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Motivation

 Abundant untapped demand side resources for grid services from the building sector.

 Mainstream grid-interactive building HVAC controllers are based on either direct 
load control (DLC, see SDG&E example [1]) or model predictive control (MPC) [2].

o DLC: +: Easy to implement, affordable
-: Does not directly consider building thermal condition.

o MPC: +: Optimality for both building and grid control objective.
-: Affordability: high costs for hardware (on-demand computation), software, 

modeling (accurate but simple building model) and maintenance.

 Among three major building appliances, the heating, ventilation and air-
conditioning (HVAC) system poses more complexity for control.

 Effective and affordable smart building controllers suitable for mass deployment 
are yet to come.
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Overview

Fig. 1. Envisioned edge-cloud integrated solution for smart building grid-interactive control. System 
identification, controller training and real-time execution are automated based on such paradigm. [3]
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• We investigate using deep reinforcement learning to solve a multi-zone grid-interactive
building HVAC control problem with a continuous action space, the most complex single 
building control problem studied in RL literature.

Problem Formulation

Mathematical formulation for the optimal control problem:

minimize
𝐚𝐚𝑡𝑡∈𝒜𝒜,∀𝑡𝑡

�
𝑡𝑡∈𝒯𝒯

𝐰𝐰𝑡𝑡
⊤ [𝜅𝜅1�

𝑖𝑖=1

𝑁𝑁

𝒟𝒟 𝑇𝑇𝑡𝑡𝑖𝑖 , 𝜅𝜅2ℰ𝑡𝑡, 𝜅𝜅3𝒱𝒱𝑡𝑡]

subject to 𝐓𝐓𝑡𝑡+1 = ℱ 𝐓𝐓𝑡𝑡 , 𝐚𝐚𝑡𝑡 , 𝜚𝜚𝑡𝑡 (∀𝑡𝑡 ∈ 𝒯𝒯)
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ℰ𝑡𝑡: HVAC energy consumption at step 𝑡𝑡. 
There is ℰ𝑡𝑡 ≔ 𝑃𝑃 𝐚𝐚𝑡𝑡,𝑇𝑇𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 Δt

Zone temperature:

Control variable: �𝑃𝑃𝑡𝑡 is the DR limit issued by the utility, 
considering an incentive-based DR 
program.Objective weights: 𝐰𝐰𝑡𝑡 = 𝑤𝑤𝑡𝑡𝒟𝒟,𝑤𝑤𝑡𝑡ℰ ,𝑤𝑤𝑡𝑡𝒱𝒱 , 𝐰𝐰𝑡𝑡

⊤𝟏𝟏 = 1

Zone number: 𝑁𝑁

Control horizon: 𝒯𝒯 = {1, 2, … }

𝒟𝒟 𝑇𝑇𝑡𝑡𝑖𝑖 : Building thermal discomfort of zone 
𝑖𝑖 at step 𝑡𝑡.

𝒱𝒱𝑡𝑡: Power limit violation penalty at step 𝑡𝑡. 

𝒱𝒱𝑡𝑡 ≔ �
𝑃𝑃 𝐚𝐚𝑡𝑡,𝑇𝑇𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 − �𝑃𝑃𝑡𝑡 2 (𝑃𝑃 𝐚𝐚𝑡𝑡,𝑇𝑇𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 > �𝑃𝑃𝑡𝑡)

0 (𝑃𝑃 𝐚𝐚𝑡𝑡,𝑇𝑇𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 ≤ �𝑃𝑃𝑡𝑡)



NREL    |    5

 State 𝒔𝒔𝑡𝑡 = [𝐓𝐓𝑡𝑡 ,𝐓𝐓𝑡𝑡,−𝐾𝐾
𝑜𝑜𝑜𝑜𝑡𝑡 ,𝐄𝐄𝑡𝑡 , �𝐏𝐏𝑡𝑡, 𝑡𝑡,𝐰𝐰𝑡𝑡] ∈ 𝒮𝒮.

 𝐓𝐓t ∈ ℝ𝑁𝑁 represents zone temperatures.

 𝐓𝐓𝑡𝑡,−𝐾𝐾
𝑜𝑜𝑜𝑜𝑡𝑡 ∈ ℝ𝐾𝐾 represents outdoor temperature for the 

last K steps.

 𝐄𝐄𝑡𝑡 = [𝑓𝑓, 𝑠𝑠𝑖𝑖𝑠𝑠t, 𝑐𝑐𝑐𝑐𝑠𝑠t] are workday flag and sine/cosine 
representation of the time of the day.

 �𝐏𝐏𝑡𝑡 = [ �𝑃𝑃𝑡𝑡, �𝑃𝑃𝑡𝑡+1, … , �𝑃𝑃𝑡𝑡+𝐾𝐾−1] ∈ ℝ𝐾𝐾 indicates power limit 
for the next K steps.

Markov Decision Process Formulation

…… … …𝒔𝒔𝑡𝑡 𝐚𝐚𝑡𝑡

 Reward 𝑟𝑟t = −𝐰𝐰𝑡𝑡 𝜅𝜅1 ∑𝑖𝑖∈𝒩𝒩𝒟𝒟 𝑇𝑇𝑡𝑡𝑖𝑖 , 𝜅𝜅2ℰ𝑡𝑡,𝜅𝜅3𝒱𝒱𝑡𝑡
⊤
, negative value of single step cost.

Action 
𝐚𝐚𝑡𝑡 = �̇�𝑚𝑡𝑡

1, �̇�𝑚𝑡𝑡
2, … , �̇�𝑚𝑡𝑡

𝑁𝑁 ,𝑇𝑇𝑡𝑡𝑑𝑑𝑑𝑑 ∈ 𝒜𝒜.

𝜋𝜋𝛉𝛉(𝑠𝑠𝑡𝑡)

𝛉𝛉∗ = argmax
𝛉𝛉

𝐽𝐽 𝛉𝛉 = argmax
𝛉𝛉

𝔼𝔼𝐚𝐚𝑡𝑡∼𝜋𝜋𝛉𝛉(�
𝑡𝑡∈𝒯𝒯

𝛾𝛾𝑡𝑡 𝑟𝑟𝑡𝑡)

𝛉𝛉k+1 = 𝛉𝛉k + 𝛼𝛼�∇𝛉𝛉𝐽𝐽(𝛉𝛉)

RL Objective:

Approach:

However, such policy search in RL typically amounts to solving non-convex optimization 
problems, converging to a poor-performing local optimum is likely, leading to unsatisfactory 
control performance.

Fig. 2. RL policy network.

�∇𝛉𝛉𝐽𝐽(𝛉𝛉) is the policy gradient estimated from sampled experience, e.g., using 
policy gradient theorem [4, Ch.13].
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Proposed Global-Local Policy Search

In order to achieve a faster convergence to a better policy, we propose combining complementary 
advantages from two different types of RL algorithms, letting them search the policy in two 
stages.

Combining these two types of RL algorithms allow us to leverage their strength, providing a 
faster convergence to a better local optimum.

+ Back-propagation (BP) free, fast gradient 
estimation.

+ Highly scalable.
+ Optimizing on the Gaussian smoothed 

objective, likely to avoid some poor-
performing local optima.

- Inaccurate local convergence due to 
function smoothing.

Stage I: Global Search

Using a zero-order estimation (ZOE) based 
method for policy gradient estimation [5]:

�∇𝛉𝛉𝐽𝐽(𝛉𝛉) ≈ 1
𝜎𝜎
𝔼𝔼𝜖𝜖∼𝑁𝑁 𝟎𝟎, 𝐈𝐈 [𝜖𝜖 ⋅ 𝐽𝐽 𝛉𝛉 + 𝜎𝜎𝜖𝜖 ]

+ Consider KL divergence during policy update 
(stable policy improvement).

+ Gradient-based learning on original objective 
gradient estimation (better local search 
ability).

- BP-based and conservative update (slower 
learning).

- Less scalable (𝒪𝒪(𝑁𝑁2) communication complexity).
- Prone to be trapped in local optimum.

Stage II: Local Tuning

Using a policy gradient-based method for 
policy gradient estimation (e.g., [6]):

�∇𝛉𝛉𝐽𝐽(𝛉𝛉) ≈ ∇𝛉𝛉𝔼𝔼t[min(𝑟𝑟𝑡𝑡 𝛉𝛉 �̂�𝐴𝑡𝑡 , 𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐(𝑟𝑟𝑡𝑡 𝛉𝛉 , 1 − 𝜖𝜖, 1 + 𝜖𝜖)�̂�𝐴𝑡𝑡]
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• Considering a five-zone benchmark building and 

minimize the daily cost (∑𝑡𝑡∈𝒯𝒯𝐰𝐰𝑡𝑡 𝜅𝜅1 ∑𝑖𝑖∈𝒩𝒩𝒟𝒟 𝑇𝑇𝑡𝑡𝑖𝑖 , 𝜅𝜅2ℰ𝑡𝑡,𝜅𝜅3𝒱𝒱𝑡𝑡
⊤
) 

with control interval of 5-minute (i.e., 𝒯𝒯 =
{1,2, … , 288}).

• Building model for RL training is learned using data 
collected from EnergyPlus simulation.

• Exogenous data (e.g., outdoor temp) from July are 
used for training, and the trained RL controller 
will be test using unseen data from August.

Case Study [Experiment setup]

• RL controller training is implemented on the NREL high-performance computing (HPC) system.

Fig. 3. Five-zone building investigated.

 Each computing node on NREL HPC system has dual 18-core processors with 96 GB memory 
[7].

 For the Stage I training, we scale ES-RL [5], a ZOE-based RL algorithm, on 20 computing 
nodes, with a total of 684 rollout workers to sample control experience.

 For the Stage II training, proximal policy optimization (PPO) algorithm [6] is used for 
policy fine-tuning. Single computing node is used as scaling PPO on multiple nodes does 
not bring significant benefit. 
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Case Study [Two-Stage RL Training]

• Effectiveness of the two-stage learning.

• Using the ZOE-based method in Stage II 
for policy fine-tuning is not effective.

• PPO training from scratch (without ES-RL) 
using the same computational resources.

• PPO training was not improved by naively 
scaling to multiple HPC computing nodes. 
See [8] for discussion

• Converged to local optima.

Fig. 4 Learning curves of the two-stage policy
optimization. [Red]: Stage I ZOE-based global
policy search; [Blue]: Stage II PG-based tuning;
[Others]: unsuccessful ZOE-based tuning.

Fig. 5 Learning curves of using PG-based method
(Proximal policy optimization (PPO) in this
experiment).
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Case Study [Testing Scenarios]

For one testing day, the control performance of the two-
stage trained RL policy is shown under two scenarios:

• No DR event that day. (dashed lines)
• DR event (14:00-16:30) with 36 kW DR limit. (solid lines)

Performance of the global-locally searched policy:

• All zone temperature are mostly kept within the comfort
band, except for some short period during DR events.

• Grid requirement can be successfully met.

• Proactive actions are taken to prepare the building for
the incoming DR event.

• Though not explicitly instructed, the RL controller
learned to differentiate different zone for better
control.

Fig. 6 Control demo of the trained RL
controller in one testing day under DR
scenario [solid] and non-DR scenario [dashed].

Two-Stage RL Linear MPC Oracle MPC

DR 16.31 18.50 13.75

Non-DR 16.50 17.70 15.26

TABLE I. 
Comparison of Average Daily Cost of Test Scenarios
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