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Abstract — Power system resilience is an emerging topic and plays 
an essential role in helping power industry understand and re-
spond to the increasing threats of extreme weather events. The 
first step of power system resilience analysis is to introduce met-
rics to quantify the resilience reasonably. Existing resilience met-
rics are typically restrained by the limited data for extreme event 
modeling and fall short in terms of physical interpretation and 
comparability. This paper develops novel quantitative metrics to 
evaluate power system resilience in pre- and post-event contexts. 
The developed metrics illustrate clear physical meanings and can 
be effectively used to compare resilience across different systems 
under different extreme events. Moreover, the developed metrics 
can be applied to both transmission and distribution systems. 
Simulation on a distribution system is employed to validate the 
effectiveness of the proposed resilience metrics and resilience 
evaluation approach. 
Index Terms—Power system resilience, resilience metrics, resili-
ence quantification 

I. INTRODUCTION 
Nowadays, the operation of power and energy systems faces 

numerous challenges introduced by climate changes, such as 
energy demand surge caused by heatwaves and hydro genera-
tion shortage caused by droughts. Among these challenges, the 
number of outages is believed to rise because of the increasing 
frequency and intensity of extreme weather events [1]. The re-
cent 2021 power outage in Texas highlighted the necessity to 
understand, analyze, and deal with such extreme events to min-
imize the damage [2].  

In this context, power system resilience is proposed to cap-
ture the performance of power system under the influences of 
extreme events [3]. In general, power system resilience can be 
defined as the capability of a power system to maintain its per-
formance (e.g., generation, load, and voltage) and speedily re-
cover damages after a high-impact low-probability (HILP) 
event. Many research works have been done in the area of 
power system resilience, including definitions, modeling ap-
proaches, evaluation metrics, and methods and strategies to im-
prove power system resilience [4]-[10]. Among them, defining 

appropriate power system resilience metrics and quantification 
methods is critical before moving forward to discussing models 
and approaches to analyze and improve resilience. As an 
emerging topic, several resilience metrics have been proposed 
referring to existing metrics in other fields such as graph theory 
and power system reliability [11]-[12]. Although these metrics 
can reflect one or several key features of resilience, the follow-
ing drawbacks can be identified: i) existing resilience metrics 
are either nonquantitative or quantitative but do not provide a 
clear physical interpretation; ii) existing metrics rely heavily on 
historical data/record to evaluate event impact and grid vulner-
ability, which may not always be available or reliable given the 
nature of HILP event; and iii) it is difficult to compare the re-
silience of different systems that may suffer from different 
types of events using existing metrics. 

To overcome these drawbacks, this paper develops quanti-
tative metrics for power system resilience evaluation and dis-
cusses the evaluation approach. The proposed quantitative met-
rics are designed such that each metric corresponds to a term 
that is meaningful to the power industry. The heavy reliance on 
extreme event data is relieved by dividing the resilience quan-
tification into two stages: pre-event stage that evaluates resili-
ence in general, and post-event stage that uses the known event 
data to quantify resilience against that specific event scenario. 
Moreover, the developed resilience metrics have better compa-
rability than existing ones, thus making them suitable to com-
pare the resilience of power systems with diverse characteristics 
and different types of threats.  

II. RESILIENCE EVALUATION 

A. Typical Resilience Evaluation Process 
Take the resilience against extreme weather events as an ex-

ample, existing methods typically take the following steps to 
analyze resilience, as shown in Fig. 1.  

1. Event modeling: model extreme event intensity, propaga-
tion paths, and influencing radius using either historical or 
forecast data. 

2. Impact assessment: with a modeled event, its impacts on 
the power system infrastructure are evaluated using his-
torical vulnerability and frangibility records. 

This work was authored by the National Renewable Energy Laboratory,  
operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of 
Energy (DOE) under Contract No. DE-AC36-08GO28308. This material is 
based upon work supported by the U.S. Department of  Energy's Office of Energy 
Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies 
Office Award Number DE-EE0009337. The views expressed in the article do not 
necessarily represent the views of the DOE or the U.S. Government. The U.S. 
Government retains and the publisher, by accepting the article for publication, 
acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevo-
cable, worldwide license to publish or reproduce the published form of this work, 
or allow others to do so, for U.S. Government purposes. 
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3. Outage analysis: with identified vulnerable sections of the 
grid, potential outage scenarios will be generated using 
probabilistic analysis and Monte Carlo simulation. 

4. Resilience evaluation: simulate power system response 
using the generated outage scenarios and evaluate resili-
ence using the resilience trapezoid developed in [3]. 

However, power system resilience evaluation is a challeng-
ing task, given the nature of HILP events. The scarcity of HILP 
event data, especially before the event happens, results in two 
challenges: i) HILP event model construction with limited data, 
and ii) accuracy of HILP event modeling. Another concern is 
associated with the second step (impact assessment). Existing 
operating records can be used to evaluate the reliability of 
power apparatus during normal or close to normal conditions. 
When influenced by an extreme event that has indicators ex-
ceeding historical operating conditions, it is challenging to eval-
uate the functionality accurately using historical data. Take the 
planning studies as an example, where power systems want to 
strengthen their grid and implement preventative measures to 
deal with potential threats. Following the four steps shown in 
Fig. 1 is likely to introduce significant error and discrepancy in 
extreme weather modeling step and the impact assessment step 
due to the lack of historical data and forecast error.  

 
Fig. 1.  Typical resilience evaluation steps. 

B. Bypass Event Modeling Challenges 
The first two steps in Fig. 1 (highlighted by the dashed box) 

have been identified as the challenges to resilience quantifica-
tion. On the other hand, resilience analysis also relies heavily 
on the extreme event, as the same system may perform com-
pletely differently against different events. To bypass the event 
modeling challenges while maintaining reasonable resilience 
quantification results, i.e., skip the first two steps highlighted 
by the dashed box in Fig. 1, this paper proposes to evaluate 
power system resilience from two perspectives: pre-event eval-
uation and post-event evaluation.  

Pre-event evaluation investigates the resilience perfor-
mance of a power system without the knowledge of the ex-
treme event information. Post-event evaluation is conducted 
after the occurrence of an extreme event when event data and 
impacts are known. In other words, the pre-event evaluation 
provides a generic resilience assessment, whereas the post-
event evaluation is case-sensitive and evaluates power system 
resilience in a specific scenario.  

• Pre-event evaluation: Instead of modeling the nature of 
extreme events, the focus is placed on the direct causes of 
power outages―faults and maloperations. The resilience 
of a power system in the pre-event context estimates the 

system operating level when losing a number of facilities 
or a certain percentage of its nominal capacity. Pre-event 
estimation makes no assumption on the event, so the 
quantification represents resilience in general. 

• Post-event evaluation: With a given extreme event, the re-
silience performance can be directly assessed using event 
data. The response of a power system to the extreme event 
can be directly analyzed in the post-event context without 
worrying about event modeling. Note that the post-event 
evaluation provides an event-specific resilience assess-
ment that helps operators to re-evaluate the optimal re-
sponse strategy against the same or similar event. 

In both cases, event modeling and impact assessment can 
be bypassed. Moreover, the combination of pre- and post-event 
resilience evaluation help provide a more comprehensive in-
sight into resilience. As shown in Fig. 2, a system with better 
post-event performance (e.g., system 1 performs better under 
event c) does not indicate it should have a better pre-event re-
silience evaluation (e.g., system 2 has better overall pre-event 
resilience evaluation considering three events a, b, and c), and 
vice versa.  

 
Fig. 2.  Resilience in general vs. resilience in specific event. 

III. PROPOSED QUANTITATIVE RESILIENCE METRICS 

A. Metric for Pre-Event Resilience Quantification 
The pre-event resilience evaluation aims to provide a gen-

eral assessment of system response after a major disturbance 
without accurate knowledge of extreme events. An ideal pre-
event metric should contain the following three key attributes: 
• Event insensitivity: The pre-event resilience metric 

should not be built upon the accurate/forecast data of a 
specific event.  

• Physical interpretation: The pre-event resilience metric 
should have a clear physical interpretation, e.g., denoting 
a physical quantity that has a clear meaning and can be 
easily understood/accepted by power industry.  

• Comparability: The pre-event resilience metric assesses 
the resilience in general, thus it should be able to compare 
the expected resilience of different systems with diverse 
features against different types of events. 

In pre-event evaluation context where event data is not 
available, the scenarios should focus on the direct cause of 
power outages―failures and malfunctions of the grid. In fact, 
various types of extreme events will first influence the normal 
functionality of the grid before causing outage issues to the cus-
tomers. To name a few cases: i) a hurricane causes several 
500kV transmission lines to trip; ii) a heatwave results in heavy 
loading in an urban area, leading to bus undervoltage and line 
overloading issues; and iii) a cyberattack causes a generating 
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station to shut down completely. These cases are the results of 
completely different event which are extremely difficult to 
model in the pre-event context. However, their impacts on the 
grid are easier to anticipate, i.e., causing failures and malfunc-
tions of the grid. Therefore, modeling the failures and malfunc-
tions of the grid is a viable solution in pre-event context. 

 
Fig. 3.  Key attributes of a successful pre-event resilience metric. 

Focusing on grid failures and malfunctions, the key ques-
tion to be addressed is to construct a reasonable scenario to rep-
resent the failure without losing generality. A new metric 
named performance-damage-duration (PDD) is developed to 
quantify the capability of the power system to maintain a certain 
level of performance (e.g., load supply) when suffering from a 
certain level of disturbance, for a predefined period. The PDD 
metric contains two main parameters, performance/damage (𝑋𝑋) 
and duration (𝑌𝑌), which is defined as: 

𝑋𝑋 ≔ max
𝑋𝑋∈[0,1]

� inf
𝑠𝑠∈𝑆𝑆,𝑡𝑡∈[0,𝑌𝑌]

𝑃𝑃𝑠𝑠,𝑡𝑡
1−𝑋𝑋 ≥ 𝑋𝑋 ∙ 𝑃𝑃𝑠𝑠,𝑡𝑡�               (1) 

where 𝑆𝑆 denotes the set of possible damage scenarios that rep-
resent the damage level 𝑋𝑋, 𝑃𝑃𝑠𝑠,𝑡𝑡 denotes the nominal load con-
sumption at time 𝑡𝑡, 𝑃𝑃𝑠𝑠,𝑡𝑡

1−𝑋𝑋 denotes the uninterrupted load supply 
at time 𝑡𝑡 when suffering from damage 𝑋𝑋. In Equation (1), inf is 
the infimum function that captures the worst cases of 𝑃𝑃𝑠𝑠,𝑡𝑡

1−𝑋𝑋 
among all scenarios in 𝑆𝑆. 

This PDD metric is a unified metric formulation for both 
transmission systems and distribution systems. With a fixed du-
ration 𝑌𝑌, a higher 𝑋𝑋 indicates a higher resilience evaluation re-
sult in the pre-event context. Similar conclusion can be reached 
if 𝑋𝑋 is fixed. To understand the meaning of this PDD metric, 
several examples are given below assuming 𝑌𝑌 is fixed: 
• Let 𝑋𝑋 = 1%, it means the system can provide sustainable 

power supply to at least 1% of its nominal load when los-
ing 1% of its infrastructure/capacity, in the worst-case 
scenario. Modern power systems typically satisfy this cri-
terion because they are N-1 reliable. Equation (1) aims to 
maximize 𝑋𝑋, so 𝑋𝑋 can be pushed to a higher value. 

• If 𝑋𝑋 is raised to 20%, it means the system can provide sus-
tainable power supply to at least 20% of its load when los-
ing 20% of grid infrastructure/capacity, in the worst-case 
scenario. This becomes more challenging because losing 

several critical elements indicates a very severe disturb-
ance. If the failures can be properly isolated and control 
scheme can sectionalize the grid into self-sustained is-
lands/microgrids, the criterion in Equation (1) may be ac-
commodated if the system is strong, i.e., resilient.  

• The ideal case is when 𝑋𝑋 reaches 100%, meaning that no 
load curtailment occurs during the duration of 𝑌𝑌 when the 
grid is completely down. An example is a microgrid sys-
tem where every customer has a sufficiently large battery 
and backup generator. Therefore, no customer relies on 
microgrid and its upstream transmission system for power 
supply. Although 𝑋𝑋 = 100% does not seem realistic for 
now, it is intuitive to imagine this kind of power grid has 
the highest resilience against major disturbances.  

Therefore, using the developed PDD metric to evaluate sys-
tem resilience is to find the maximum 𝑋𝑋 and 𝑌𝑌 that a system 
can tolerate. Furthermore, the developed PDD metric satisfies 
all three criteria shown in Fig. 3. First, the PDD metric does not 
employ event models or data and is insensitive to the type, na-
ture, and characteristics of the event. Second, the PDD metric 
has a clear physical meaning according to its definition. Given 
the values of 𝑋𝑋 and 𝑌𝑌, one can easily infer the performance of 
the power system without needing to be familiar with the fea-
tures of the system. Third, the PDD metric can easily be used 
to compare resilience across different systems. For example, 
system A has better PDD evaluation (e.g., higher 𝑋𝑋 and 𝑌𝑌) than 
system B. It is reasonable to conclude that system A has better 
resilience in general even if these two systems have very differ-
ent configurations and suffer from various types of threats. 

B. Metrics for Post-Event Resilience Quantification 
In post-event resilience evaluation, accurate event data can 

be employed to analyze and improve system responses. The 
commonly used approach is to model the event and system re-
sponse using a resilience trapezoid [3], as shown in Fig. 4.  

The key to post-event resilience evaluation is to derive met-
rics from the trapezoid. Among existing resilience metrics, the 
most used metric is the amount of energy curtailment, or the 
economic loss/damage caused by the event. Referring to Fig. 
4(a), this metric corresponds to the total load energy shed 
(𝐸𝐸𝑠𝑠ℎ𝑒𝑒𝑒𝑒) due to the HILP event. However, 𝐸𝐸𝑠𝑠ℎ𝑒𝑒𝑒𝑒 alone does not 
always capture the resilience performance, several examples 
are provided in Fig. 4. 

In Fig. 4(a), the system load curve of the comparative case 
(dot line) is higher (i.e., superior) than the base case (solid line). 
Using 𝐸𝐸𝑠𝑠ℎ𝑒𝑒𝑒𝑒 can reach the same conclusion that the compara-
tive case has better resilience than the base case in Fig. 4(a). 
However, the base case and comparative case in Fig. 4(b) and 
Fig. 4(c) share the same amount of energy curtailment 𝐸𝐸𝑠𝑠ℎ𝑒𝑒𝑒𝑒  , 
yet displaying very different performance against the same 
event. It is clear that 𝐸𝐸𝑠𝑠ℎ𝑒𝑒𝑒𝑒  alone cannot successfully illustrate 
the resilience in Fig. 4(b) and Fig. 4(c).
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(a) (b) (c) 

Fig. 4.  Resilience trapezoid comparisons. 

Therefore, additional metrics should be introduced to eval-
uate resilience. Here we propose to use two primary metrics and 
one secondary metric to capture the two core concepts of resil-
ience. The primary metrics are: 

• Total energy curtailment 𝐸𝐸𝑠𝑠ℎ𝑒𝑒𝑒𝑒 ≔ ∫ 𝑃𝑃𝑠𝑠ℎ𝑒𝑒𝑒𝑒(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡
0  

• Peak load curtailment 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≔ 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑃𝑃𝑠𝑠ℎ𝑒𝑒𝑒𝑒(𝑡𝑡) 

The secondary metric aims to capture the capability of the 
system to withstand and recover from an extreme event, which 
is defined as: 

• Resist/recovery ratio 𝑅𝑅𝑠𝑠 ≔ 𝑇𝑇𝐷𝐷/𝑇𝑇𝑅𝑅, indicating the robust-
ness and resilience of the system. 𝑇𝑇𝑅𝑅 represents the total 
time horizon of the resilience trapezoid, 𝑇𝑇𝐷𝐷  denotes the 
duration that the system degrades from its nominal oper-
ating point to the worst operating level. The ratio 𝑅𝑅𝑠𝑠 =
𝑇𝑇𝐷𝐷/𝑇𝑇𝑅𝑅 integrates and normalizes 𝑇𝑇𝐷𝐷 and 𝑇𝑇𝑅𝑅, and this ra-
tio 𝑅𝑅𝑠𝑠 ranges from 0 to 1. 

For the same event, a smaller 𝑇𝑇𝑅𝑅 indicates a faster restora-
tion speed, and a larger 𝑇𝑇𝐷𝐷 normally indicates: 1) the system is 
more robust, i.e., degrade at a slower speed; 2) customers have 
more time to react to the HILP event, which may reduce their 
economic loss caused by the outage. Therefore, a larger 𝑅𝑅𝑠𝑠 can 
be used to imply a more robust system. An ideal system with 
optimum resilience performance will have minimal values of 
𝐸𝐸𝑠𝑠ℎ𝑒𝑒𝑒𝑒  and 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , and a maximal value of 𝑅𝑅𝑠𝑠.  

With the set of metrics 𝐸𝐸𝑠𝑠ℎ𝑒𝑒𝑒𝑒 , 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , and 𝑅𝑅𝑠𝑠, the resilience 
of base case and comparative case in Fig. 4(b) and Fig. 4(c) can 
be assessed. In Fig. 4(b), two cases have the same 𝐸𝐸𝑠𝑠ℎ𝑒𝑒𝑒𝑒 , but 
the comparative case has smaller 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . In Fig. 4(c), both cases 
have the same 𝐸𝐸𝑠𝑠ℎ𝑒𝑒𝑒𝑒  and 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , while the comparative case has 
a larger 𝑅𝑅𝑠𝑠. Thus, it is reasonable to conclude comparative case 
is more resilient in Fig. 4(b) and Fig. 4(c). 

C. Pre-Event Resilience Evaluation Approach 
Event data can be directly used in post-event resilience eval-

uation. Pre-event resilience evaluation, on the other hand, is not 
straightforward. In fact, to derive the 𝑋𝑋 value is comparative to 
solving a large number (typically unknown) of N-k contingency 
analysis problems, even with a fixed value of 𝑌𝑌. 

Hence, a simplified evaluation approach is proposed to ap-
proximate the PDD metric with the duration 𝑌𝑌 fixed (i.e., only 
need to estimate the 𝑋𝑋 value). The detailed procedures to ap-
proximate the PDD metric is summarized in Algorithm 1. 

Algorithm 1 
1: Initialize capacity of system elements (e.g., generation, 

line, transformer, etc.) and close all circuits  
2: Open a closed circuit with the largest capacity.  
3: Calculate the level of damage 𝑋𝑋1 (%) and run power flow 

to derive the level of load supply 𝑋𝑋2 (%). If 𝑋𝑋2 ≥ 𝑋𝑋1, the 
criterion (1) is met and jump to step 5. If 𝑋𝑋2 < 𝑋𝑋1, pro-
ceed to step 4. 

4: Reclose the opened circuit. If all circuits have already 
been opened, proceed to step 5. Otherwise, open a new 
circuit that was originally closed and has the second larg-
est capacity and return to step 3.  

5: If all circuits have already been opened, return 𝑋𝑋2 as the 
estimated value of 𝑋𝑋, terminate the algorithm. Otherwise, 
return to step 2. 

IV. SIMULATION VALIDATION 
The IEEE 123-bus test feeder [13] is employed to validate 

the performance of the proposed metrics. The peak load capac-
ity is 3500 kW, and the following cases are simulated: 

o Case 1: 0% photovoltaic (PV) penetration. 
o Case 2: 50% PV penetration (total capacity is 1750 kW), 

83 small-size PVs are deployed in a scattered manner. 
o Case 3: 25% PV penetration (total capacity is 875 kW), 

83 small-size PVs are deployed s in a scattered manner. 
o Case 4: 50% PV penetration (total capacity is 1750 kW), 

6 large-size PVs are deployed. 
o Case 5: 25% PV penetration (total capacity is 875 kW), 6 

large-size PVs are deployed. 

For post-event resilience analysis, 10 sets of event scenarios 
are created, each of which contains 20 distribution line outages 
that are randomly generated. The simulation timeframe is 6-
hour with 1-minute time-resolution. The load and PV power are 
assumed to be constant during the 6-hour timeframe. 

A. Pre-Event Resilience Quantification Results 
Table I reports the pre-event resilience evaluations of the 

studied 5 cases. Two existing metrics, namely the branch count 
effect and the repetition of resources [11], are also compared.  



5 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

TABLE I  PRE-EVENT RESILIENCE EVALUATION RESULTS 

Case Branch count 
effect 

Repetition of 
sources 

Proposed PDD 
metric (%)  

1 131 0.01 8.59  
2 131 0.92 50.99  
3 131 0.92 22.50  
4 131 0.08 29.41  
5 131 0.08 22.21  

For cases 1-5, the branch count effect is constant because 
the topology remains unchanged. The repetition of sources de-
pends on the location and number of generation sources, it has 
the same value for PV case 2 and 3 (case 4 and 5). It is clear 
these two metrics only capture some network features of the 
grid while ignoring electrical parameters such as load distribu-
tion and generation capacity.  

For the proposed PDD, case 1 has the worst pre-event resil-
ience because there is no PV. Case 2 has the highest pre-event 
resilience evaluation results because: 1) it has the highest PV 
penetration level (50%); and 2) it has the most dispersed distri-
bution in the microgrid, meaning that the system is more robust 
against distribution lines failures. Case 3 and case 5 have very 
similar pre-event evaluation despite having very different PV 
capacity distribution. This is because the capacity of a single 
PV unit in case 3 is too small and may not be sufficient to sup-
ply its local load, not to mention supplying its neighboring loads 
suffering from major disturbances. Therefore, when PV pene-
tration is low, the bottleneck issue to be addressed is to increase 
PV penetration. When the total PV generation capacity be-
comes larger (e.g., 50% in cases 2 and 4), improving microgrid 
resilience will require a more dispersed PV unit distribution. 

B. Post-Event Resilience Quantification Results 
Fig. 5 and Table II report the resilience trapezoids and post-

event evaluation results in scenario 10. Three comparative 
metrics, namely degradation rate, degradation intensity, and 
recovery rate [3] [12] are also compared in Table II.  

 
Fig. 5.  Resilience trapezoids of 5 cases in event scenario 10. 

TABLE II  POST-EVENT RESILIENCE EVALUATION RESULTS 

Case Degradation 
rate (kW/hr) 

Degradation 
intensity (hr) 

Recovery 
rate (kW/hr) 

𝐸𝐸𝑠𝑠ℎ𝑒𝑒𝑒𝑒 
(kWh) 

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
(kW) 𝑅𝑅𝑠𝑠 

1 7756 1.15 1203 8814 3490 0.10 

2 2200 0.82 594 4443 1723 0.17 

3 6011 0.57 777 6894 2705 0.10 

4 2848 0.58 998 7236 2895 0.23 

5 2848 0.58 998 7387 2895 0.23 

TABLE III  COMPARISON OF PRE- AND POST-EVENT RESILIENCE 
EVALUATION 

Case Pre-event 
ranking 

Average post-
event ranking 

Highest post-event 
ranking 

Lowest post-event 
ranking 

1 5 5 5 5 
2 1 1.1 1 2 
3 3 3.1 2 4 
4 2 2.3 1 3 
5 4 3.5 3 4 

According to Fig. 5, case 2 has the best resilience perfor-
mance while case 1 is the worst. Cases 3-5 have similar resili-
ence trapezoid shapes, but case 3 is slightly better than cases 4 
and 5 because its performance curve is generally more superior 
than the other two cases. However, the comparative metrics in 
Table II will rate cases 4 and 5 higher because of the slower 
degradation rate, similar degradation intensity, and faster re-
covery rate. Using the developed set of metrics, case 3 performs 
better because of its smaller 𝐸𝐸𝑠𝑠ℎ𝑒𝑒𝑒𝑒  and 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. Although case 3 
falls short in terms of 𝑅𝑅𝑠𝑠, it is still considered better than cases 
4 and 5 because 𝑅𝑅𝑠𝑠 is not a primary factor in post-event resili-
ence evaluation. Therefore, the developed set of metrics pro-
vides a more reasonable post-event resilience quantification. 
C. Discussions 

Table III compares the pre-event resilience evaluation re-
sults and the post-event resilience evaluation results in the sim-
ulated 10 scenarios. Note that the pre-event ranking based on 
the proposed PDD metric is very consistent with the average 
post-event ranking obtained from 10 different event scenarios. 
What’s more important is that PDD evaluation does not rely on 
any event data. This proves that the proposed PDD metric can 
illustrate system resilience without event modeling and event 
data, thus fits the pre-event resilience evaluation context.  

Table III validated that power systems with a higher pre-
event resilience rating are expected to perform better with ma-
jor disturbances. But with a certain scenario, this conclusion 
may not be true (e.g., case 4 has a highest ranking of “1” in 
Table III, indicating it has the best resilience performance in 
certain event scenarios despite case 2 has the best average post-
event ranking and is also rated highest in pre-event evaluation). 
Therefore, Table III proves that pre- and post-event metrics are 
complementary to each other and supports the idea to use pre-
event PDD metric for general resilience quantification and post-
event metrics for resilience evaluation in specific scenarios.  

V. CONCLUSIONS 
This paper develops quantitative pre- and post-event resil-

ience metrics for comprehensive power system resilience anal-
ysis. A new resilience metric named PDD is proposed to 
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evaluate resilience in the pre-event context, and a set of metrics 
are developed to evaluation resilience in the post-event con-
text. The developed resilience metrics do not rely on historical 
data or accurate event forecast, and demonstrate better compa-
rability compared to existing ones. Simulation results on a dis-
tribution system validate that the developed resilience metrics 
are more effective and consistent. Given the increasing threats 
of extreme events, the developed resilience metrics can help 
power industry to analyze resilience and secure grid operations 
in the presence of major disturbances. 
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