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Abstract: The Remedial Action Scheme (RAS) is designed to take corrective actions after detecting
predetermined conditions to maintain system transient stability in large interconnected power
grids. However, since RAS is usually designed based on a few selected typical operating con-
ditions, it is not optimal in operating conditions that are not considered in the offline design,
especially under frequently and dramatically varying operating conditions due to the increasing
integration of intermittent renewables. The deep learning-based RAS is proposed to enhance
the adaptivity of RAS to varying operating conditions. During the training, a customized loss
function is developed to penalize the negative loss and suggest corrective actions with a security
margin to avoid triggering under-frequency and over-frequency relays. Simulation results of the
reduced United States Western Interconnection system model demonstrate that the proposed
deep learning–based RAS can provide optimal corrective actions for unseen operating conditions
while maintaining a sufficient security margin.

Keywords: adaptive capability; deep learning; customized loss function; Remedial Action Scheme
(RAS); security margin

1. Introduction

Transient stability is a crucial aspect of power system stability, which refers to the
ability to keep all generators synchronized after a large disturbance. If a power system is
not transient stable, necessary corrective actions, e.g., load shedding and generation trip,
will take place by Remedial Action Scheme (RAS) or Special Protection System (SPS) [1–4].
Usually, these corrective actions are designed offline based on the time-domain simulation
of a few selected severe contingencies under some representative operating conditions (e.g.,
spring light, summer peak, and winter peak).

Recently, due to the effort to reduce greenhouse gas emissions, conventional syn-
chronous generators are being replaced by inverter-based renewables (IBRs), resulting in
lower system inertia, unusual power flow paths, and larger angular differences spreading
across the system [5]. Since IBRs have different dynamic behaviors than conventional
synchronous generators, power grids with high renewable penetration exhibit more com-
plex dynamics. More importantly, the intermittence features introduce more frequent and
dramatic variations in operating conditions. Additionally, the increasing integration of
dispatchable load [6] and distributed battery energy storage systems (e.g., electric vehi-
cles) [7] can impact system dynamics significantly. These changes make the traditional
RAS or SPS design method inadequate to guarantee its effectiveness under all possible
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operating conditions. The RAS designed based on the traditional method may be too
conservative or even useless in some extreme cases. Moreover, the traditional method
based on time-domain simulations requires a tremendous amount of time to cover all
possible operating conditions.

Artificial Intelligence (AI) technologies have been widely used in many areas, such
as image recognition, speech recognition, self-driving cars, and fraud detection. Many
researchers also propose AI-based methods for wind speed prediction [8], situational
awareness [9,10], emergency control [11,12], and oscillation damping control [13]. In this
paper, AI technologies provide a promising solution for adaptive RAS by mapping the
operating conditions to the optimal corrective actions.

• The deep learning–based adaptive remedial action scheme (RAS) is proposed in this
paper. This new method suggests optimal load shedding and generation trip amount
to avoid excessive load shedding or generation trip compared to traditional RAS.

• Considering a safety margin, a customized loss function is proposed to make the
prediction error in the desired direction as much as possible to guarantee the frequency
is inside the secure zone.

• This new method can be generalized for extreme events that may not be covered
by traditional RAS due to complex operating conditions with higher renewable
penetration levels.

The deep learning–based adaptive RAS is developed using the reduced 240-bus
Western Electricity Coordinating Council (WECC) system model [14] and WECC-1 RAS as
case study [15].

The remainder of this paper is organized as follows. Section 2 introduces the study
system and WECC-1 RAS, followed by the training and testing dataset generation in
Section 3. The deep learning model and the customized loss function are proposed in
Section 4. In Section 5, the model performance is validated, and the adaptive RAS is
compared with traditional RAS. Finally, Section 6 concludes this paper. The flow chart of
the whole process in the paper is shown in Figure 1.
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Figure 1. Flow chart of process. Figure 1. Flow chart of process.

2. Study System and WECC-1 RAS
2.1. Study System

This study is based on the reduced WECC 240-bus system model developed by the
National Renewable Energy Laboratory (NREL), which has the generation of different
fuel types, e.g., coal, gas, bio, nuclear, hydro, wind, and solar [16]. The wind and solar
generation penetration level varies between 0.2% and 49.2% across 8786 hourly dispatches
for an entire year of 366 days. Figure 2 shows the renewable penetration level across one
year. In the figure, it shows that the renewable penetration is higher during the daytime
than during the nighttime due to the availability of renewable energy.
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Figure 2. Renewable penetration across one year.

2.2. WECC-1 RAS

WECC-1 RAS is used for this study. WECC-1 RAS monitors the transmission sys-
tem within California, Oregon, Arizona, Nevada, etc. When the predefined criterion is
met, e.g., the trip of multiple tie lines, WECC-1 RAS will lead to a controlled separation
of the WECC system into two islands to maintain system stability. In this study, as
shown in Figure 3, once two tie lines between California and Oregon are tripped, the
tie lines connecting the south area (California, Arizona, and New Mexico) and the
north area (Oregon, Nevada, Utah, and Colorado) are tripped in WECC-1 RAS and
followed by corrective actions to maintain the system stability. In reality, load shedding
and generation trip at predetermined locations in two islands respectively are used to
maintain the two islands’ frequency between 59.5 hertz (Hz) and 60.5 Hz, according
to the WECC grid code [17]. However, the optimal locations could be varying under
different operating conditions, which makes it quite difficult to obtain the ground
truth by considering both optimal generation trip/load shedding amount and optimal
locations. For simplicity, proportional load decrease in one island and proportional
load increase in the other island are used to generate the training database in this study.
In practice, the load decrease and increase amounts can be used to further determine
the load shedding and generation trip actions.
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3. Training and Testing Dataset Generation

The hourly dispatch data of one year developed by NREL are used to simulate different
operating conditions. Siemens PTI’s PSS/E software is used to simulate the WECC-1 RAS
under different operating conditions. At 1 s, the tie lines shown in Figure 3 are tripped,
and the entire WECC system is separated into two islands. One hundred milliseconds
(ms) after this islanding, load increase and load decrease in two islands are performed
respectively to maintain the load-generation balance. The value 100 ms is the RAS action
delay in communication and breakers. The minimum load increase and decrease in the two
islands to maintain the two systems’ frequency below 60.5 Hz and above 59.5 Hz, which
are typical over-frequency and under-frequency monitoring thresholds, are considered
optimal load increase and load decrease, respectively.

For each dispatch, multiple simulations are performed to find the optimal load increase
or load decrease amount. Those values are always less than the tie line active power flows.
Taking one dispatch (1st January, hour 22), for instance, Figure 4a shows the frequency of
two islands when WECC-1 RAS performs the load increase and load decrease according to
the total tie-line flows, while Figure 4b shows the frequency of two islands when WECC-1
RAS performs the optimal load increase and load decrease. Note that the average frequency
of each bus is used to present the bus frequency of each island. Under this dispatch, the
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total tie-line flows between the two islands are 6177.9 megawatt (MW) and −6073.3 MW,
respectively. The optimal load increase and decrease are 2996.9 MW and −4928.9 MW,
respectively. The optimal load increase and load decrease values are less than the total
tie-line flows while maintaining the frequency above 59.5 Hz and below 60.5 Hz.
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4. Deep Learning-Based Adaptive RAS
4.1. Deep Learning Neural Network Structure for Adaptive RAS

An artificial neural network (ANN) is an extremely simplified representation of
the human brain and incorporates two fundamental components of biological neural
nets: neurons and synapses. Neurons are computation nodes summing signals from
previous neurons and decide whether to fire this neuron or not by applying an activation
function, which is usually nonlinear. Synapses are the connection between neurons
and are represented by weights. Figure 5 shows those two fundamental elements of an
artificial neural network. Synapses connect neurons from the previous layer with the
neuron in the next layer through weights. The u1, . . . , un are outputs of n neurons from
the previous layer, and are connected to a neuron in the next layer by synapses. The
neuron sums up all weighted output from neurons from the previous layer connected
by synapses and goes through an activation function to decide whether to fire this
neuron or not. Finally, the output of this neuron z1 are connected to other neurons from
the next layers by synapses again.
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Figure 5. Fundamental components of artificial neural network.

ANN claims that one hidden layer is able to represent any nonlinear function; however,
deep learning neural networks can use multiple layers to abstract the information based
on the previous layer and progressively abstract the input features, resulting in better
generalization [18]. As shown in Figure 6, this paper uses a fully connected feedforward
neural network with more than one hidden layer to map the operating conditions to the
optimal WECC-1 RAS corrective actions. The operating conditions include total generation,
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total load, total inertia, power output of each generator, inertia of each generator, and each
load. The outputs are the corrective actions, such as load increase MW amount and load
decrease MW amount in two islands, respectively.
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4.2. ANN Model Training, Validation, and Testing

Take a simplest neural network with one neuron for example, as in Figure 5. For a
regression problem, the mapping between n input feature u and target output ẑ can be rep-
resented per Equation (1). In the equation, ϕ represents any nonlinear or linear activation
function, and b is the bias for that neuron. By substituting the m samples into Equation (1),
it can get m equations about weights w. Solving those sets of nonlinear equations for
weights w and bias b directly is very hard, especially when there are thousands of samples.

The purpose of training is to find the correct weights in order to make the model
output as close to the ground truth as possible. In other words, to make the error as small
as possible. Taking mean squared error loss function for example, it can be expressed as
Equation (2) for m training samples. Gradient descent is an optimization algorithm for
finding minimum value of an objective function which ties to minimize the error between
the model output and the ground truth. By using gradient descent, each weight wi can
be updated towards a smaller error direction per the function (3), α is a hyperparameter
learning rate.

ẑ = ϕ

(
b +

n

∑
i=1

ui ∗ wi

)
(1)

E =
m

∑
j=1

(
ẑj − zj

)2 (2)

wi = wi − α
dE
dwi

(3)

In Equation (3), loss function E is a complicated nonlinear function related to weights
w, so it is not easy to get the derivative of the loss function to weights directly. Backpropa-
gation provides a way to backpropagate the loss of the output to previous nodes’ weight.
By using the chain rule of the derivative and backpropagation, dE

dwi
is easy to be calculated.

In the Figure 5 example, we can set out = b +
n
∑

i=1
ui ∗ wi. For example, for calculating dE

dw1
,

by using backpropagation and chain rule, we can get the following Equation (4)

dE
dw1

=
dE
dẑ
∗ dẑ

d(b + ∑n
i=1 ui ∗ wi)

∗ d(b + ∑n
i=1 ui ∗ wi)

dwi
=

dE
dẑ
∗ dẑ

d(out)
∗ d(out)

dwi
(4)

During the training process, weights are updated to minimize the loss function.
Without validation, model training will continue until the error between the ground truth
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and the output of the model becomes zero. Finally, the mode would be overfitting to the
training dataset and would not be able to generalize to the testing dataset.

The validation process is to prevent overfitting. Normally after each epoch during
training, the validation data will be fed into the model, and the validation error will be
calculated. When the validation error does not decrease anymore, but the training error
continues to decrease, the training process should be stopped; otherwise, the model
is overfitting.

Figure 7 shows a model training process. In the figure, after 1200 training epochs, the
validation performance does not improve, but the training error continues to decrease. The
model should stop training around 1200 epochs to avoid overfitting.
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After training and validation, the model’s weights are fixed. During the testing
stage, the model makes predictions for the testing dataset, and the model’s prediction
error can be calculated. Model performance based on the testing dataset is used to
measure the model’s performance.

4.3. Customized Loss Function

Mean squared error and mean absolute error are commonly used loss functions. How-
ever, the error between ground truth and the output of the model is a normal distribution
around a mean of zero when using these two standard loss functions.

If we use the standard loss function, the predicted load decrease value could be less
than the actual value, which is a critical value to maintain one island’s frequency above
59.5 Hz. This could trigger under-frequency load shedding unnecessarily. Similarly, the
predicted load increase amount could be less than the ground truth that can maintain
the other island’s frequency below 60.5 Hz, resulting in an unwanted over-frequency
generation trip. Therefore, in the training process, the model should not only minimize the
loss but also make the loss in a conservative direction.

In this study, a customized loss function is proposed to make the model favor the
positive error more than the negative error. The customized loss function is shown in
Equation (5).

E =

{ (
Ẑ− Z

)2 i f
∣∣Ẑ∣∣ > |Z|(

N ∗
(
Ẑ− Z

))2 i f
∣∣Ẑ∣∣< |Z|, N >1

(5)
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where Z is the ground truth of load increase or load decrease amount, Ẑ is predicted load
increase and load decrease amount, and N is the penalizing factor.

When
∣∣Ẑ∣∣ is greater than |Z|, the two islands’ frequency will not trigger under-

frequency load shedding or over-frequency generation trip relays. When
∣∣Ẑ∣∣ is less than |Z|,

the loss function will be penalized by enlarging N times. With this customized loss function,
the model will try to predict the value greater than the ground truth more frequently. In
other words, N decides the degree of conservativeness: the greater the penalizing factor N,
the more conservative the prediction results.

4.4. Feature Normalization

When the input features have different scales, the normalization of those features can
help speed up the training process. The normalization could be the min–max normalization
which scales all the features within 0 to 1, or the standard normalization which scales all
the features with a mean of zero and a standard deviation of one. In this study, min-max
normalization is used. For instance, min–max normalization for feature p can be expressed
as follows:

p′ =
p−min(p)

max(p)−min(p)
(6)

4.5. Evaluation Metrics

Five metrics—root mean squared error (RMSE), root mean squared percentage
error (RMSPE), mean absolute error (MAE), mean absolute percentage error (MAPE),
and coefficient of determination (R2) [19–21]—are used to evaluate the prediction error
of the model.

RMSE is the square root of mean squared error (MSE). MSE is the average of all the
squared errors in the prediction which shows how much the predicted result deviates from
the ground truth. RMSE is an extension of MSE, but has the same unit as the prediction
value. The calculation of RMSE is given in Equation (7).

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (7)

In Equation (7), m is the number of testing data, ŷi is the prediction value from the
model, and yi is the ground truth.

RMSPE is very similar to RMSE, but the percentage error is used for calculation
instead of the error itself. Percentage error is defined as the error divided by the ground
truth. The load increase and load decrease amount are a scale of a thousand MW to several
thousand MW in WECC RAS-1, and the error could be several MW to even hundreds
of MW depending on different dispatches. Therefore, using the percentage error can
normalize the error scale difference in different operating conditions. The calculation of
RMSPE is given in Equation (8).

RMSPE =

√√√√ 1
m

m

∑
i=1

(
yi − ŷi

yi

)2
(8)

The calculation of MAE is given in Equation (9). The MAE uses the same scale as the
data being measured, while mean absolute percentage error (MAPE) can be used to make
comparisons between data with different scales. The MAE and MAPE calculation are given
in Equations (9) and (10).

MAE =
1
m

m

∑
i=1
|yi − ŷi| (9)

MAPE =
1
m

m

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (10)
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R2 measures the degree of the linear correlation between the predicted value and the
ground truth. R2 is a value between 0 and 1. The bigger value, the better the model fits the
data. R2 can be expressed in (11).

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (11)

5. Numerical Studies
5.1. Layer Number and Node Number Selection

The deep learning neural network model defined in Figure 6 is trained and validated
with 80% of the total dataset. This work uses TensorFlow, which is an open-source software
library for machine learning [22]. During the training for the model, the early stopping
technique is used to prevent overfitting [23]. The remaining 20% dataset is used for
performance evaluation after the model is trained. The model can have different layer
numbers and different node numbers in each layer. A model with too many weights
tends to be overfitting, but with insufficient weights tends to be underfitting. In this study,
models with two, five, and seven hidden layers and with 50, 100, 300, 500, 800, 1000, 1500,
2000, and 3000 nodes in the first layer, and half the number of the previous layer nodes in
the latter layer, are compared.

Figure 8 shows different models’ performances with metrics MAE, RMSE, and R2.
The model with two hidden layers and the model with five hidden layers have similar
performances. Figure 9 shows different models’ performances with metrics MAPE and
RMSPE. The model with two hidden layers and 1000 nodes in each layer has the best
performance overall. However, the model with two hidden layers and 300 nodes in each
layer’s performance improved a lot from 50 nodes in each layer to 300 nodes in each layer.
The model’s performance with 1000 nodes in each layer did not improve dramatically
when nodes were increased from 300 to 1000 in each layer. In this paper, considering that
the complex model is more likely to be overfitted and hard to train, the model with two
hidden layers with 300 nodes was selected as the optimal model structure instead.
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5.2. Regularization Hyper Parameter Tuning

Table 1 shows the performance of the trained model with different L1, L2 regulariza-
tion techniques [24]. When both L1 and L2 are equal to 1, the model can achieve the best
performance. Tables 2 and 3 shows the performance of the trained model with different
dropout regularization techniques and Gaussian noise levels with different standard de-
viation (std), respectively [25,26]. Neither dropout regularization nor Gaussian noise can
help significantly improve the model performance, and thus they are not used during the
model training process.

Table 1. Performance of trained model with L1 and L2 regularization techniques.

Hidden Layers
/Nodes L1, L2 RMSE (MW)

Island 1/Island 2
MAE (MW)

Island 1/Island 2

2/300

0 182.31/275.62 112.05/169.51
0.0001 185.24/276.63 116.20/173.58
0.001 187.58/280.95 116.65/173.68
0.01 185.62/279.33 116.19/175.02
0.1 175.12/259.69 107.88/163.45
1 132.23/206.36 87.64/134.07
5 133.17/209.35 89.67/136.25
10 134.49/206.92 91.50/135.64
20 142.41/224.85 101.61/152.53

Table 2. Performance of the trained model with Dropout regularization techniques.

Hidden Layers
/Nodes

Dropout Rate
(%)

RMSE (MW)
Island 1/Island 2

MAE (MW)
Island 1/Island 2

2/300

0 182.31/275.62 112.05/169.51
0.001 182.02/275.30 113.62/172.90
0.01 182.51/276.03 114.89/171.89
0.05 191.58/281.00 124.78/181.59
0.1 193.39/277.66 127.18/179.49
0.3 208.59/298.81 141.53/197.86

5.3. Performance with Customized Loss Function

Although the trained model above can reach small RMSE and MAE, its perfor-
mance is not good enough to maintain the frequency above 59.5 Hz in one island and
below 60.5 Hz in the other island. By adding the customized loss function, the predicted
results are more conservative to maintain the frequency. Table 4 gives the performance
of the model with different penalizing factor N. The frequency between 59.5 Hz and
60.5 Hz is considered the secure region. As shown in Table 4, with a larger N, RMSE and



Energies 2021, 14, 6563 12 of 17

MAE get larger, but the frequency inside the security region is higher. This means the
customized loss function can make the predicted value more conservative by penalizing
the values out of the secure region. For instance, when N = 20, the frequency of 97.77%
cases are within the secure region.

Table 3. Performance of trained model with Gaussian Noise regularization techniques.

Hidden Layers
/Nodes

Gaussian Noise
(std)

RMSE (MW)
Island 1/Island 2

MAE (MW)
Island 1/Island 2

2/300

0 182.31/275.62 112.05/169.51
0.0001 185.90/279.24 116.81/175.06
0.001 185.53/277.87 116.65/173.68
0.01 179.49/262.96 115.21/172.00
0.1 212.98/315.83 149.92/217.31
1 454.10/656.37 345.28/494.78

Table 4. Prediction errors with different penalizing factors.

N RMSPE
Island 1/Island 2

MAPE
Island 1/Island 2

Inside Security
Region (%)

1 7.15%/4.94% 3.50%/3.04% 58.09
2 8.37%/5.43% 4.73%/3.49% 76.70
3 6.90%/5.09% 3.84%/3.14% 73.14
10 14.10%/7.89% 8.86%/5.93% 91.78
15 14.23%/9.50% 9.40%/6.83% 92.36
20 28.23%/14.54% 18.36%/11.44% 97.77

Figure 10 shows one-day testing cases’ load shedding (load decreasing) and gen-
eration trip (load increasing) amount prediction after RAS in two islanded systems,
respectively, based on the model without penalization (N = 1) and with penalization
(N = 20). It shows that the prediction result based on the model without penalization
has better accuracy and is closer to the ground truth compared to the result based on
the model with penalization (N = 20), but it does not have the safety margin and will
trigger the over-frequency generation trip and under-frequency load shedding. The
prediction result based on the model with penalization shows a good safety margin in
Figure 10, with very few cases having frequency violations.

Figure 11a shows the maximum and minimum frequency in two islanded systems,
respectively, based on the prediction results without penalization (N = 1). The shadow
area is the security region where UFLS and OVGT are not triggered. With no penalization,
only 58.09% of the cases are in the security region. Figure 11b,c show the histogram of
maximum frequency in Island 1 and the histogram of minimum frequency in Island 2.

Similarly, Figures 12 and 13 show the maximum and minimum frequency of the two
islanded systems, respectively, and also show the histogram of maximum frequency in
Island 1 and the histogram of minimum frequency in Island 2 when N =10 and N =20. In
91.78% (or 97.77%) of the total cases, the maximum and minimum frequency are inside the
secure region when N = 10 (or N = 20).

5.4. Comparison with Traditional RAS

Traditional RAS is designed based on the rate of active power change to frequency
change to estimate the generation trip and load shedding for each operating condition.

Since the WECC system is separated into two islands after the execution of WECC-1
RAS, the rate of active power change to frequency change is calculated separately for two
islanded systems. Two scenario simulations are performed in order to calculate the rate r11
and r21 for one dispatch.
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In scenario 1, if load decrease P1 and load increase P2 performed in two islanded
systems equal to the power flow of the tie lines connecting these two systems before RAS,
the two islanded systems’ frequency nadir and frequency maximum will be f11 and f21.

In scenario 2, if optimal load decrease Po1 and optimal load increase Po2 are performed
in two islanded systems, the two islanded systems’ frequency nadir and frequency max-
imum will be 59.5 Hz and 60.5 Hz. The rate r11 and r21 for two islanded systems can be
calculated in Equation (12).

r11 = (P1 − Po1)/( f11 − 59.5)r21 = (P2 − Po2)/( f21 − 60.5) (12)

The average rates of four typical scenarios: heavy load case, light load case, high
renewable penetration case, and low renewable penetration case are calculated and used
as the final rates of active power change to frequency change for two islanded systems in
WECC system in Equation (13). The average frequency nadir and frequency maximum of
four typical scenarios in two islanded systems when performing load decrease and load
increase using tie-line flows, are calculated in Equation (14).

r1 =
4
∑

i=1
r1i

r2 =
4
∑

i=1
r2i

(13)
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4
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i=1
f1i
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4
∑

i=1
f2i

(14)

In actual system operation, tie-line flows between two subsystems P1r and P2r can be
monitored and obtained once RAS is detected. Then, the optimal load decrease amount
Po1r and load increase amount Po2r in two islanded systems for that operation condition
can be calculated in Equation (15).

Po1r = P1r − r1 ∗ ( f1 − 59.5) (15)

where r1, r2, f1 and f2 can be calculated in Equations (13) and (14) using offline simulations
on four typical scenarios. P1r and P2r are known for each operating condition.

Based on traditional RAS calculation in Equation (15), Table 5 shows the perfor-
mance of the traditional RAS. Only in 33.78% of the cases, the frequency is inside the
security region.

Table 5. Performance on testing data based on traditional RAS calculations.

RMSPE
Island 1/2

MAPE
Island 1/2

Inside Security
Region (%)

9.65%/19.70% 5.65%/14.09% 33.78

Figure 14 shows the frequency distributions of two islanded systems based on tra-
ditional RAS. The frequency of one system is scattered in a larger range compared to the
other system.
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6. Conclusions

In this paper, the deep learning–based adaptive RAS is developed and validated on the
reduced 240-bus WECC system model. The optimal load decrease and load increase values
can be directly predicted based on the operating conditions. The optimal model structure is
selected as two layers. When using the standard loss function, the prediction error complies
with the normal distribution, and the frequency is below 59.5 Hz or above 60.5 Hz in about
50% of the cases. Therefore, a customized loss function is proposed to make the prediction
error in the conservative direction. The simulation results demonstrate that the frequency
is inside the secure region in 97.77% of the cases when using the customized loss function
with N = 20, while only 58.09% when using the standard loss function. Moreover, the
proposed adaptive RAS has better performance than the traditional RAS.
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In reality, fast load shedding and generation trip are commonly used as corrective
actions to maintain system transient stability. This paper uses proportional load increase in
one island and proportional load decrease in the other island as the first step to determine
the optimal load shedding and generation trip schemes for a specific and practical case.
Future work will focus on using fast load shedding and generation trip to generate the
training/testing dataset and further validation of the proposed adaptive RAS.
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