserves from
the DERs. Moreover, due to the RL difficulties of handling
sophisticated operational constraints and the unavailability
of open-source or commercial platforms for designing RL
simulation environments to learn power system problems,
some of these studies do not capture the complete underlying
operating condition in distribution systems.

This paper proposes a hybrid control approach for deter-
mining operating reserve requirements by combing deep RL
and MPC. In the proposed approach, the RL determines a
policy to quantify the reserve requirements and the MPC
models the grid operation incorporating the RL policy actions
(operating reserves) and forecasts of renewable power and
load demand. We formulated the reserve requirement deter-
mination problem as a sequential decision-making problem
based on the Markov Decision Process (MDP) and designed
an RL learning environment based on the OpenAI Gym
framework and MPC simulation. The RL agent reward and
MPC objective function aim to maximize and monotonically
increase total restored load and minimize load shedding and
renewable power curtailment. The method is applied on a
modified IEEE 13-bus distribution test system containing
wind, solar, microturbine, and energy storage battery, com-
pared with other operating reserve determination methods.

The remaining sections of the paper are organized as
follows. The model of the distribution grid operation is
presented in Section II. Section III introduces the proposed
hybrid controller framework. Experimental findings and con-
clusions are given in Sections IV and V, respectively.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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II. DISTRIBUTION GRID OPERATION MODEL

A. Optimal Resource Scheduling and Load Restoration

The critical (prioritized) load restoration process is mod-
eled as a constrained optimization problem whose objective
function and constraints are presented below.

1) Objective Function:
The objective function aims to maximize the total restored

load and minimize load shedding and renewable power
curtailment. It is formulated as follows.

max
DV

∑
i∈N

∑
t∈T

ωiLi,t∆t− ψ
∑
i∈N

∑
t∈T

ωiLSi,t∆t

−
∑
i∈N

∑
t∈T

(αPwt,curt
i,t + βP pv,curt

i,t )∆t
(1)

where DV = {Li,t, LSi,t, P
wt,cut
i,t , Qwt

i,t , P pv,cut
i,t , Qpv

i,t, P
g
i,t,

Qg
i,t, P

es
i,t , Qes

i,t, SOC
es
i,t, a

es
i,t, b

es
i,t} is the set of decision

variables of the optimal scheduling and restoration (OSR)
problem. Li,t is the restored load at node i and time t
and given by Li,t = P l

i,t + Ql
i,t where P l

i,t and Ql
i,t are

the active and reactive load components; LSi,t is the load
shedding and given by LSi,t = max((P l

i,t−1 − P l
i,t), 0) +

max((Ql
i,t−1 − Ql

i,t), 0); Pwt,curt
i,t and P pv,curt

i,t are the
wind and solar power curtailments; Qwt

i,t and Qpv
i,t are the

reactive power injection/absorption by the wind and solar
power electronic converters; P g

i,t and Qg
i,t are the active and

reactive power output of the dispatchable generator; P es
i,t and

Qes
i,t are the net active (charging/discharging) and reactive

(injection/absorption) power of the energy storage; SOCes
i,t

is the state of charge (SOC) of the storage; aesi,t and besi,t
are binary variables indicating the charging and discharging
status of the storage; ωi is the priority weight (criticalness
level) of the load; ψ is the load shedding penalty; α and
β are penalties for the wind and photovoltaic (PV) power
curtailments; ∆t is the length of the control periods; T is the
control horizon; and N is the number of electrical nodes.

2) Constraints:
I) Restored Loads Feasible Range:

0 ≤ P l
i,t ≤ P

l,dem
i,t ; 0 ≤ Ql

i,t ≤ Q
l,dem
i,t

Ql
i,t =

(
Ql,dem

i,t

P l,dem
i,t

)
P l
i,t

(2)

where P l,dem
i,t and Ql,dem

i,t are the forecasted active and
reactive load power demands before the extreme event.

II) Dispatchable DERs Output Power Feasible Range:

0 ≤ P g
i,t ≤ P

g,max
i ; 0 ≤ Qg

i,t ≤ Q
g,max
i

Qg,max
i =

√
(Sg,max

i )2 − (P g,max
i )2

(3)

where P g,max
i , Qg,max

i and Sg,max
i are, respectively, the

maximum active, reactive, and apparent power of the dis-
patchable generator.

III) Fuel Usage of Fuel-Fired Dispatchable DERs:∑
t∈T

P g
i,t∆t ≤ E

g,p
i,max ;

∑
t∈T

Qg
i,t∆t ≤ E

g,q
i,max (4)

where Eg,p
i,max and Eg,q

i,max are, respectively, the maximum
allowable active and reactive energy productions associated
with the fuel consumption of fuel-fired generators.

IV) Storage Power Limits and Complementary Operation:

0 ≤ P es,c
i,t ≤ ai,tP

es,max
i ; 0 ≤ P es,d

i,t ≤ bi,tP es,max
i

0 ≤ Qes,a
i,t ≤ ai,tQ

es,max
i ; 0 ≤ Qes,i

i,t ≤ bi,tQ
es,max
i

ai,t + bi,t ≤ 1

P es
i,t = P es,d

i,t − P
es,c
i,t ; Qes

i,t = Qes,i
i,t −Q

es,a
i,t

(5)

where P es,c
i,t , P es,d

i,t , Qes,a
i,t and Qes,i

i,t are, respectively, the
charging power, discharging power, absorbed and injected
reactive power; P es,max

i and Qes,max
i are the maximum

active and reactive power capacity of the storages; and
ai,t and bi,t equal to 1 when the storages are charging
(or absorbing reactive power) and discharging (or injecting
reactive power), respectively, and 0 otherwise.

V) Storage SOC Feasible Range and Dynamics:

SOCes
i,min ≤ SOCes

i,t ≤ SOCes
i,max (6)

SOCes
i,t = SOCes

i,t−1 +

(
ηes,ci P es,c

i,t

Ces
i

−
P es,d
i,t

ηes,di Ces
i

)
∆t (7)

where SOCes
i,min and SOCes

i,max are the minimum and
maximum SOCs of the storage; ηes,ci and ηes,di are the
charging and discharging efficiencies of the storage; and Ces

i

is the rated holding capacity of the storage.
VI) Renewable Power Curtailment Feasible Range:

0 ≤ Pwt,cut
i,t ≤ Pwt

i,t ; 0 ≤ P pv,cut
i,t ≤ P pv

i,t (8)

where Pwt
i,t and P pv

i,t are the wind and PV power forecasts.
VII) Power Electronic Converters Operation:

−
√

(Sder)2 − (Pmax
der )2 ≤ Qder,t ≤

√
(Sder)2 − (Pmax

der )2

(9)

where Sder is the rated apparent power of the DER (wind,
PV or storage) converter; Pmax

der is the rated active power
of the DER; and Qder,t is the injected or absorbed reactive
power by the DER converter.

VIII) Power Flow Constraints:

Pij,t = P l
j,t −

(
P g
j,t + Pwt

j,t − P
wt,cut
j,t + P pv

j,t − P
pv,cut
j,t − P es

j,t

)
+
∑
k∈N

AjkPjk,t ; ∀t ∈ T , ∀j ∈ N , i = r(j)

(10)

Qij,t =Ql
j,t −

(
Qg

j,t +Qwt
j,t +Qpv

j,t +Qes
j,t

)
+
∑
k∈N

AjkQjk,t ; ∀t ∈ T , ∀j ∈ N , i = r(j)

(11)

Vj,t = Vi,t−2(rijPij,t+xijQij,t); ∀t ∈ T , ∀j ∈ N, i = r(j)
(12)

where Pij,t and Qij,t are the active and reactive power flows
from node i to node j; rij and xij are the resistance and
reactance of the distribution line connecting nodes i and j;
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and A is an adjacency matrix that expresses the distribution
network topology and its element Aij is set to 1 if node i is
the parent of node j and 0 otherwise; and Vi,t and Vj,t are
the squares of the voltages at nodes i and j.

IX) Nodal Voltage Bounds:

v2min ≤ Vi,t ≤ v2max (13)

where vmin and vmax are, respectively, the allowable mini-
mum and maximum magnitudes of the nodal voltages.

B. Operating Reserve Requirements

In this paper, the distribution system operating reserve
service is provided by two dispatchable DERs, a microtur-
bine (MT) generator, and an energy storage (ES) battery.
The formulations governing the relationship between the
power outputs of these DERs and the operating reserve
requirements are given below.

SOCes
i,tf
≥ µes

ti ; Eg
i,tf
≥ νgti (14)

where SOCes
i,tf

and Eg
i,tf

are, respectively, the end-of-
control-horizon ES SOC and MT fuel levels; µes

ti and νgti are,
respectively, the end-of-horizon ES SOC and MT fuel reserve
requirements; and ti and tf are, respectively, the initial and
final time periods of the control horizon [ti, tf ].

We propose a deep RL approach to determine the reserve
requirements µti and νti to maximize and monotonically
increase an aggregate load restoration. We incorporate these
reserve requirement equations into the OSR problem formu-
lated in (1) − (13), and run the MPC simulation for the
outage (restoration) period.

III. PROPOSED HYBRID CONTROLLER

Here we present the proposed RL-MPC hybrid control
approach, including the basics of RL and MPC, while making
practical connections to the OSR problem and operating
reserve requirements. To solve (1) − (14) using deep RL,
first we need to reformulate the OSR problem as an MDP.

A. Markov Decision Process (MDP)

At each time step t, an agent obtains a state st from the
state space S, and chooses an action at from the action space
A based on its policy π(at|st). Consequently, the system
transitions to the next state st+1 ∼ ρ(st+1|st, at) and the
agent receives an immediate scalar reward rt. The elements
of the MDP are described as follows.

1) State:
The state vector st ∈ S is used to describe the distribution

grid and OSR problem at time t and it is defined below:

st =
[
Pwt
[t,t+T ],P

pv
[t,t+T ],P

g
t ,P

es
t ,P

rl
t ,Q

rl
t ,

Eg
t ,E

g
tf
,SOCes

t ,SOCes
tf
, t
] (15)

where Pwt
[t,t+T ] and Ppv

[t,t+T ] are, respectively, the vectors of
wind and solar power forecasts at time t for future T look-
ahead periods; Pg

t and Pes
t are, respectively, the real-time

vectors of MT output power and ES net power; Prl
t and Qrl

t

are, respectively, the real-time vectors of restored load active

and reactive components; Eg
t and SOCes

t are, respectively,
the real-time vectors of MT remaining fuel and ES SOC; Eg

tf
and SOCes

tf
are, respectively, the vectors of end-of-horizon

MT remaining fuel and ES SOC; and t is the control step.
2) Action:
The action vector at ∈ A at each time step t consists

of the required reserve requirements from the dispatchable
DERs, and it is defined as follows:

at = [µi,νi] (16)

where µi and νi are, respectively, the vector of end-of-
horizon MT fuel and ES SOC reserve requirements.

3) Reward Function:
The reward function is formulated based on the OSR

objective function defined in (1). It is the load restoration
reward but also penalizes load shedding and renewable
curtailment, and is expressed as follows:

r =
∑
i∈N

ωiLi − ψ
∑
i∈N

ωiLSi

−
∑
i∈N

(αPwt,cut
i + βP pv,cut

i )
(17)

To obtain the value of Li, LSi, P
wt,cut
i and P pv,cut

i the OSR
problem (1) − (14) is solved by setting the values of µes

ti
and νgti equal to the action at and the system state to what
is given in st. Thus, computing r(st, at) requires solving
(1) − (14) for the control horizon T based on the MPC
simulation, where only the first step decisions are applied
and the rest are discarded. The hybrid RL-MPC controller
targets to search for the optimal operating action at at the
present state st such that the expected aggregate reward of
all the future states is maximized, as formulated below:

max
at∈A

E

[∑
t

γt[r(st, at)]

]
(18)

where γ ∈ [0, 1] is a discount factor expressing the im-
portance of the present reward with respect to the future
rewards. We solve the expected cumulative reward (18)
using the popular RL algorithm known as Proximal Policy
Optimization (PPO) proposed in [7].

B. Simulation Environment

To train the RL agent, it is necessary to develop an
environment E that mimics the distribution grid operation.
This environment consists of three modules: (i) Distribution
system model, which describes the steady-date operation
of the system (OSR problem); (ii) MPC simulator, which
generates DER schedules and load restoration; (iii) Data
generator, which provides the RL agent training data such as
scenarios of wind and solar power forecasts, load demand,
and grid topology information. The RL agent and environ-
ment interaction is illustrated in Fig. 1.

The controller can be deployed for practical real-time
distribution grid operation after the training is completed.
Moreover, the controller can still pursue its learning and
therefore adapt to new operating conditions and potential
misrepresentations of the environment by calibrating its
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Fig. 1. Hybrid RL-MPC controller learning framework.

parameters via online feedback. This can also be used to
adjust the model to time-varying future conditions of the
system.

IV. CASE STUDY AND SIMULATION RESULTS

The proposed RL-MPC hybrid controller is applied on a
modified IEEE 13-bus test feeder, where loads are considered
three-phase balanced, and four three-phase DERs comprising
wind (WT), PV, MT, and ES are integrated to the feeder, as
shown in Fig. 2 [2].

Fig. 2. Test system: modified IEEE 13-bus feeder with DERs.

The system is hit by an extreme event near the sub-
station bus (‘650’) and automatically switch to an islanded
operation. The DERs are then coordinated and managed
through the proposed controller to restore and supply the
system loads (L1 −L9) for 6 hours of outage period with 5
minutes of control step. The wind and solar power forecast
data are generated by the method referred in [2]. The system
data is provided in Table I.

The proposed RL-MPC simulation environment is devel-
oped according to OpenAI Gym [8] and the RL algorithm is
implemented using RLlib Ray [9] library. The Xpressmp [10]

TABLE I
SYSTEM PARAMETERS

Parameter Unit Value
N , ψ 13, 100
T,∆t Hour 6, 5/60
t [1, 2, ..., 72]
ω $/kWh [1.0, 1.0, 0.9, 0.85, 0.8,

0.65, 0.45, 0.4, 0.3]
α, β $/kWh 0.2, 0.2

P l,dem
t , ∀t kW [115, 85, 49.75, 200, 85,

199.75, 85, 324, 64]
Ql,dem

t , ∀t kW [66, 52, 29, 115, 40,
109, 45, 141, 43]

P g,max, Sg kW, kVA 400, 500
Eg,p

max, E
g,q
max kWh, kvarh 1000, 750

Eg,p
initial, E

g,q
initial kWh, kvarh 1000, 750

P es,max, Ses kW, kVA 200, 250
Pwt,max, Swt kW, kVA 400, 500
P pv,max, Spv kW, kVA 300, 375
Ces, SOCes

initial kWh 800, 160
SOCes

min, SOC
es
max % 20, 100

ηes,c, ηes,d % 95, 90
vmin, vmax pu 0.95, 1.05

solver is used to solve the MPC OSR problem. The whole
simulation is performed using high performance computing
(HPC) system in parallel across multiple CPU cores. The
agent achieved convergence at a reward value of 40 ∗ 103

after about 202 episodes. The performance of the devised
RL-MPC-based dynamic operating reserve policy (RP1) is
investigated and compared against four MPC-based fixed
operating reserve policies given in Table II:

TABLE II
MPC FIXED RESERVE POLICIES

Reserve Policy (RP) MT Reserve[kWh] ES Reserve [kWh]
RP2 200 0.0
RP3 0.0 240
RP4 500 0.0
RP5 500 240

The performance comparison is presented based on 20
scenarios representing different outage beginning times and
renewable (wind and solar) profiles. Statistics describing
performances are visualized in Fig. 3.

Fig. 3. Box and whiskers plot comparing rewards for scenarios 1-20 using
policies RP1-5.

As shown in Fig. 3, RP1 not only produces the highest me-
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dian reward, but also the highest worst-case reward over the
20 scenarios. Furthermore, the sample variance of rewards is
lowest for RP1 at 168.7, compared to the next lowest sample
variance of 195.1 for RP3. These observations suggest that
the RL-MPC dynamic reserve policy is more robust than the
fixed reserve policies.

For further performance comparison, we derive virtual best
and worst reserve policies based on the value of the reward
at each scenario by the policies (RP1 - RP5). A virtual best
policy is a policy that contains the maximum values of the
rewards by the policies for each scenario, while a virtual
worst policy is a policy that contains the minimum values of
the rewards. The performance comparison of RP1 against the
virtual best and worst policies is presented in Fig. 4, which
shows that rewards for using the RL-MPC dynamic reserve
policy are equal to the best virtual policy reward values from
RP1-RP5 in most of the scenarios (80%). Even when the
proposed policy reward values are lower than the best policy,
on average they are only 9.6% worse than the virtual best
policy values. This validates the benefit of proposed learning-
based dynamic reserve policy determination to improve load
restoration, and hence resilience, for the distribution system.

Fig. 4. Performance comparison of the proposed reserve policy and virtual
policies over scenarios.

Figure 5 depicts the power dispatch and aggregate restored
load, along with the dynamic reserves, by the proposed RL-
MPC hybrid controller for a single scenario (Scenario 17
in Fig. 4) where the sub-station power was down at 12
a.m. As shown in Fig. 5, the devised controller manages
the DERs interactively to monotonically increase the total
restored load. The proposed controller is able to restore more
loads for this scenario, compared to the benchmarks, as it
can dynamically determine the required reserves based on
the present and future operating condition of the system as
opposed to the one-size-fits-all fixed reserves, which fail (or
not effective) when the operating condition of the system
changes.

V. CONCLUSIONS

This paper devised and demonstrated a hybrid RL-MPC
controller to improve the load restoration process in a distri-
bution system under an extreme event. The hybrid controller
has benefited from the strengths of both controllers where

Fig. 5. Power dispatch and aggregate restored load.

the RL learned MPC parameters and the MPC modeled
sophisticated operational constraints of the distribution sys-
tem, which could be hard for the RL to handle alone. We
applied the devised method to the IEEE 13-bus distribution
test feeder with wind, PV, microturbine, and battery. The
proposed RL-MPC dynamic reserve policy outperformed the
other four MPC-based fixed reserve policies, in most tested
scenarios, with respect to reward criteria for restoring more
loads and shedding less. The present findings will continue in
the next phase of our research, in which the hybrid RL-MPC
controller will be explored to solve more relevant power
system problems that are too difficult to be solved effectively
by RL or MPC alone.
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