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a b s t r a c t 

To combat climate change and meet decarbonization goals, the building sector is improving energy efficiency 

and electrifying end uses to reduce carbon emissions from fossil fuels. All-electric buildings are becoming a trend 

among new constructions, introducing opportunities for decarbonization but also technical challenges and re- 

search gaps. For instance, further investigation is needed to understand how the adoption of energy efficiency 

measures (EEMs) and distributed energy resources (DERs) in all-electric communities would affect energy con- 

sumption, carbon emissions, and grid planning. This paper presents a case study of a mixed-use, all-electric com- 

munity located in Denver, Colorado. We use URBANopt TM , a physics-based urban energy modeling platform to 

model the community and then evaluate the impact of EEMs and DERs (i.e., photovoltaics [PV], electric vehicles 

[EVs], and batteries) on the community’s energy usage, carbon emissions, and peak demand. The results show 

that adding EEMs and PV led to both energy consumption and carbon emissions reductions across all building 

types. However, we saw fairly limited impact of EEMs and PV on buildings’ peak demand in our case. Addition- 

ally, due to overnight EV charging activities and higher grid carbon intensity at night, the carbon emissions in 

multifamily buildings have a noticeable increase compared to scenarios without vehicles. Finally, the addition 

of batteries helped reduce peak demand by 11%–29%. The modeling workflow and evaluation methods can be 

applied to similar communities to evaluate their performance and the effect of integrating EEMs and DERs. 
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. Introduction 

In recent years, there has been a growing interest in electrification

f energy use for new construction buildings all over the world. Some

tate and municipal governments in the United States are beginning to

nforce the use of all-electric building equipment by updating building

odes. For example, Denver’s Net Zero Energy New Buildings and Homes

mplementation Plan [1] suggests that by 2027, all newly-built commer-

ial and multifamily buildings in the Denver area should be all-electric.

he plan sets a similar target for residential homes by 2024. In Europe,

he European Union is seeking structural changes to the power sector

hrough end-use electrification and power generation decarbonization

o achieve its carbon neutral goal by 2050 [2] . 

Electrification of buildings can offer both environmental benefits and

ncreased building energy efficiency. Because in cold climates, the ma-

ority of building carbon emissions result from space heating and wa-

er heating [1] , all-electric buildings replace existing fossil fuel demand

ith electricity demand. This allows the potential for leveraging the in-

reasing penetration of clean energy in the power grid, especially when

he increased load temporally matches the renewable generation. From

n energy efficiency perspective, heat pumps have an efficiency that is
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wo to three times higher than that of gas equipment [1] , which results

n energy consumption savings. Lastly, buildings with electric vehicle

EV) chargers facilitate a better coordination between the building and

ransportation sectors, where rapid electrification is also taking place. 

Existing literature focuses on the energy and grid impact of buildings

nd communities. Gerke et al. [3] analyzed the interactions between

nergy efficiency and demand response on regional grid scales using

 bottom-up energy simulation method. They identified a competitive

elationship between efficiency and demand response in many cases,

hile pointing out that a complementary relationship between the two

s also possible, especially with control-based efficiency. Munankarmi

t al. [4] studied the relationship between energy efficiency measures

EEMs) and demand flexibility in an all-electric community. They con-

luded that EEMs together with home energy management systems and

attery systems can reduce energy costs while increasing demand flexi-

ility. However, they also found that the potential for flexibility is lower

n more energy-efficient homes due to their lower loads. Christensen

t al. [5] investigated an all-electric energy system design with geother-

al energy resources, EEMs, and photovoltaic (PV) asset dispatch in a

old climate. Their results indicated that geothermal resources are com-

etitive in supporting communities to achieve net zero energy (NZE).
 2022 

ticle under the CC BY-NC-ND license 
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Table 1 

Comparison of relevant studies with the proposed work. This table highlights that among the existing all-electric community works collected in the 

literature review, only one incorporates large-scale adoption of EVs and batteries. Further, the carbon emissions of future all-electric communities need 

additional investigation. 

Reference 

Scope of work Evaluation perspective 

Scale All-electric EEM & DER Energy performance Carbon emissions Grid impact 

[3] Building, grid ✗ Battery 
√

✗ 
√

[4] Community 
√

EEMs, PV, battery 
√

✗ 
√

[5] Community 
√

EEMs, PV, geotherm, battery 
√

✗ ✗ 

[6] Community 
√

PV, battery 
√ √ √

[7] Community ✗ PV 
√

✗ 
√

[8] Community ✗ EEMs, PV, battery, EV 
√ √ √

[9] Community 
√

PV, battery 
√ √ √

[10,11] Building, community 
√

PV, battery, heat storage 
√ √ √

[12] Community 
√

PV, battery, EV 
√ √

✗ 

[15] Building ✗ EV 
√

✗ 
√

[16] Community ✗ PV, EV 
√

✗ 
√

[17] Community ✗ EV 
√

✗ 
√

Proposed work Community 
√

EEMs, PV, battery, EV 
√ √ √
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imilarly, Heidi von Korff [6] and Huang et al. [7] focused on the en-

rgy performance and grid impact of NZE communities. 

A few studies have conducted carbon emission evaluation of build-

ngs and communities in the context of electrification. Jing et al. [8] in-

estigated the role of electrification with flexibility in decarbonization.

hey demonstrated that electrification is a feasible solution to achieve

eep decarbonization, where flexibility provides huge cost-saving po-

ential in end use electrification. Kitagawa et al. [9] quantitatively eval-

ated the energy performance and annual carbon emissions of a zero-

nergy residential community in Japan. Their results indicated a posi-

ive correlation between energy consumption and annual carbon emis-

ions, where the closer the community is to zero energy, the lower its

arbon emissions. Terlouw et al. [10,11] proposed a multi-objective op-

imization framework to minimize the operation costs and carbon emis-

ions of an all-electric residential energy system. They concluded that

ommunity-scale energy storage performs better than home energy stor-

ge both economically and environmentally. Wang et al. [12] compared

ifferent carbon-emission responsive controllers for residential thermo-

tatically controllable loads in a cold climate. They found that the carbon

esponsive controllers can reduce the homes’ annual carbon emissions

y 6.0% to 20.5% with limited impact on thermal comfort and energy

osts. 

Distributed energy resources (DERs) such as PV panels, battery stor-

ge, and EVs play a significant role in shaping community power de-

and. So far, the impact of integrating PV and battery storage at a com-

unity scale has been extensively studied [13,14] . With the electrifica-

ion of the transportation sector, the impact of EV adoption has gained

ore attention. Gilleran et al. [15] assessed how station sizes, charging

ower levels, and utilization factors of EV charging stations affect a big-

ox retail building’s power demand. Their results showed that adding an

V charging station has the potential to increase the building monthly

eak demand by over 250%. The annual electricity bill increased by

8% in cold-climate areas paired with utility rate structures that have

igh demand charges. Ahmad et al. [16] developed an energy manage-

ent system for public EV charging stations integrated with community

icrogrids. The objective function aimed at minimizing the cost of EV

harging and maximizing the profit from selling the surplus energy from

V and EV systems. Sadati et al. [17] studied the energy management of

V parking lots in a power distribution grid. Optimal scheduling strate-

ies were proposed to help the parking lot owner gain maximal profits

nder EV uncertainties. 

Table 1 compares the existing relevant studies with the proposed

ork in this paper. Based on the literature review, we identified that

here is a lack of studies dedicated to future all-electric communities.

mong the existing all-electric community works collected in the lit-

rature review, only one incorporates large-scale adoption of EVs and
2 
atteries. Further, the carbon emissions of future all-electric communi-

ies need additional investigation. To fill these identified gaps, we first

odeled a mixed-use, all-electric community located in Denver, Col-

rado, United States that corresponds to the 2020 local building energy

fficiency codes as a baseline. All building loads, except for the natu-

al gas cooking loads in food service buildings, are fueled by electric-

ty. In addition to the baseline scenario, we designed future scenarios

hat achieve NZE through EEMs and PV systems. In some scenarios, we

lso considered EV and battery integration. The resulting energy usage,

eak demand, and carbon emissions of various scenarios are compared

o evaluate the impact of EEMs and DERs in future all-electric commu-

ities. The major contributions of this work are summarized as follows:

• Streamlined workflow for modeling large, mixed-use communities

using the URBANopt TM platform; 

• In-depth impact analysis of EEM and DER adoption in a future all-

electric community; 

• Quantitative evaluation of energy, carbon emissions, and grid-

related performance metrics of the community. 

The remainder of this paper is organized as follows: Section 2 de-

cribes the community modeling workflow using URBANopt. The se-

ected EEMs and the DERs are also introduced. Section 3 describes the

esign of the case study containing the community information, the sim-

lation scenarios, and the impact evaluation metrics. Section 4 discusses

he simulation results quantitatively. Section 5 concludes the work and

ecommends topics for further study. 

. Methodology 

Simulating energy consumption and distributed generation at a dis-

rict scale entails modeling different energy components and systems

nd analyzing their interactions, which is a crucial task for our study.

any tools have been developed to model each of these district com-

onents separately, such as EnergyPlus TM for building energy modeling

nd REopt TM for PV and battery system modeling. However, running

nergy modeling subtasks interactively through a holistic approach, in-

tead of a standalone modeling process, is needed to identify key op-

ortunities and benefits of energy-efficient technologies. This approach

lso facilitates a feedback loop between the different components of a

istrict, enhancing the design and operation decision-making for build-

ngs, DERs, and the grid. Therefore, in this study, we utilized URBANopt,

 flexible platform that combines multiple modeling tools, to achieve a

olistic energy analysis of our district through parallel modeling of the

uildings and DER systems. 
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Fig. 1. GeoJSON file combining geospatial and other general building informa- 

tion (visualized on geojson.io). 
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Fig. 2. Diagram of the modeling workflow with URBANopt (figure adapted 

from [19] ). Blue blocks are items and orange blocks are actions. 
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.1. Community modeling using URBANopt 

URBANopt is an open-source platform to model energy systems in

istricts. This modular platform integrates multiple tools that enable us

o perform district-scale building energy efficiency analysis in conjunc-

ion with DER modeling and optimal design within one platform. It fa-

ilitates the development of new workflows, which can provide analysis

f several energy aspects of a district system and test different scenarios

n an integrated modeling approach. The original vision for URBANopt,

RBANopt’s core modules, and URBANopt’s grid-interactive modules

re provided in reference [18–20] . 

In the process of modeling our district, multiple URBANopt mod-

les are utilized to generate different scenarios that combine build-

ng and DER models and are characterized with unique EEMs. First,

n URBANopt-GeoJSON module organizes geospatial information for

he district in a GeoJSON format. Figure 1 shows a sample of the de-

eloped GeoJSON file visualized on geojson.io for our district. Then

he URBANopt-Scenario module is used to create customized scenar-

os for our analysis. This module allows us to create various customized

emplates of inputs and map them to different buildings in a scenario.

hese templates of inputs describe the model characteristics of a build-

ng or DER system and can include a selected list of EEMs. For this case

tudy, we developed three scenario templates characterized with differ-

nt EEMs: a) a baseline scenario template that is modeled to meet the

enver energy requirements for 2020 [1] ; b) a high-efficiency scenario

emplate that applies additional EEMs to meet 2030 Denver building

nergy goals; c) an EV scenario template that inherits all the charac-

eristics from the high-efficiency scenario and integrates EV charging

odels. After developing various scenarios, the URBANopt Runner and

ost Processor manage the execution of the simulations and aggregate

he results for each scenario. 

In this process, we also utilized the URBANopt grid-interactive mod-

le that integrates REopt, a DER optimization tool [21] , to optimally

ize and dispatch PV and battery systems for each building in the three

esigned scenario templates. This integrated approach provides a feed-

ack loop between building models and their corresponding DER mod-

ls. This allows the REopt optimization to optimally size the DER sys-
3 
ems based on both building-level and district-level profiles and com-

ute the optimal dispatch of these systems to maximize the system’s

otal life cycle cost savings. The above-described workflow is illustrated

n Figure 2 . 

.2. Energy efficiency measures 

For regions with different climates, the energy savings potential of

he same combination of EEMs might vary significantly. According to

 sensitivity analysis study in the United States [22] and a dedicated

echnical report for the area [23] , the top EEMs for Denver (climate

one 5B) include increasing electrical equipment efficiency, increasing

ighting system efficiency, replacing window material, and adding wall

nsulation. Table 2 lists the EEMs selected in this work to achieve an en-

rgy efficiency upgrade from the baseline scenario to the high-efficiency

uture scenario. Note that in this work, the heating, ventilation, and

ir-conditioning (HVAC) systems for all buildings are powered by elec-

ricity, so we included efficiency upgrades of this equipment as well.

iven that the windows in the baseline scenario is already highly energy-

fficient, we did not include window-related EEMs in this case. 

.3. Distributed energy resources 

PV panel sizing and dispatching. The PV panels in this work are all

ssumed to be behind the meter. In the baseline scenario, 75% of each

uilding’s rooftop area is assumed to be covered by PV. The following

quation estimates the PV system size in kW (direct current) according

o the available area [24] : 

 𝑝𝑣 = 𝐴 ⋅ 𝑔𝑐𝑟 ⋅ 1 𝑘𝑊 ∕ 𝑚 

2 ⋅ 𝜂, (1)

here 𝑃 𝑝𝑣 is the rooftop PV system size in kW, 𝐴 is the available rooftop

rea in 𝑚 

2 , 𝑔𝑐𝑟 is the ground cover ratio which is assumed to be 0.4, 𝜂 is

he PV system module efficiency which is assumed to be 19%. To max-

mize the utilization of the local solar energy resources, we ran a solar

adiation analysis covering all the possible combinations of PV panel tilt

ngles and azimuths for Denver. The tilt and azimuth that yielded the

ighest year-round solar radiation value were then identified, where the

ptimal tilt was identified to be 36 ° and azimuth to be 171 °. It is assumed

n this work that all the buildings in the studied community have flat

oofs. 

In scenarios where building-level NZE is achieved, ground PV panels

re added to offset the deviation between the annual PV generation and

nergy consumption. The following equation estimates the ground PV

anel area to achieve annual NZE at the building level: 

 

′
𝑝𝑣 

= 𝑃 𝑝𝑣 ( 
𝐸 𝑐𝑜𝑛. 

𝐸 𝑝𝑣 

− 1) (2)

n Equation 2 , 𝑃 ′
𝑝𝑣 

represents the extra ground PV system size. The 𝐸 𝑐𝑜𝑛. 

nd 𝐸 𝑝𝑣 are the annual building electricity consumption and PV energy

enerated by the rooftop PV system, respectively. The 𝑔𝑐𝑟 and the effi-

iency 𝜂 of both rooftop and ground PV panels are assumed to be the

ame. We note that because of the limited land space in the community
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Table 2 

Selected measures for increasing energy efficiency in residential and commercial buildings implemented in this work. 

Residential Commercial 

1 Increase heat pump heating efficiency Increase heating equipment efficiency 

2 Increase heat pump cooling efficiency Increase cooling equipment efficiency 

3 Increase wall R-value Increase exterior wall insulation R-value 

4 Increase lighting efficiency Increase lighting efficiency 

5 Decrease plug load usage Reduce miscellaneous equipment power 

6 Decrease water usage N/A 
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Fig. 3. Three-dimensional rendering map of the mixed-use case study commu- 

nity. The community is currently under construction and going to have 148 

buildings, most of which are large commercial buildings. It is located in Den- 

ver, Colorado, United States. 

Table 3 

Building types in the mixed-use community. Ten building types can be differen- 

tiated. All residential buildings are multifamily buildings. 

Building type Quantity 

Mixed 

use 

Office with retail 15 

Retail with food service 19 

Multifamily 36 

Food service 16 

Strip shopping mall 14 

Office 23 

Retail other than mall 12 

Lodging 4 

Education 3 

Outpatient health care 6 

Total 148 
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c  
or placing all ground PV panels, we assume the ground PV panels are

nstalled in an open space offsite. 

EV charging load. The EV charging load in this work is modeled as

tatic load profiles added on top of the other building loads. The load

rofiles were created for a Denver district to reflect different potential

V charging behavior [25] . Three charging station types were differen-

iated while generating the profiles: residential, public, and workplace.

he URBANopt building types are mapped to these three building types.

he “business as usual ” charging behavior was chosen, which represents

ome dominant charging behavior, where the majority of the EV charg-

ng happens during evening hours and overnight. Minimum charging

ower mode was selected to avoid a significant increase in peak de-

and during the charging events. The EV penetration rate was assumed

o be 100%, meaning all vehicles on site are electric. More information

bout the EV modeling can be found in the documentation [26] . 

Battery sizing and dispatching. The sizing and dispatching of

he batteries in this work was conducted using REopt [21] with an

ptimization-based approach. The mixed-integer linear program takes in

nputs such as analysis goals, economic assumptions, policy-based incen-

ives, utility rates, technology assumptions, and building loads and then

ptimizes system sizing and controls for the maximum value [27] . For

nstance, in the financial analysis option, REopt finds the optimal battery

ize and dispatch decisions that minimize the life cycle cost of energy,

onsidering not only operational but also installation and replacement

osts of batteries. Technical constraints of batteries such as the minimum

tate of charge, round-trip efficiency, and charge/discharge rate limits

re considered. Important control assumptions about whether the bat-

ery can be charged with grid power are determined by the user through

ssumption files. More descriptions of REopt and its applications can be

ound in the reference [28–30] . 

. Case study 

This section specifies the design of the case study to demonstrate

he proposed workflow. First, we describe the mixed-use community in

etail. Then, we present the design of the simulation scenarios in this

tudy. Last, we discuss the selected metrics for quantifying the impact of

EMs and DERs on the all-electric community’s energy and emissions. 

.1. Community information 

The community used in the case study is located in Denver, Col-

rado, United States, which has a cold and dry climate according to

SHRAE Standard 169-2006 [31] . The community is currently under

onstruction and going to have 148 buildings, most of which are large

ommercial buildings such as office buildings and retail stores. All resi-

ential buildings in this community are multifamily buildings. Figure 3

hows a three-dimensional rendering map of the community with color-

oded building types. A list of detailed building types can also be found

n Table 3 . In the office with retail buildings, the mixed ratio by floor

rea is assumed to be 90% office with 10% retail. In the retail with food

ervice buildings, the ratio is 50% and 50%. 

The building loads are all electric. More specifically, the HVAC sys-

em types include air-source heat pumps for residential buildings. Pack-

ged rooftop heat pumps, packaged variable air volume (VAV) with par-
4 
llel fan powered (PFP) boxes, or VAV chiller with PFP boxes are used

or commercial buildings depending on the building floor area and num-

er of floors [32] . The domestic hot water systems are also powered by

lectricity. However, in food service buildings (i.e., restaurants), there is

ome remaining natural gas usage due to the natural gas-fueled cooking

quipment. This aligns with Denver’s NZE implementation plan [1] and

s thus not included in the calculations of NZE. 

Local utility rates from Xcel Energy were adopted to evaluate the

nnual energy costs and inform the optimal battery dispatching. Table 4

hows the adopted residential and commercial utility rates [33,34] . In

he table, the renewable energy credit (REC) payment stands for the

redits the customers will obtain for every 𝑘𝑊 ℎ of renewable energy

eneration. The excess PV payment represents the profit gained from

he surplus amount of PV that is sold back to the grid. 

.2. Scenario design 

Figure 4 depicts the five scenarios designed for the case study. The

aseline scenario simulates the community with a year 2020 energy effi-

iency level. The ASHRAE 90.1-2019 prototypical building models were
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Table 4 

Local residential and commercial utility rates. Both rates consists of fixed charge, energy charge, and demand charge. Energy net- 

metering is enabled. The REC payment stands for the credits the customers will obtain for every kWh of renewable energy generation. 

The excess PV payment represents the profit gained from the surplus amount of PV sold back to the grid. 

Item Residential rate Commercial rate 

Fixed charge ($/month) 5.58 39.3 

Energy charge ($/kWh) 0.03035 (off-peak); 0.04631 (on-peak) 0.040246 

Demand charge ($/kW) 12.33 (Oct.–May); 15.54 (Jun.–Sep.) 18.45 (Oct.–May); 22.47 (Jun.–Sep.) 

Net-metering Yes Yes 

REC payment ($/kWh) 0.005 

Excess PV payment ($/kWh) 0.011 

Fig. 4. Scenarios designed for the case study. The future scenario builds upon the baseline scenario with a higher energy efficiency level in alignment with future 

projected building code requirements. 
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Fig. 5. Projected average carbon emission intensity of the grid power gener- 

ation for Denver area from Cambium (as of October 2020). There is a slight 

decrease of carbon intensities in year 2030 compared to 2020, especially during 

the spring. There also exists a more explicit daily variation of carbon intensities 

in 2030 due to the higher PV generation power during the day. 
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dapted with some efficiency upgrades to reflect the requirements of lo-

al building codes. In the future scenario (2a), the EEMs discussed in

ection 2.2 were applied to achieve the energy efficiency levels pro-

ected for Denver’s new buildings in 2030 [1] . In both aforementioned

cenarios, the PV panels take up 75% of each building’s rooftop area.

n the future NZE scenario (2b), ground PV panels were sized (refer to

ection 2.3 ) and added to help achieve building-level NZE. Next, Scenar-

os 3 and 4 build upon Scenario 2b by incorporating EVs and batteries,

espectively. 

The design of simulation scenarios enables a sequential variation be-

ween adjacent scenarios, which facilitates the impact study of the adop-

ion of certain building energy assets. For instance, through the compar-

son of the simulation results of Scenarios 1 and 2a, we are able to in-

estigate the impact of the selected EEMs on building performance in an

ll-electric community. Similarly, the impact of large-scale EV and bat-

ery adoption in all-electric communities can be studied through com-

aring Scenarios 2b, 3, and 4, sequentially. Note that the modeling and

alculation of internal combustion engine vehicle emissions are out of

his paper’s scope. Hence, in Scenarios 1, 2a, and 2b, no vehicles are

odeled. The selected building performance evaluation metrics in this

aper will be introduced in the following subsection. 

.3. Evaluation metrics 

The building energy usage in this work is quantified by the net elec-

ricity usage intensity (denoted as EUI in this paper) and the annual

nergy cost. The net EUI can be defined with the following equation: 

𝑈𝐼 𝑛𝑒𝑡 = 

∑𝑁 

𝑡 =1 ( 𝑃 
𝑡 
𝑔𝑟𝑖𝑑 

− 𝑃 𝑡 
𝑝𝑣 
) Δ𝑡 

𝐴 𝑓𝑙𝑜𝑜𝑟 

, (3)

here 𝑁 is the total number of simulation time steps in a year, 𝑃 𝑡 
𝑔𝑟𝑖𝑑 

s the average electric power draw from the grid at each time step 𝑡 ,

 

𝑡 
𝑝𝑣 

is the PV generation at each time step, Δ𝑡 is the time step inter-

al (one hour), and 𝐴 𝑓𝑙𝑜𝑜𝑟 is the building floor area. The grid impact of

he community is evaluated with the monthly peak demand as power

istribution system planning is mainly dependent on the regional peak

emand. One aspect of the environmental impact of the community can

e quantified with the annual operational carbon emissions, which in-

icates the emissions associated with the generation of grid power. 
5 
The following equation calculates the annual total operational car-

on emissions of each building: 

 = 

𝑁 ∑

𝑡 =1 
𝑒 𝑡 
𝐶𝑂 2 

𝑃 𝑡 
𝑔𝑟𝑖𝑑 

Δ𝑡, (4)

here 𝑒 𝑡 
𝐶𝑂 2 

represents the average carbon dioxide ( 𝐶𝑂 2 ) intensity of

he grid power generation mix at each time step. Note that carbon net-

etering is not considered in the calculation, meaning that the PV en-

rgy exported back to the grid brings in only excess PV payment but

o carbon emissions offsetting benefits. In this work, the carbon inten-

ity data of the grid is adopted from the Cambium data set [35] . Based

n modeled futures of the U.S. electricity sector, Cambium assembles

tructured data sets of energy-related metrics (e.g., carbon emissions)

o facilitate long-term decision-making. Specifically, the hourly aver-

ge carbon emission data from the Standard Scenarios 2020 Mid-case

cenario for Denver’s local balancing authority were adopted. Though

ambium provides various scenario settings such as high versus low re-

ewable energy cost, we note that the simulated data are based on cer-

ain assumptions about the future projected U.S. electric sector. These

ssumptions are subject to many uncertainties, such as climate change

nd policy impacts, which could affect the analysis of this work. 

Figure 5 visualizes the average carbon emissions data for the selected

imulation years from Cambium (as of October 2020). From the figure,

e see a slight decrease of carbon intensities in year 2030 compared
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Fig. 6. Net EUI by building type (Scenarios 1, 2a, and 2b). There exist some 

reductions of electricity usage from the baseline to the future scenario because 

of the adoption of EEMs. For the future NZE scenario, in every building type, 

the annual net EUI is around zero. 
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Fig. 7. Net EUI by building type (Scenarios 2b, 3, and 4). In the figure, the boxes 

for the EV scenario overlap with those of the EV & battery scenario. Adding EV 

loads to the buildings not only increases the building mean EUI values but also 

enlarges the range of EUIs, especially in multifamily and retail buildings. 
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o 2020, especially during the spring. We also see a more explicit daily

ariation of carbon intensities in 2030 due to the higher PV generation

ower during the day. Given the U.S. government’s aggressive emission

eduction goals [36] , more clean hours than plotted in this figure should

e seen by 2030 due to the integration of more clean power generation

echnologies. 

. Results and discussions 

.1. Net EUI 

Figure 6 compares the net EUI values by building type across the

aseline, future, and future NZE scenarios. From the figure, we see some

eductions of electricity usage from the baseline to the future scenario

ecause of the adoption of EEMs. The largest relative reduction was

ithin multifamily buildings (28%), and the smallest was in the mixed

etail and restaurant building (7.5%). According to Denver’s NZE im-

lementation plan for new buildings and homes [1] , the EUI values for

030 are projected to be 170 𝑘𝑊 ℎ ∕ 𝑚 

2 ⋅ 𝑦𝑟 for large hotels, 117 for large

ffices, 88 for standalone retailers, and 73 for mid-rise apartment build-

ngs. Therefore, the net EUI values in the future scenario generally cor-

espond to those projected in Denver’s plan. 

Looking at the future NZE scenario, where extra ground PV panels

ere added to help achieve building NZE, we see that in every build-
ig. 8. Monthly peak demand by building type (Scenarios 1, 2a, and 2b). The adoptio

round PV panels in the future NZE scenario further reduces peak demand. 

6 
ng type, the annual net EUI is around zero. The multifamily buildings

ave the smallest net EUI values, at around -19 𝑘𝑊 ℎ ∕ 𝑚 

2 ⋅ 𝑦𝑟 . This indi-

ates that the annual electricity consumption of the community can be

alanced out by behind-the-meter PV generation. The community also

akes profits from selling the surplus generation of renewable energy

ack to the grid, which will be discussed in Section 4.4 . 

Figure 7 compares the net EUI values by building type across future

ZE, EV, and EV & battery scenarios. In the figure, the boxes for the

V scenario overlap with those of the EV & battery scenario. This is be-

ause batteries work as temporal arbitrage here and did not affect the

otal building energy consumption too much, where a charging and dis-

harging efficiency of 0.94 was assumed. We notice from the figure that

dding EV loads to the buildings not only increases the building mean

UI values but also enlarges the range of EUIs, especially in multifamily

nd retail buildings. This can be attributed to the fact that the building

V profiles modeled in this work are only correlated with factors such

s the building type and charging behavior, but are independent of the

oor area. Hence, the same EV loads were added to each building of the

ame type, despite varying floor areas across individual buildings. This

as led to much-scattered distributions of net EUI values. In our case

tudy community, the multifamily and retail buildings have relatively

maller floor areas. This caused their maximum net EUI values to be

arger than other building types. 
n of EEMs has limited impact on the buildings’ peak demand. However, adding 
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Fig. 9. Building power demand curves for selected buildings on a winter day 

(January 1, Scenarios 1, 2a, and 2b). The figure shows uniform load reductions 

throughout the day comparing the baseline and the future scenario. In future 

NZE scenario, peak PV power generation occurs mainly around noon or early 

afternoon, which does not align with the building peak load hours. 
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Table 5 

Average monthly peak demand values in the future NZE scenario in kW and 

relative changes in percentage in future NZE with EV and future NZE with EV 

and battery by building type. 

Building type Future NZE EV EV & battery 

Full service restaurant 428 6% -14% 

Large hotel 317 34% -11% 

Mixed office and retail 585 3% -22% 

Mixed retail and restaurant 1397 2% -15% 

Multifamily 258 43% -15% 

Office 362 6% -29% 

Outpatient 182 16% -26% 

Retail 219 8% -22% 

Secondary school 637 4% -21% 

Strip mall 590 3% -25% 
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.2. Peak demand 

The boxplot of the monthly peak demand by building type for the

aseline, future, and future NZE scenarios can be found in Figure 8 .

rom the figure, we notice that the adoption of EEMs has limited im-

act on the buildings’ peak demand. This is likely attributable to the

act that our chosen baseline is already highly energy efficient. Adding

round PV panels in the future NZE scenario further reduces peak de-

and. However, the peak demand reduction effect is much less than

ts net EUI reduction effect as shown in Figure 6 . Comparing the future

ZE and baseline scenarios, the largest peak demand reduction lies in

he multifamily buildings (26.3%), and the smallest in office buildings

11.4%). 

Figure 9 plots sample curves of the grid power draw of selected build-

ng types on a winter day. The figure further explains the reason for the

imited peak demand-shaving impact of the adopted EEMs. From the fig-

re, we generally see uniform load reductions throughout the day when

omparing the baseline and the future scenario. However, such uniform

eduction trends have fairly limited impact on the building peak load,

hich occurs in the early morning around 7 a.m. when people get up or

rrive at the workplace and the building energy systems start to operate.

ikewise, peak PV power generation occurs mainly around noon or early

fternoon, which also does not align with the building peak load hours.

e note that no building load control has been considered as an EEM in
ig. 10. Monthly peak demand by building type (Scenarios 2b, 3, and 4). Adding EV

W. Adding batteries has reduced building peak demand by around 20% due to load

7 
his paper, which could have limited the peak shaving effect. The grid

ower draw of the rest building types can be found in Figure A.2 . 

Next, the impact of adding behind-the-meter EV loads and batteries

n building peak demand is shown in Figure 10 . Adding EV loads to the

uildings increased the average monthly peak demand by 15–110 kW,

epending on the building type. Furthermore, adding batteries has re-

uced building peak demand by around 20% due to load shifting effects.

 demand curve plot for all the building types comparing Scenarios 2b,

, and 4 can be found in Appendix A. 

Table 5 lists the detailed average monthly peak demand values and

elative changes by building type to provide more insights. We note that

he relative peak demand changes of the EV scenario are calculated rel-

tive to the future NZE scenario, and those of the EV & battery scenario

re calculated relative to the EV scenario. From the table, the largest and

mallest peak demand changes occurred with the multifamily building

43%) and the mixed retail and restaurant building (2%), respectively.

iven the EV load profiles of the two building types are of a similar

cale, the differences in the relative changes are mainly caused by the

eviations of the original building loads. Further, the addition of bat-

eries helped reduce the peak demands by 11%–29%. This exceptional

eak demand reduction effect can be partially attributed to the peak de-

and charges in the utility rates, which will be discussed in detail in

ection 4.4 . 

.3. Carbon emissions 

Figure 11 depicts the annual total carbon emissions by building type.

e generally see very similar trends across different scenarios and build-

ng types. For instance, a reduction of 7%–24% is seen from the baseline
 loads to the buildings increased the average monthly peak demand by 15–110 

 shifting effects. 
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Fig. 11. Mean annual carbon emissions by building type. A reduction of 7%–24% is seen from the baseline to the future scenario due to the adoption of EEMs. There 

exists a larger reduction of 19%–42% from the future scenario to the future NZE scenario. Adding EV has led to an increase in emissions compared to scenarios 

without internal combustion engine vehicles. 
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o the future scenario due to the adoption of EEMs. Then, there exists

 larger reduction of 19%–42% from the future scenario to the future

ZE scenario. This is attributable to the extra ground PV panels, which

educe the community’s dependence on the power grid for electricity

uring the day. Compared to emission-free clean PV power generation,

he grid power generation mix in the United States is dominated by

atural gas fired power plants, which have higher carbon intensities.

inally, adding EV loads introduces a minor rise of emissions (except

n multifamily buildings) that is later mitigated to some extent by the

atteries. 

Among all the building types, the carbon emissions of multifamily

uildings showcase a different trend across the scenarios. Based on the

arplot, the emissions after introducing EV loads even exceed those of

he baseline scenario 1 . Given that the total energy usage of the EV sce-

ario did not exceed the baseline (see Figures 6 and 7 ), this can be

ttributed to the fact that EV charging in multifamily buildings typi-

ally happens overnight, as illustrated by Figure 12 , when there is no

V power and the carbon emission intensity of the grid power is rela-

ively high (see Figure 5 ). Though adding batteries can shift the clean

nergy from the daytime to the nighttime, in our case, the influence has

een limited because other household loads also occur at night. 

.4. Energy costs 

The energy costs considered in this work consist of the fixed charge,

nergy charge, demand charge, and credits obtained from renewable en-

rgy generation. Figure 13 plots the energy and demand charge, as well

s the renewable (i.e., PV) credits by building type across different sce-

arios. In the figure, the PV credits incorporate both the REC payment

nd the excess PV payment as indicated in Table 4 . In all building types,

he demand charge constitutes a larger portion of the total cost than the

nergy charge. Across various scenarios, the energy charge reduction

een in the future NZE scenario as compared to the future scenario is

uch more prominent than the corresponding reduction in the demand

harges. This is consistent with the limited peak demand shaving effect

f extra PV panels discussed in Section 4.2 . Further, though annual NZE
1 The baseline scenario and scenarios 2a, 2b do not model any internal com- 

ustion engine vehicle emissions. If those were modeled, the trend shown in this 

lot should be different. 

t  

m  

o  

c

8 
as achieved and total PV generation offsets total energy consumption

or each building, the PV credits obtained cannot cancel out the energy

harge under the current local utility rate structure. 

More specifically, to analyze the cost savings of the extra ground PV

anels, we compare the future NZE scenario with the future scenario.

9.5%–40.0% of total energy costs were reduced, among which about

6% was attributed to the energy charge reduction, 16% to the demand

harge, and 38% to the PV credits. However, it is worth noting that the

and space required to host the extra ground PV panels, as well as their

apital and maintenance costs, play an important role in the economic

nalysis of such renewable investments. This work focuses on the oper-

tional cost analysis and thus has not included the upfront capital costs

n the analysis of the EEMs and DERs. 

Moreover, the operational energy cost saving effect of batteries can

e illustrated through comparing the EV and EV & battery scenarios.

he total utility bill cost savings from the installation of the batteries lies

etween 8.1%–27.2%. The largest cost savings comes from the reduction

n demand charge, which accounts for about 98% of the total savings

rom batteries. Almost no change of PV credits was seen between the

wo scenarios as the REopt optimization determined to export all the

urplus PV generation and use the grid power to charge the batteries. 

.5. Community aggregated performance 

This subsection discusses the community aggregated performance

nd the contribution of each building type regarding the annual

nergy consumption, annual carbon emissions, and demand curve.

igure 14 compares the community annual energy consumption by

uilding type in the baseline scenario (Scenario 1) and the future NZE

cenario with EVs and batteries (Scenario 4). In the baseline scenario,

he largest energy-consuming type is the mixed retail and restaurant

uilding. However, in the future scenario, the multifamily building be-

omes the top energy consumer. This is because, with the help of the

ooftop and ground PV panels, all buildings achieved annual NZE in Sce-

ario 2b by feeding surplus PV generation back to the grid. After adding

he EV charging loads in Scenarios 3 and 4, the surplus PV generation in

ultifamily buildings cannot offset the large EV charging loads, while

ther buildings still can. This has significantly increased the net energy

onsumption of the multifamily buildings. 
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Fig. 12. Heat map of the annual EV charging load for a selected multifamily 

building. The figure shows that EV charging in multifamily buildings typically 

happens overnight. 
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Fig. 14. Community annual net energy consumption by building type. In the 

baseline scenario, the largest energy-consuming type is the mixed retail and 

restaurant building. However, in the future scenario, the multifamily building 

becomes the top energy consumer. 
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Figure 15 plots the community annual carbon emissions by building

ype. Unlike the annual net energy, we see a similar distribution of emis-

ions in the baseline scenario and the future NZE scenario with EVs and

atteries. This can be attributed to the fact that carbon net-metering was

ot considered in the calculation of annual carbon emissions. Therefore,

or the buildings that are back-feeding to the grid, the exported clean en-
ig. 13. Mean annual operational energy costs by building type. In all building types,

harge. The negative values represent the obtained renewable credits. 

9 
rgy cannot offset the emissions caused by the building loads. Regarding

he multifamily building, which is the largest energy consumer, they are

ot impacted by the net-metering scheme because they are not export-

ng as much PV energy as the other building types. This implies that for

uture NZE communities, enabling carbon net-metering will further re-

ard energy prosumers, especially when large EV loads or carbon price

s present. 
 the demand charge constitutes a larger portion of the total cost than the energy 
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Fig. 15. Community annual carbon emissions by building type. There is a simi- 

lar distribution of emissions in the baseline scenario and the future NZE scenario 

with EVs and batteries. 
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. Conclusion 

In this work, we demonstrated a streamlined workflow for model-

ng large mixed-use, all-electric communities. A community located in

enver with 148 buildings was modeled and simulated in five scenarios

sing the workflow. Through the case study, we discussed the impact of

dopting EEMs and DERs (i.e., PV, EV, battery) in a future all-electric

ommunity. Meanwhile, a comprehensive evaluation of the energy, car-

on emissions, and peak demand was conducted. The proposed work-

ow and findings can be applied to general mixed-use, all-electric com-

unities to inform their design, retrofit, and analysis. 

Based on the simulation results, we found that adding EEMs tends to

ause fairly uniform reductions in the building loads throughout the day,

hile adding PV panels mainly reduces the loads around noon. Both of

he aforementioned factors lead to fairly limited impact on the building

eak load. Additionally, although the annual building-level NZE goal

as achieved in one scenario, the total PV credits obtained from local

eneration cannot fully offset the energy charge under the current local

tility rate structure. 

In terms of the impact of large-scale adoption of DERs, adding EV

oads would greatly impact building EUIs, especially those with smaller

oor areas. Further, the carbon emissions in multifamily buildings had

 noticeable increase due to the overnight EV loads. The addition of

atteries helped reduce peak demand by 11%–29%. This peak demand

eduction effect contributed significantly to the decrease in total energy

osts, as the demand charge is proportionally larger than the energy

harge under the current utility rates. Finally, for future NZE commu-

ities, enabling carbon net-metering will help further reward energy

rosumers, especially when large EV loads or carbon price is present. 

This work has the limitation of modeling the EV loads with static pro-

les, which are only correlated with factors such as the building type

nd charging behavior, but are independent of the building floor area or

ccupancy status. Also, no building load shifting or EV load control was

mplemented, which could potentially further reduce the peak demand

nd energy costs by aligning the loads with PV production. Finally, be-

ause EnergyPlus prototypical building models of various types were

dopted, the same default building schedules were simulated for each

ype. This could have led to a higher modeled community peak demand

han would be expected. Future research directions include: 

• Implementation of stochastic building occupancy schedules to mimic

more realistic building load shapes. 

• Adoption of dynamic modeling of EV loads based on building infor-

mation and occupancy status. 
10 
• Introduction of building and EV load control, as well as thermal en-

ergy storage, to enable higher load flexibility and better coordination

with PV and the grid. 

• Expansion of the research topic to involve PM2.5 emissions of

all-electric communities and the resulting regional air quality and

health aspects. 
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ppendix A 

ig. A.1. Building power demand curves for the rest seven building types on

 winter day (January 1, Scenarios 1, 2a, and 2b). This figure complements

igure 9 . 

ig. A.2. Building power demand curves for all the building types on a winter

ay (January 1, Scenarios 2b, 3, and 4). 
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