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Abstract— Integrating a large number of distributed energy
resources (DERs) into the power grid needs a scalable power
balancing method. We formulate the power balancing problem
as a look-ahead optimization problem to be solved sequentially
by a power distribution system aggregator based on a model
predictive control (MPC) framework. Solving large-scale look-
ahead control problems requires proper configuration of the
control steps. In this paper, to solve large-scale control prob-
lems, we propose a variable time granularity where control
time steps nearby the current control step have finer resolu-
tions. The aggregator objective includes maximization of power
production revenue and minimization of power purchasing
expense, renewable power curtailment, and mileage costs for
energy storage and electric vehicle (EV) charging stations while
satisfying system capacity and operational constraints. The con-
trol problem is formulated as a mixed-integer linear program
(MILP) and solved using the XpressMP solver. We perform
simulations considering a copper plate representation of a
large distribution network consisting of 2507 devices (control-
lable DERs), including curtailable photovoltaics (PVs), energy
storage batteries, EV charging stations, and buildings with
heating, ventilation, and air conditioning units (HVACs). We
show the effectiveness of the proposed approach in managing
DERs interactively for maximum energy trading profit and local
supply-demand power balancing. Finally, we demonstrate that
the proposed method outperforms other benchmark controllers
regarding computation time without compromising operational
performance.

Index Terms— Distribution system, DER, grid integration,
electricity market, model predictive control, power balancing.

I. INTRODUCTION

A large number of distributed energy resources (DERs)
with controllable power set-points are expected to be part
of the future power grid [1]. Examples of these DERs are
photovoltaics (PVs), energy storage systems (ESSs), electric
vehicles (EVs), and buildings with heating, ventilation, and
air conditioning units (HVACs). If integrated together in
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a large-scale system, these DERs could potentially offer
flexibility to the larger transmission system and its associated
market. In addition, if the DERs are controlled and coordi-
nated well, they can help to balance the fluctuating power
generation instigated by renewable energy resources such as
wind and solar. In day-ahead electricity markets, DERs can
help to maximize the revenue of an aggregator operating and
managing them. In real-time power markets, DERs can help
to reduce power imbalances caused by forecast errors and
provide ancillary services, such as regulation reserve. Finally,
by effectively shaving peak power demand, the integration of
large numbers of DERs can forestall the need for expensive
bulk electric system upgrades like additional generation,
storage, or transmission capacity.

Controlling a large number of DERs with inter-temporal
constraints (such as ESSs, EVs, and buildings) and periodic
variations (such as PVs) requires look-ahead formulations
with fast evaluation of the control algorithm that coordinates
the DERs and market signals (price, economic dispatch, or
automatic generation control signal). Therefore, efficient and
reasonably fast methods for solving this large-scale look-
ahead control problem in real time are of upmost importance.

The state-of-the-art and recent studies on control and
optimization for grid integration of DERs are presented next.
The study in [2] proposed distributed feedback controllers
that instantaneously regulate DER inverter power outputs.
An online algorithm for aggregations of DERs in distribution
grids to offer regulation services in response to up-stream
transmission grid requests is introduced in [3]. The work
in [4] presented a scalable hierarchical algorithm to solve
optimal power flow (OPF) problems in a distribution system
that targets to dispatch DERs for voltage control at a reduced
cost. However, although these studies demonstrated success
for optimal control of integrating large numbers of DERs in
large-scale distribution grids, they are only applicable for
single-step control problems and do not have look-ahead
control capability over certain future operating periods. The
works in [5]-[8] proposed look-ahead controllers to optimally
manage DERs in distribution systems for different control
horizons and objectives. However, these works considered a
limited number of DERs in the range of a few tens and their
scalability to massive DERs, in the range of thousands to
millions, is not presented or guaranteed.

In this paper, we formulate the large-scale and look-ahead
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power balancing and trading problem through the control of
massive DERs based on forecasted information of distribu-
tion system load demand, renewable power production and
power price. We formulate the control problem as a multi-
period and variable-time granularity optimization problem,
which is solved sequentially by a distribution system aggre-
gator in a model predictive control (MPC) framework.

The novel contributions of this paper include: (1) look-
ahead optimization formulation for the control of a massive
number of devices (DERs) in distribution systems; (2) multi-
time scale (variable time granularity) formulation of the
optimal control problem to enhance scalability; and (3) a
computational demonstration against two alternative MPC
formulations not utilizing variable time granularity.

The remaining sections of the paper are organized as
follows. The proposed control approach and problem for-
mulation are presented in Section II. Section III provides the
case studies and simulation results. The paper conclusion and
future works are given in Section IV.

II. PROPOSED CONTROL APPROACH AND
PROBLEM FORMULATION

We consider a large-scale distribution system contain-
ing thousands of electrical nodes and controllable devices
(DERs). To solve the large-scale look-ahead control problem,
we propose a variable time granularity where control time
steps nearby the current control step have finer resolutions
(5 min) and then the control resolution increases to 10 min,
15 min, 30 min, 1 h, and 2 h as the control time involves
over the control horizon, as shown in Fig. 1.

Fig. 1. Variable granularity implementation of the proposed look-ahead
control approach.

As shown in Fig. 1, the proposed implementation uses
a 24-hour look-ahead window with 34 unequal-length dis-
cretized time periods. The approach is easily configured for
longer/shorter durations and different time discretizations.
The MPC only uses the decision in the first time-step and
re-optimizes the system operation every 5 minutes. The
objective function and constraints of the proposed look-ahead
control approach are presented in the following subsections.

A. Objective Function

The distribution feeder aggregator objective function is
given in (1), and it includes net power production revenue,
solar power curtailment penalty, and mileage costs of energy
storage batteries and EVs.

f = f1 + f2 + f3 + f4 (1)

where f1, f2, f3, and f4 are functions associated with
the distribution system aggregator power trading expense
or revenue, solar power curtailment penalty, energy storage
battery mileage (degradation) cost and electric vehicle sup-
ply equipment (EVSE) (or charging station) operation and
maintenance (O&M) cost, respectively, and they are defined
as follows.

f1 =
∑
tεT

etP
fh
t ∆t (2)

f2 =
∑
iεN

∑
tεT

αtP
pv,curt
i,t ∆t (3)

f3 =
∑
iεN

∑
tεT

(δtP
es,c
i,t + γtP

es,d
i,t )∆t (4)

f4 =
∑
iεN

∑
tεT

µtP
evse
i,t ∆t (5)

where et is the electricity locational marginal price (LMP) at
the feeder head (sub-station bus), αt is the penalty for solar
power curtailments, δt and γt are mileage costs for charging
and discharging the energy storage devices, respectively, µt

is the O&M cost of EVSEs, ∆t is the duration of control step
t, T is the control horizon, i is the node/device index, and
N is the number of nodes/devices. P fh

t is the feeder head
power that the distribution system aggregator trades with the
electricity market, P fh

t is positive if the aggregator buys
power from the market and negative if the aggregator sells
power to the market. P pv,curt

i,t is the solar power curtailment,
P es,c
i,t and P es,d

i,t are the charging and discharging power of
the energy storage devices, respectively, and P evse

i,t is the
aggregate charging power of the EVSEs.

The optimal control problem, in this paper, is therefore
a minimization of the objective function f expressed in (1)
and is given in standard form below.

min
DV

f (6)

where DV = {P fh
t , P pv,curt

i,t , P es
i,t , aesi,t, b

es
i,t, SOC

es
i,t,

P evse
i,t , Eevse

i,t , Phvac
i,t , chvaci,t , dhvaci,t , T bldg

i,t } is the set of de-
cision variables, of the optimal control problem, that need
to be determined. P es

i,t is the net (charging and discharging)
power of the energy storage systems; aesi,t and besi,t are binary
variables indicating the charging and discharging status of
the energy storage systems, respectively; SOCes

i,t is the state
of charge (SOC) of the energy storage devices; Eevse

i,t is
the aggregate energy demanded by EVs at EVSEs; Phvac

i,t

is the net (heating and cooling) power of the HVACs; chvaci,t

and dhvaci,t are binary variables indicating the heating and
cooling status of the HVAC units, respectively; and T bldg

i,t is
the indoor temperature of buildings.

B. Constraints

The objective function in (6) is subjected to a number
of capacity and operational constraints such as feasible
power ranges of the DERs, curtailment limits of renewables,
SOC limits and dynamics of energy storage systems, power
demand and energy dynamics of EVSEs, building thermal
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dynamics and temperature comforts, and power supply-
demand balance. The formulation of these constraints is
presented next for each device.

1) PV Power Generator
The PV power constraint includes the power curtailment

feasible range given below [9].

0 ≤ P pv,curt
i,t ≤ P pv

i,t (7)

where P pv
i,t is the solar power forecast at PV i and time t.

2) Energy Storage System
The storage constraints include the charging/discharging

power feasible range, charging/discharging complementary,
net power constraints, SOC bounds, and dynamics [7]. They
are defined as follows:

0 ≤ P es,c
i,t ≤ ai,tP

es,max
i

0 ≤ P es,d
i,t ≤ bi,tP

es,max
i

ai,t + bi,t ≤ 1

P es
i,t = P es,d

i,t − P es,c
i,t

(8)

SOCes
i,min ≤ SOCes

i,t ≤ SOCes
i,max (9)

SOCes
i,t = SOCes

i,t−1 +

(
ηes,ci P es,c

i,t

Ces
i

−
P es,d
i,t

ηes,di Ces
i

)
∆t,

(10)

where P es,c
i,t and P es,d

i,t are, respectively, the charging and
discharging power of energy storage i at time t; P es,max

i

is the allowable maximum charging/discharging power; the
binary variables ai,t and bi,t equal to 1 when the storage
is charging and discharging, respectively, and 0 otherwise;
SOCes

i,min and SOCes
i,max are, respectively, the minimum

and maximum allowable SOCs; ηes,ci and ηes,di are, respec-
tively, the charging and discharging efficiencies; and Ces

i is
the rated holding capacity of storage i.

3) Building
The building constraints include HVAC heating/cooling

power feasible range, heating/cooling complimentary and net
power constraints, building thermal dynamics, and indoor
temperature comfort [8]. They are expressed below.

0 ≤ Phvac,h
i,t ≤ ci,tP

hvac,max
i

0 ≤ Phvac,c
i,t ≤ di,tP

hvac,max
i

ci,t + di,t ≤ 1

Phvac
i,t = Phvac,h

i,t + Phvac,c
i,t

(11)

T bldg
i,t = T bldg

i,t−1 (12)

+ ψbldg
i,in (ηhvac,hi Phvac,h

i,t − ηhvac,ci Phvac,c
i,t )∆t

+ ψbldg
i,ex (T a

i,t − T bldg
i,t−1)∆t

+ ζbldgi,solP
sol
i,t ∆t

T bldg
i,min ≤ T bldg

i,t ≤ T bldg
i,max (13)

Here ψbldg
i,in , ψbldg

i,ex and ζi,sol are building parameters rep-
resenting, respectively, the building interior heat capacity,

interior-exterior heat exchange capacity and solar irradiation
transfer capacity. These building parameters are calculated
either from the building physical dimensions and ventilation
conditions or from the building heating/cooling historical
data. Phvac,h

i,t and Phvac,c
i,t are, respectively, the heating and

cooling power of building i HVAC at time t; T a
i,t and P sol

i,t are
respectively the ambient temperature and solar irradiation;
and T bldg

i,min and T bldg
i,max are, respectively, the minimum and

maximum indoor temperature preferences of building i.
4) EV Charging Station
The EVSE constraints include its charging power and

energy demand bounds, and the EVs’ stored energy dynamics
as described below.

P evse,min
i,t ≤ P evse

i,t ≤ P evse,max
i,t

Eevse,min
i,t ≤ Eevse

i,t ≤ Eevse,max
i,t

(14)

Eevse
i,t = Eevse

i,t−1 + P evse
i,t ∆t (15)

Bounds P evse,min
i,t and P evse,max

i,t are, respectively, the ag-
gregate minimum and maximum charging power of EVSEs
i at time t; Eevse,min

i,t and Eevse,max
i,t are, respectively, the

aggregate minimum and maximum energy demands. These
EVSE parameters are calculated from charging event data
through aggregation of the minimum/maximum charging
power and energy demands of the EVs that have arrived
at and departed the EVSE. For example, P evse,max

i,t is
calculated by summing the maximum charging power re-
quirements of all the EVs that are parked for charging
(i.e., including arrived but excluding departed EVs at time
t) at EVSE i during time t, Eevse,min

i,t is calculated by
cumulatively aggregating the charging energy needed by the
EVs that are departed the EVSE at time t and before, and
Eevse,max

i,t is computed by cumulatively adding the energy
demanded by the EVs that are arrived at t and before.

5) Feeder Head (Sub-station) Power
The feeder head power constraint includes the substation

power limit as follows.

−P fh,max
t ≤ P fh

t ≤ P fh,max
t (16)

where P fh,max
t is the allowable maximum power exchange

between the distribution system and the upstream grid.
6) Power Balance
The power balance constraint guarantees the balance be-

tween the power generation and demand in the system, and
it is given below. ∑

iεD

Pi,t + P fh
i,t = 0 (17)

where D is the set of devices (DERs) in the system,
including PVs, storage systems, buildings, EVSEs, and non-
controllable loads (Li).

III. CASE STUDY AND SIMULATION RESULTS

We apply the proposed control approach to two dis-
tribution system examples, where each includes 50 and
2,507 controllable devices (DERs), taken from the U.S. bay
area synthetic power network [8]. The controllable devices
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considered in the test systems are curtailable PVs, energy
storage systems, and building HVACs and EVSEs. The
system parameters used in the study are given in Table I.
The formulated control problem is a mixed-integer-linear-
program (MILP) and solved by leveraging the XpressMP
solver [9]. We first illustrate the simulation results for the
test system with 50 devices and then summarize the larger
system results later in the section.

TABLE I
SYSTEM PARAMETERS

Parameter Unit Value
N 50, 2507
T Hour 24
∆t Minute 5, 10, 15, 30, 60, 120
α, β $/kWh 0.2
δ, γ $/kWh 0.01
µ $/kWh 0.0
Ces

i kWh 2Li

P es,max
i kW Li

SOCes,min, SOCes,max % 20, 100
SOCes,initial % 90
ηes,c, ηes,d % 95, 90
Phvac,max
i kW 0.1Li

ηhvac,h, ηhvac,c 3
T bldg,min
i , T bldg,max

i
◦C 20, 23

T bldg,initial
i

◦C 21
Eevse,initial

i kWh 0.0
P fh,max kW 2

∑
Li,max

Figure 2 shows the aggregate dispatch of each device type
versus the locational marginal price (LMP) at the feeder
head. The LMP data is taken from the California ISO
(CAISO) [10] on a specific day.

Fig. 2. Aggregate dispatch.

As shown in Fig. 2, during the first 6 hours of operation
[0, 6], where the electricity price is high, the energy storage
systems discharge, the buildings don’t consume power, and
the distribution system aggregator not only supplies its local
demand but also sold power to the market. During the period
[9, 15] where the power price is significantly lower, the
distribution system aggregator buys power from the market
to supply the local demands, charge the storage systems
and preheat the buildings. Of course, the solar power is
also higher during this period and supplies the distribution
system together with the sub-station (market) power. During
the period [19, 21] where the LMP is very high, the storage

systems discharge, the distribution system as a whole sells
power, and the buildings do not consume power as they are
preheated during the previous low-price periods.

Figures 3 and 4 show the scheduling decisions for example
single devices. Figure 3 shows scheduling decisions for an
EVSE, while Fig. 4 shows the HVAC dispatch for a building.

Fig. 3. An EVSE dispatch.

Fig. 4. A building HVAC dispatch.

As shown in Figs. 3 and 4, each device’s power dispatch
follows the LMP signal where the device dispatches when
the market power price is low and/or the renewable power is
surplus. This further validates the efficacy of the processed
approach in controlling the DERs in the distribution system
to meet local load demands and at the same responding to
upstream transmission grid (market) signals.

A. Comparison With Simple MPC Formulations

The performance of the proposed variable time granularity
with a 24-hour look-ahead horizon MPC (MPC1) is com-
pared against two other MPC benchmarks defined below:

• MPC2: MPC with uniform 5-minute time granularity
and 24-hour look-ahead horizon

• MPC3: MPC with uniform 5-minute time granularity
and 3-hour look-ahead horizon

MPC2 is a similar problem as MPC1, except it uses the 5-
minute time granularity throughout the look-ahead horizon.
The optimization problems MPC3 uses are nearly the same
size as MPC1 (36 versus 34 time periods, respectively), but
with only a 3-hour look-ahead.
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The comparison is performed using two metrics, total
operating cost and mean computation time (per single run
of the MPC), and it is given in Table II. As presented in

TABLE II
PERFORMANCE COMPARISON - DISTRIBUTION SYSTEM WITH 50

CONTROLLABLE DERS

Controller Performance Metric
Total Operating Cost ($) Mean Computation Time (sec)

MPC1 420.5627 0.9856
MPC2 420.2215 5.4049
MPC3 430.2215 0.6272

Table II, the proposed MPC (MPC1) has achieved significant
improvement over the benchmark MPC2 with respective to
the computation time–a factor of 5.5–with a minor (<0.1%)
compromise on the operating cost. MPC3 is more than 2%
more expensive than MPC1 or MPC2, while achieving the
best computational time.

Finally, we investigated the performance of the proposed
controller (MPC1) for the larger distribution system con-
taining 2,507 devices. Table III presents the performance
comparison of MPC1 with the benchmark controller MPC3
for the larger test system. Preliminary testing showed the
MPC2 controller is untenable here, requiring a full 29
minutes (� 5 minutes) to complete the first (of 288) control
steps. These decisions are no longer relevant, as the control
period has long passed. To save computational resources, we
did not compute its total operating cost.

TABLE III
PERFORMANCE COMPARISON - DISTRIBUTION SYSTEM WITH 2,507

CONTROLLABLE DERS

Controller Performance Metric
Total Operating Cost ($) Mean Computation Time (min)

MPC1 -567.4760 3.4918
MPC3 -488.3263 2.4464

The performance of the proposed MPC is considerably no-
ticed when we apply the methods on a large-scale distribution
grid containing more devices. As given in Table III, MPC1 is
able to solve the large system optimal control problem within
a few minutes (3.5 minutes), which is sufficiently lower than
the duration of the control step (5 minutes). This validates
the scalability of the proposed MPC to control massive DERs
integrated in large-scale distribution systems where tradition
optimal control formulations fail to. The total operating
cost values shown in Table III are negative, meaning that
the larger system is making a profit by selling the excess
power from the solar generation and through energy storage
arbitrage and shifting the building and EVSE loads based on
the LMP signal.

In summary, observing Tables II and III, the operating
cost obtained by the the other benchmark controller MPC3
is higher than the others although it is the fastest. This is
because MPC3 has limited capability to look ahead at the
future operating conditions of the system and cannot steer

the DERs based on future conditions, which is why its total
operating cost has increased–costing a full 14% difference in
operating costs for the large system. This further confirms the
importance of designing controllers with appropriate look-
ahead horizons to accurately represent the operation of DERs
with inter-temporal constraints (e.g., storage, building, and
EVSE) and periodic variations (e.g., PV).

IV. CONCLUSIONS

We solved a look-ahead distribution system power balanc-
ing and energy trading problem using a model predictive con-
trol approach based on variable time granularity formulation.
The proposed controller is applied to distribution systems
with different sizes and number of devices. We demonstrated
the efficacy of the proposed controller in optimally managing
a large number of devices for local power balancing and
energy trading profit maximization in a reasonably short
computing time. The experimental findings obtained validate
the scalability of the controller in controlling thousands
of controllable devices in a large-scale distribution system
operated via an aggregator. Moreover, the proposed method
outperformed other two benchmark controllers regarding
computing time and operating cost. Our current findings will
continue in the next phase of our research where we will
explore the value of the proposed look-ahead controller to
guide online decisions considering more distribution network
characteristics.
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