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To combat climate change and meet decarbonization goals, the building sector is improving energy efficiency
and electrifying end uses to reduce carbon emissions from fossil fuels. All-electric buildings are becoming a trend
among new constructions, introducing opportunities for decarbonization but also technical challenges and re-
search gaps. For instance, further investigation is needed to understand how the adoption of energy efficiency
measures (EEMs) and distributed energy resources (DERs) in all-electric communities would affect energy con-
sumption, carbon emissions, and grid planning. This paper presents a case study of a mixed-use, all-electric com-
munity located in Denver, Colorado. We use URBANopt™, a physics-based urban energy modeling platform to
model the community and then evaluate the impact of EEMs and DERs (i.e., photovoltaics [PV], electric vehicles
[EVs], and batteries) on the community’s energy usage, carbon emissions, and peak demand. The results show
that adding EEMs and PV led to both energy consumption and carbon emissions reductions across all building
types. However, we saw fairly limited impact of EEMs and PV on buildings’ peak demand in our case. Addition-
ally, due to overnight EV charging activities and higher grid carbon intensity at night, the carbon emissions in
multifamily buildings have a noticeable increase compared to scenarios without vehicles. Finally, the addition
of batteries helped reduce peak demand by 11%-29%. The modeling workflow and evaluation methods can be

applied to similar communities to evaluate their performance and the effect of integrating EEMs and DERs.

1. Introduction

In recent years, there has been a growing interest in electrification
of energy use for new construction buildings all over the world. Some
state and municipal governments in the United States are beginning to
enforce the use of all-electric building equipment by updating building
codes. For example, Denver’s Net Zero Energy New Buildings and Homes
Implementation Plan [1] suggests that by 2027, all newly-built commer-
cial and multifamily buildings in the Denver area should be all-electric.
The plan sets a similar target for residential homes by 2024. In Europe,
the European Union is seeking structural changes to the power sector
through end-use electrification and power generation decarbonization
to achieve its carbon neutral goal by 2050 [2].

Electrification of buildings can offer both environmental benefits and
increased building energy efficiency. Because in cold climates, the ma-
jority of building carbon emissions result from space heating and wa-
ter heating [1], all-electric buildings replace existing fossil fuel demand
with electricity demand. This allows the potential for leveraging the in-
creasing penetration of clean energy in the power grid, especially when
the increased load temporally matches the renewable generation. From
an energy efficiency perspective, heat pumps have an efficiency that is
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two to three times higher than that of gas equipment [1], which results
in energy consumption savings. Lastly, buildings with electric vehicle
(EV) chargers facilitate a better coordination between the building and
transportation sectors, where rapid electrification is also taking place.
Existing literature focuses on the energy and grid impact of buildings
and communities. Gerke et al. [3] analyzed the interactions between
energy efficiency and demand response on regional grid scales using
a bottom-up energy simulation method. They identified a competitive
relationship between efficiency and demand response in many cases,
while pointing out that a complementary relationship between the two
is also possible, especially with control-based efficiency. Munankarmi
et al. [4] studied the relationship between energy efficiency measures
(EEMs) and demand flexibility in an all-electric community. They con-
cluded that EEMs together with home energy management systems and
battery systems can reduce energy costs while increasing demand flexi-
bility. However, they also found that the potential for flexibility is lower
in more energy-efficient homes due to their lower loads. Christensen
et al. [5] investigated an all-electric energy system design with geother-
mal energy resources, EEMs, and photovoltaic (PV) asset dispatch in a
cold climate. Their results indicated that geothermal resources are com-
petitive in supporting communities to achieve net zero energy (NZE).
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Comparison of relevant studies with the proposed work. This table highlights that among the existing all-electric community works collected in the
literature review, only one incorporates large-scale adoption of EVs and batteries. Further, the carbon emissions of future all-electric communities need

additional investigation.

Scope of work

Evaluation perspective

Reference
Scale All-electric EEM & DER Energy performance Carbon emissions Grid impact

[3] Building, grid X Battery v v
[41 Community Vv EEMs, PV, battery \/ X v
[51 Community v EEMs, PV, geotherm, battery Y/ X X
[6] Community v PV, battery v v/ YV
[71 Community X PV \/ X \/
[81 Community X EEMs, PV, battery, EV v v v
[9] Community v PV, battery v/ v/ V/
[10,11] Building, community Vv PV, battery, heat storage v v v
[12] Community v PV, battery, EV \/ \/ X
[15] Building X EV Y/ X v
[16] Community X PV, EV v X v
[17] Community X EV \/ X \/
Proposed work Community v EEMs, PV, battery, EV y/ Vv v

Similarly, Heidi von Korff [6] and Huang et al. [7] focused on the en-
ergy performance and grid impact of NZE communities.

A few studies have conducted carbon emission evaluation of build-
ings and communities in the context of electrification. Jing et al. [8] in-
vestigated the role of electrification with flexibility in decarbonization.
They demonstrated that electrification is a feasible solution to achieve
deep decarbonization, where flexibility provides huge cost-saving po-
tential in end use electrification. Kitagawa et al. [9] quantitatively eval-
uated the energy performance and annual carbon emissions of a zero-
energy residential community in Japan. Their results indicated a posi-
tive correlation between energy consumption and annual carbon emis-
sions, where the closer the community is to zero energy, the lower its
carbon emissions. Terlouw et al. [10,11] proposed a multi-objective op-
timization framework to minimize the operation costs and carbon emis-
sions of an all-electric residential energy system. They concluded that
community-scale energy storage performs better than home energy stor-
age both economically and environmentally. Wang et al. [12] compared
different carbon-emission responsive controllers for residential thermo-
statically controllable loads in a cold climate. They found that the carbon
responsive controllers can reduce the homes’ annual carbon emissions
by 6.0% to 20.5% with limited impact on thermal comfort and energy
costs.

Distributed energy resources (DERs) such as PV panels, battery stor-
age, and EVs play a significant role in shaping community power de-
mand. So far, the impact of integrating PV and battery storage at a com-
munity scale has been extensively studied [13,14]. With the electrifica-
tion of the transportation sector, the impact of EV adoption has gained
more attention. Gilleran et al. [15] assessed how station sizes, charging
power levels, and utilization factors of EV charging stations affect a big-
box retail building’s power demand. Their results showed that adding an
EV charging station has the potential to increase the building monthly
peak demand by over 250%. The annual electricity bill increased by
88% in cold-climate areas paired with utility rate structures that have
high demand charges. Ahmad et al. [16] developed an energy manage-
ment system for public EV charging stations integrated with community
microgrids. The objective function aimed at minimizing the cost of EV
charging and maximizing the profit from selling the surplus energy from
PV and EV systems. Sadati et al. [17] studied the energy management of
EV parking lots in a power distribution grid. Optimal scheduling strate-
gies were proposed to help the parking lot owner gain maximal profits
under EV uncertainties.

Table 1 compares the existing relevant studies with the proposed
work in this paper. Based on the literature review, we identified that
there is a lack of studies dedicated to future all-electric communities.
Among the existing all-electric community works collected in the lit-
erature review, only one incorporates large-scale adoption of EVs and

batteries. Further, the carbon emissions of future all-electric communi-
ties need additional investigation. To fill these identified gaps, we first
modeled a mixed-use, all-electric community located in Denver, Col-
orado, United States that corresponds to the 2020 local building energy
efficiency codes as a baseline. All building loads, except for the natu-
ral gas cooking loads in food service buildings, are fueled by electric-
ity. In addition to the baseline scenario, we designed future scenarios
that achieve NZE through EEMs and PV systems. In some scenarios, we
also considered EV and battery integration. The resulting energy usage,
peak demand, and carbon emissions of various scenarios are compared
to evaluate the impact of EEMs and DERs in future all-electric commu-
nities. The major contributions of this work are summarized as follows:

« Streamlined workflow for modeling large, mixed-use communities
using the URBANopt™ platform;

* In-depth impact analysis of EEM and DER adoption in a future all-
electric community;

» Quantitative evaluation of energy, carbon emissions, and grid-
related performance metrics of the community.

The remainder of this paper is organized as follows: Section 2 de-
scribes the community modeling workflow using URBANopt. The se-
lected EEMs and the DERs are also introduced. Section 3 describes the
design of the case study containing the community information, the sim-
ulation scenarios, and the impact evaluation metrics. Section 4 discusses
the simulation results quantitatively. Section 5 concludes the work and
recommends topics for further study.

2. Methodology

Simulating energy consumption and distributed generation at a dis-
trict scale entails modeling different energy components and systems
and analyzing their interactions, which is a crucial task for our study.
Many tools have been developed to model each of these district com-
ponents separately, such as EnergyPlus™ for building energy modeling
and REopt™ for PV and battery system modeling. However, running
energy modeling subtasks interactively through a holistic approach, in-
stead of a standalone modeling process, is needed to identify key op-
portunities and benefits of energy-efficient technologies. This approach
also facilitates a feedback loop between the different components of a
district, enhancing the design and operation decision-making for build-
ings, DERs, and the grid. Therefore, in this study, we utilized URBANopt,
a flexible platform that combines multiple modeling tools, to achieve a
holistic energy analysis of our district through parallel modeling of the
buildings and DER systems.
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Fig. 1. GeoJSON file combining geospatial and other general building informa-
tion (visualized on geojson.io).

2.1. Community modeling using URBANopt

URBANOopt is an open-source platform to model energy systems in
districts. This modular platform integrates multiple tools that enable us
to perform district-scale building energy efficiency analysis in conjunc-
tion with DER modeling and optimal design within one platform. It fa-
cilitates the development of new workflows, which can provide analysis
of several energy aspects of a district system and test different scenarios
in an integrated modeling approach. The original vision for URBANopt,
URBANopt’s core modules, and URBANopt’s grid-interactive modules
are provided in reference [18-20].

In the process of modeling our district, multiple URBANopt mod-
ules are utilized to generate different scenarios that combine build-
ing and DER models and are characterized with unique EEMs. First,
an URBANopt-GeoJSON module organizes geospatial information for
the district in a GeoJSON format. Figure 1 shows a sample of the de-
veloped GeoJSON file visualized on geojson.io for our district. Then
the URBANopt-Scenario module is used to create customized scenar-
ios for our analysis. This module allows us to create various customized
templates of inputs and map them to different buildings in a scenario.
These templates of inputs describe the model characteristics of a build-
ing or DER system and can include a selected list of EEMs. For this case
study, we developed three scenario templates characterized with differ-
ent EEMs: a) a baseline scenario template that is modeled to meet the
Denver energy requirements for 2020 [1]; b) a high-efficiency scenario
template that applies additional EEMs to meet 2030 Denver building
energy goals; c) an EV scenario template that inherits all the charac-
teristics from the high-efficiency scenario and integrates EV charging
models. After developing various scenarios, the URBANopt Runner and
Post Processor manage the execution of the simulations and aggregate
the results for each scenario.

In this process, we also utilized the URBANopt grid-interactive mod-
ule that integrates REopt, a DER optimization tool [21], to optimally
size and dispatch PV and battery systems for each building in the three
designed scenario templates. This integrated approach provides a feed-
back loop between building models and their corresponding DER mod-
els. This allows the REopt optimization to optimally size the DER sys-
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Fig. 2. Diagram of the modeling workflow with URBANopt (figure adapted
from [19]). Blue blocks are items and orange blocks are actions.

tems based on both building-level and district-level profiles and com-
pute the optimal dispatch of these systems to maximize the system’s
total life cycle cost savings. The above-described workflow is illustrated
in Figure 2.

2.2. Energy efficiency measures

For regions with different climates, the energy savings potential of
the same combination of EEMs might vary significantly. According to
a sensitivity analysis study in the United States [22] and a dedicated
technical report for the area [23], the top EEMs for Denver (climate
zone 5B) include increasing electrical equipment efficiency, increasing
lighting system efficiency, replacing window material, and adding wall
insulation. Table 2 lists the EEMs selected in this work to achieve an en-
ergy efficiency upgrade from the baseline scenario to the high-efficiency
future scenario. Note that in this work, the heating, ventilation, and
air-conditioning (HVAC) systems for all buildings are powered by elec-
tricity, so we included efficiency upgrades of this equipment as well.
Given that the windows in the baseline scenario is already highly energy-
efficient, we did not include window-related EEMs in this case.

2.3. Distributed energy resources

PV panel sizing and dispatching. The PV panels in this work are all
assumed to be behind the meter. In the baseline scenario, 75% of each
building’s rooftop area is assumed to be covered by PV. The following
equation estimates the PV system size in kW (direct current) according
to the available area [24]:

P,

o = A -ger- 1 kW [m? - q, 1)
where P, is the rooftop PV system size in kW, A is the available rooftop
area in m?, ger is the ground cover ratio which is assumed to be 0.4, 7 is
the PV system module efficiency which is assumed to be 19%. To max-
imize the utilization of the local solar energy resources, we ran a solar
radiation analysis covering all the possible combinations of PV panel tilt
angles and azimuths for Denver. The tilt and azimuth that yielded the
highest year-round solar radiation value were then identified, where the
optimal tilt was identified to be 36° and azimuth to be 171°. It is assumed
in this work that all the buildings in the studied community have flat
roofs.

In scenarios where building-level NZE is achieved, ground PV panels
are added to offset the deviation between the annual PV generation and
energy consumption. The following equation estimates the ground PV
panel area to achieve annual NZE at the building level:

E
=2 - 1) @
pv

/
Pl= Py (

In Equation 2, PI: , represents the extra ground PV system size. The E,,,,
and E,, are the annual building electricity consumption and PV energy
generated by the rooftop PV system, respectively. The gcr and the effi-
ciency 5 of both rooftop and ground PV panels are assumed to be the
same. We note that because of the limited land space in the community
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Selected measures for increasing energy efficiency in residential and commercial buildings implemented in this work.

Residential

Commercial

Increase heat pump heating efficiency
Increase heat pump cooling efficiency
Increase wall R-value

Increase lighting efficiency

Decrease plug load usage

Decrease water usage

U WN -

Increase heating equipment efficiency
Increase cooling equipment efficiency
Increase exterior wall insulation R-value
Increase lighting efficiency

Reduce miscellaneous equipment power
N/A

for placing all ground PV panels, we assume the ground PV panels are
installed in an open space offsite.

EV charging load. The EV charging load in this work is modeled as
static load profiles added on top of the other building loads. The load
profiles were created for a Denver district to reflect different potential
EV charging behavior [25]. Three charging station types were differen-
tiated while generating the profiles: residential, public, and workplace.
The URBANopt building types are mapped to these three building types.
The “business as usual” charging behavior was chosen, which represents
home dominant charging behavior, where the majority of the EV charg-
ing happens during evening hours and overnight. Minimum charging
power mode was selected to avoid a significant increase in peak de-
mand during the charging events. The EV penetration rate was assumed
to be 100%, meaning all vehicles on site are electric. More information
about the EV modeling can be found in the documentation [26].

Battery sizing and dispatching. The sizing and dispatching of
the batteries in this work was conducted using REopt [21] with an
optimization-based approach. The mixed-integer linear program takes in
inputs such as analysis goals, economic assumptions, policy-based incen-
tives, utility rates, technology assumptions, and building loads and then
optimizes system sizing and controls for the maximum value [27]. For
instance, in the financial analysis option, REopt finds the optimal battery
size and dispatch decisions that minimize the life cycle cost of energy,
considering not only operational but also installation and replacement
costs of batteries. Technical constraints of batteries such as the minimum
state of charge, round-trip efficiency, and charge/discharge rate limits
are considered. Important control assumptions about whether the bat-
tery can be charged with grid power are determined by the user through
assumption files. More descriptions of REopt and its applications can be
found in the reference [28-30].

3. Case study

This section specifies the design of the case study to demonstrate
the proposed workflow. First, we describe the mixed-use community in
detail. Then, we present the design of the simulation scenarios in this
study. Last, we discuss the selected metrics for quantifying the impact of
EEMs and DERs on the all-electric community’s energy and emissions.

3.1. Community information

The community used in the case study is located in Denver, Col-
orado, United States, which has a cold and dry climate according to
ASHRAE Standard 169-2006 [31]. The community is currently under
construction and going to have 148 buildings, most of which are large
commercial buildings such as office buildings and retail stores. All resi-
dential buildings in this community are multifamily buildings. Figure 3
shows a three-dimensional rendering map of the community with color-
coded building types. A list of detailed building types can also be found
in Table 3. In the office with retail buildings, the mixed ratio by floor
area is assumed to be 90% office with 10% retail. In the retail with food
service buildings, the ratio is 50% and 50%.

The building loads are all electric. More specifically, the HVAC sys-
tem types include air-source heat pumps for residential buildings. Pack-
aged rooftop heat pumps, packaged variable air volume (VAV) with par-

| Resientl | Ot | Restaurant
School | Hoseiel [ VixedUse
[ Sopermatkel g Hotel Mal

.
Latitude: 39.812 =, /&Q\
Longitude: -104.783 ('[S( M
Surface elevation: 1650 ft N Y4

Fig. 3. Three-dimensional rendering map of the mixed-use case study commu-
nity. The community is currently under construction and going to have 148
buildings, most of which are large commercial buildings. It is located in Den-
ver, Colorado, United States.

Table 3
Building types in the mixed-use community. Ten building types can be differen-
tiated. All residential buildings are multifamily buildings.

Building type Quantity
Mixed Office with retail 15
use Retail with food service 19
Multifamily 36
Food service 16
Strip shopping mall 14
Office 23
Retail other than mall 12
Lodging 4
Education 3
Outpatient health care 6
Total 148

allel fan powered (PFP) boxes, or VAV chiller with PFP boxes are used
for commercial buildings depending on the building floor area and num-
ber of floors [32]. The domestic hot water systems are also powered by
electricity. However, in food service buildings (i.e., restaurants), there is
some remaining natural gas usage due to the natural gas-fueled cooking
equipment. This aligns with Denver’s NZE implementation plan [1] and
is thus not included in the calculations of NZE.

Local utility rates from Xcel Energy were adopted to evaluate the
annual energy costs and inform the optimal battery dispatching. Table 4
shows the adopted residential and commercial utility rates [33,34]. In
the table, the renewable energy credit (REC) payment stands for the
credits the customers will obtain for every kW h of renewable energy
generation. The excess PV payment represents the profit gained from
the surplus amount of PV that is sold back to the grid.

3.2. Scenario design
Figure 4 depicts the five scenarios designed for the case study. The

baseline scenario simulates the community with a year 2020 energy effi-
ciency level. The ASHRAE 90.1-2019 prototypical building models were
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Local residential and commercial utility rates. Both rates consists of fixed charge, energy charge, and demand charge. Energy net-
metering is enabled. The REC payment stands for the credits the customers will obtain for every kWh of renewable energy generation.
The excess PV payment represents the profit gained from the surplus amount of PV sold back to the grid.

Item Residential rate Commercial rate
Fixed charge ($/month) 5.58 39.3
Energy charge ($/kWh) 0.03035 (off-peak); 0.04631 (on-peak) 0.040246
Demand charge ($/kW) 12.33 (Oct.-May); 15.54 (Jun.-Sep.) 18.45 (Oct.-May); 22.47 (Jun.-Sep.)
Net-metering Yes Yes
REC payment ($/kWh) 0.005
Excess PV payment ($/kWh) 0.011
'4 3 i N I B ™ B i 3

2a. Future Scenario
(2030)

1. Baseline Scenario
L (2020)

J - J a

2b. Future Scenario
(2030, NZE) )

4. Future Scenario

3. Future Scenario
+ EV (2030, NZE) )

\+ EV + Battery (2030, NZE))

Fig. 4. Scenarios designed for the case study. The future scenario builds upon the baseline scenario with a higher energy efficiency level in alignment with future

projected building code requirements.

adapted with some efficiency upgrades to reflect the requirements of lo-
cal building codes. In the future scenario (2a), the EEMs discussed in
Section 2.2 were applied to achieve the energy efficiency levels pro-
jected for Denver’s new buildings in 2030 [1]. In both aforementioned
scenarios, the PV panels take up 75% of each building’s rooftop area.
In the future NZE scenario (2b), ground PV panels were sized (refer to
Section 2.3) and added to help achieve building-level NZE. Next, Scenar-
ios 3 and 4 build upon Scenario 2b by incorporating EVs and batteries,
respectively.

The design of simulation scenarios enables a sequential variation be-
tween adjacent scenarios, which facilitates the impact study of the adop-
tion of certain building energy assets. For instance, through the compar-
ison of the simulation results of Scenarios 1 and 2a, we are able to in-
vestigate the impact of the selected EEMs on building performance in an
all-electric community. Similarly, the impact of large-scale EV and bat-
tery adoption in all-electric communities can be studied through com-
paring Scenarios 2b, 3, and 4, sequentially. Note that the modeling and
calculation of internal combustion engine vehicle emissions are out of
this paper’s scope. Hence, in Scenarios 1, 2a, and 2b, no vehicles are
modeled. The selected building performance evaluation metrics in this
paper will be introduced in the following subsection.

3.3. Evaluation metrics

The building energy usage in this work is quantified by the net elec-
tricity usage intensity (denoted as EUI in this paper) and the annual
energy cost. The net EUI can be defined with the following equation:

Zt 1( grid P;J‘U) At

Aflaor

EUI , 3)

net =

where N is the total number of simulation time steps in a year, P‘” .
is the average electric power draw from the grid at each time step ¢,
P;U is the PV generation at each time step, Ar is the time step inter-
val (one hour), and A ,,,, is the building floor area. The grid impact of
the community is evaluated with the monthly peak demand as power
distribution system planning is mainly dependent on the regional peak
demand. One aspect of the environmental impact of the community can
be quantified with the annual operational carbon emissions, which in-
dicates the emissions associated with the generation of grid power.

2020 Average Carbon Emlssmn Data

1\ |

24

1000

CO; Emission (kg/MwWh)

215
Day of Year

Fig. 5. Projected average carbon emission intensity of the grid power gener-
ation for Denver area from Cambium (as of October 2020). There is a slight
decrease of carbon intensities in year 2030 compared to 2020, especially during
the spring. There also exists a more explicit daily variation of carbon intensities
in 2030 due to the higher PV generation power during the day.

The following equation calculates the annual total operational car-
bon emissions of each building:

C = eo, Phg A1, @
=1

where ¢!, represents the average carbon dioxide (CO,) intensity of

co,
the grid power generation mix at each time step. Note that carbon net-
metering is not considered in the calculation, meaning that the PV en-
ergy exported back to the grid brings in only excess PV payment but
no carbon emissions offsetting benefits. In this work, the carbon inten-
sity data of the grid is adopted from the Cambium data set [35]. Based
on modeled futures of the U.S. electricity sector, Cambium assembles
structured data sets of energy-related metrics (e.g., carbon emissions)
to facilitate long-term decision-making. Specifically, the hourly aver-
age carbon emission data from the Standard Scenarios 2020 Mid-case
scenario for Denver’s local balancing authority were adopted. Though
Cambium provides various scenario settings such as high versus low re-
newable energy cost, we note that the simulated data are based on cer-
tain assumptions about the future projected U.S. electric sector. These
assumptions are subject to many uncertainties, such as climate change
and policy impacts, which could affect the analysis of this work.
Figure 5 visualizes the average carbon emissions data for the selected
simulation years from Cambium (as of October 2020). From the figure,
we see a slight decrease of carbon intensities in year 2030 compared
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Fig. 6. Net EUI by building type (Scenarios 1, 2a, and 2b). There exist some
reductions of electricity usage from the baseline to the future scenario because
of the adoption of EEMs. For the future NZE scenario, in every building type,
the annual net EUI is around zero.

to 2020, especially during the spring. We also see a more explicit daily
variation of carbon intensities in 2030 due to the higher PV generation
power during the day. Given the U.S. government’s aggressive emission
reduction goals [36], more clean hours than plotted in this figure should
be seen by 2030 due to the integration of more clean power generation
technologies.

4. Results and discussions
4.1. Net EUI

Figure 6 compares the net EUI values by building type across the
baseline, future, and future NZE scenarios. From the figure, we see some
reductions of electricity usage from the baseline to the future scenario
because of the adoption of EEMs. The largest relative reduction was
within multifamily buildings (28%), and the smallest was in the mixed
retail and restaurant building (7.5%). According to Denver’s NZE im-
plementation plan for new buildings and homes [1], the EUI values for
2030 are projected to be 170 kW h/m? - yr for large hotels, 117 for large
offices, 88 for standalone retailers, and 73 for mid-rise apartment build-
ings. Therefore, the net EUI values in the future scenario generally cor-
respond to those projected in Denver’s plan.

Looking at the future NZE scenario, where extra ground PV panels
were added to help achieve building NZE, we see that in every build-
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Fig.7. Net EUI by building type (Scenarios 2b, 3, and 4). In the figure, the boxes
for the EV scenario overlap with those of the EV & battery scenario. Adding EV
loads to the buildings not only increases the building mean EUI values but also
enlarges the range of EUIs, especially in multifamily and retail buildings.

ing type, the annual net EUI is around zero. The multifamily buildings
have the smallest net EUI values, at around -19 kW h/m? - yr. This indi-
cates that the annual electricity consumption of the community can be
balanced out by behind-the-meter PV generation. The community also
makes profits from selling the surplus generation of renewable energy
back to the grid, which will be discussed in Section 4.4.

Figure 7 compares the net EUI values by building type across future
NZE, EV, and EV & battery scenarios. In the figure, the boxes for the
EV scenario overlap with those of the EV & battery scenario. This is be-
cause batteries work as temporal arbitrage here and did not affect the
total building energy consumption too much, where a charging and dis-
charging efficiency of 0.94 was assumed. We notice from the figure that
adding EV loads to the buildings not only increases the building mean
EUI values but also enlarges the range of EUISs, especially in multifamily
and retail buildings. This can be attributed to the fact that the building
EV profiles modeled in this work are only correlated with factors such
as the building type and charging behavior, but are independent of the
floor area. Hence, the same EV loads were added to each building of the
same type, despite varying floor areas across individual buildings. This
has led to much-scattered distributions of net EUI values. In our case
study community, the multifamily and retail buildings have relatively
smaller floor areas. This caused their maximum net EUI values to be
larger than other building types.
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Fig. 8. Monthly peak demand by building type (Scenarios 1, 2a, and 2b). The adoption of EEMs has limited impact on the buildings’ peak demand. However, adding

ground PV panels in the future NZE scenario further reduces peak demand.
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Fig. 9. Building power demand curves for selected buildings on a winter day
(January 1, Scenarios 1, 2a, and 2b). The figure shows uniform load reductions
throughout the day comparing the baseline and the future scenario. In future
NZE scenario, peak PV power generation occurs mainly around noon or early
afternoon, which does not align with the building peak load hours.

4.2. Peak demand

The boxplot of the monthly peak demand by building type for the
baseline, future, and future NZE scenarios can be found in Figure 8.
From the figure, we notice that the adoption of EEMs has limited im-
pact on the buildings’ peak demand. This is likely attributable to the
fact that our chosen baseline is already highly energy efficient. Adding
ground PV panels in the future NZE scenario further reduces peak de-
mand. However, the peak demand reduction effect is much less than
its net EUI reduction effect as shown in Figure 6. Comparing the future
NZE and baseline scenarios, the largest peak demand reduction lies in
the multifamily buildings (26.3%), and the smallest in office buildings
(11.4%).

Figure 9 plots sample curves of the grid power draw of selected build-
ing types on a winter day. The figure further explains the reason for the
limited peak demand-shaving impact of the adopted EEMs. From the fig-
ure, we generally see uniform load reductions throughout the day when
comparing the baseline and the future scenario. However, such uniform
reduction trends have fairly limited impact on the building peak load,
which occurs in the early morning around 7 a.m. when people get up or
arrive at the workplace and the building energy systems start to operate.
Likewise, peak PV power generation occurs mainly around noon or early
afternoon, which also does not align with the building peak load hours.
We note that no building load control has been considered as an EEM in
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Table 5

Average monthly peak demand values in the future NZE scenario in kW and
relative changes in percentage in future NZE with EV and future NZE with EV
and battery by building type.

Building type Future NZE EV EV & battery
Full service restaurant 428 6% -14%
Large hotel 317 34% -11%
Mixed office and retail 585 3% -22%
Mixed retail and restaurant 1397 2% -15%
Multifamily 258 43% -15%
Office 362 6% -29%
Outpatient 182 16% -26%
Retail 219 8% -22%
Secondary school 637 4% -21%
Strip mall 590 3% -25%

this paper, which could have limited the peak shaving effect. The grid
power draw of the rest building types can be found in Figure A.2.

Next, the impact of adding behind-the-meter EV loads and batteries
on building peak demand is shown in Figure 10. Adding EV loads to the
buildings increased the average monthly peak demand by 15-110 kW,
depending on the building type. Furthermore, adding batteries has re-
duced building peak demand by around 20% due to load shifting effects.
A demand curve plot for all the building types comparing Scenarios 2b,
3, and 4 can be found in Appendix A.

Table 5 lists the detailed average monthly peak demand values and
relative changes by building type to provide more insights. We note that
the relative peak demand changes of the EV scenario are calculated rel-
ative to the future NZE scenario, and those of the EV & battery scenario
are calculated relative to the EV scenario. From the table, the largest and
smallest peak demand changes occurred with the multifamily building
(43%) and the mixed retail and restaurant building (2%), respectively.
Given the EV load profiles of the two building types are of a similar
scale, the differences in the relative changes are mainly caused by the
deviations of the original building loads. Further, the addition of bat-
teries helped reduce the peak demands by 11%-29%. This exceptional
peak demand reduction effect can be partially attributed to the peak de-
mand charges in the utility rates, which will be discussed in detail in
Section 4.4.

4.3. Carbon emissions
Figure 11 depicts the annual total carbon emissions by building type.

We generally see very similar trends across different scenarios and build-
ing types. For instance, a reduction of 7%-24% is seen from the baseline
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Fig. 10. Monthly peak demand by building type (Scenarios 2b, 3, and 4). Adding EV loads to the buildings increased the average monthly peak demand by 15-110
kW. Adding batteries has reduced building peak demand by around 20% due to load shifting effects.
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Fig. 11. Mean annual carbon emissions by building type. A reduction of 7%-24% is seen from the baseline to the future scenario due to the adoption of EEMs. There
exists a larger reduction of 19%-42% from the future scenario to the future NZE scenario. Adding EV has led to an increase in emissions compared to scenarios

without internal combustion engine vehicles.

to the future scenario due to the adoption of EEMs. Then, there exists
a larger reduction of 19%-42% from the future scenario to the future
NZE scenario. This is attributable to the extra ground PV panels, which
reduce the community’s dependence on the power grid for electricity
during the day. Compared to emission-free clean PV power generation,
the grid power generation mix in the United States is dominated by
natural gas fired power plants, which have higher carbon intensities.
Finally, adding EV loads introduces a minor rise of emissions (except
in multifamily buildings) that is later mitigated to some extent by the
batteries.

Among all the building types, the carbon emissions of multifamily
buildings showcase a different trend across the scenarios. Based on the
barplot, the emissions after introducing EV loads even exceed those of
the baseline scenario'. Given that the total energy usage of the EV sce-
nario did not exceed the baseline (see Figures 6 and 7), this can be
attributed to the fact that EV charging in multifamily buildings typi-
cally happens overnight, as illustrated by Figure 12, when there is no
PV power and the carbon emission intensity of the grid power is rela-
tively high (see Figure 5). Though adding batteries can shift the clean
energy from the daytime to the nighttime, in our case, the influence has
been limited because other household loads also occur at night.

4.4. Energy costs

The energy costs considered in this work consist of the fixed charge,
energy charge, demand charge, and credits obtained from renewable en-
ergy generation. Figure 13 plots the energy and demand charge, as well
as the renewable (i.e., PV) credits by building type across different sce-
narios. In the figure, the PV credits incorporate both the REC payment
and the excess PV payment as indicated in Table 4. In all building types,
the demand charge constitutes a larger portion of the total cost than the
energy charge. Across various scenarios, the energy charge reduction
seen in the future NZE scenario as compared to the future scenario is
much more prominent than the corresponding reduction in the demand
charges. This is consistent with the limited peak demand shaving effect
of extra PV panels discussed in Section 4.2. Further, though annual NZE

! The baseline scenario and scenarios 2a, 2b do not model any internal com-
bustion engine vehicle emissions. If those were modeled, the trend shown in this
plot should be different.

was achieved and total PV generation offsets total energy consumption
for each building, the PV credits obtained cannot cancel out the energy
charge under the current local utility rate structure.

More specifically, to analyze the cost savings of the extra ground PV
panels, we compare the future NZE scenario with the future scenario.
19.5%-40.0% of total energy costs were reduced, among which about
46% was attributed to the energy charge reduction, 16% to the demand
charge, and 38% to the PV credits. However, it is worth noting that the
land space required to host the extra ground PV panels, as well as their
capital and maintenance costs, play an important role in the economic
analysis of such renewable investments. This work focuses on the oper-
ational cost analysis and thus has not included the upfront capital costs
in the analysis of the EEMs and DERs.

Moreover, the operational energy cost saving effect of batteries can
be illustrated through comparing the EV and EV & battery scenarios.
The total utility bill cost savings from the installation of the batteries lies
between 8.1%-27.2%. The largest cost savings comes from the reduction
in demand charge, which accounts for about 98% of the total savings
from batteries. Almost no change of PV credits was seen between the
two scenarios as the REopt optimization determined to export all the
surplus PV generation and use the grid power to charge the batteries.

4.5. Community aggregated performance

This subsection discusses the community aggregated performance
and the contribution of each building type regarding the annual
energy consumption, annual carbon emissions, and demand curve.
Figure 14 compares the community annual energy consumption by
building type in the baseline scenario (Scenario 1) and the future NZE
scenario with EVs and batteries (Scenario 4). In the baseline scenario,
the largest energy-consuming type is the mixed retail and restaurant
building. However, in the future scenario, the multifamily building be-
comes the top energy consumer. This is because, with the help of the
rooftop and ground PV panels, all buildings achieved annual NZE in Sce-
nario 2b by feeding surplus PV generation back to the grid. After adding
the EV charging loads in Scenarios 3 and 4, the surplus PV generation in
multifamily buildings cannot offset the large EV charging loads, while
other buildings still can. This has significantly increased the net energy
consumption of the multifamily buildings.
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Fig. 12. Heat map of the annual EV charging load for a selected multifamily
building. The figure shows that EV charging in multifamily buildings typically
happens overnight.

Figure 15 plots the community annual carbon emissions by building
type. Unlike the annual net energy, we see a similar distribution of emis-
sions in the baseline scenario and the future NZE scenario with EVs and
batteries. This can be attributed to the fact that carbon net-metering was
not considered in the calculation of annual carbon emissions. Therefore,
for the buildings that are back-feeding to the grid, the exported clean en-
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Fig. 14. Community annual net energy consumption by building type. In the
baseline scenario, the largest energy-consuming type is the mixed retail and
restaurant building. However, in the future scenario, the multifamily building
becomes the top energy consumer.

ergy cannot offset the emissions caused by the building loads. Regarding
the multifamily building, which is the largest energy consumer, they are
not impacted by the net-metering scheme because they are not export-
ing as much PV energy as the other building types. This implies that for
future NZE communities, enabling carbon net-metering will further re-
ward energy prosumers, especially when large EV loads or carbon price
is present.
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Fig. 13. Mean annual operational energy costs by building type. In all building types, the demand charge constitutes a larger portion of the total cost than the energy

charge. The negative values represent the obtained renewable credits.
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Fig. 15. Community annual carbon emissions by building type. There is a simi-
lar distribution of emissions in the baseline scenario and the future NZE scenario
with EVs and batteries.

5. Conclusion

In this work, we demonstrated a streamlined workflow for model-
ing large mixed-use, all-electric communities. A community located in
Denver with 148 buildings was modeled and simulated in five scenarios
using the workflow. Through the case study, we discussed the impact of
adopting EEMs and DERs (i.e., PV, EV, battery) in a future all-electric
community. Meanwhile, a comprehensive evaluation of the energy, car-
bon emissions, and peak demand was conducted. The proposed work-
flow and findings can be applied to general mixed-use, all-electric com-
munities to inform their design, retrofit, and analysis.

Based on the simulation results, we found that adding EEMs tends to
cause fairly uniform reductions in the building loads throughout the day,
while adding PV panels mainly reduces the loads around noon. Both of
the aforementioned factors lead to fairly limited impact on the building
peak load. Additionally, although the annual building-level NZE goal
was achieved in one scenario, the total PV credits obtained from local
generation cannot fully offset the energy charge under the current local
utility rate structure.

In terms of the impact of large-scale adoption of DERs, adding EV
loads would greatly impact building EUIs, especially those with smaller
floor areas. Further, the carbon emissions in multifamily buildings had
a noticeable increase due to the overnight EV loads. The addition of
batteries helped reduce peak demand by 11%-29%. This peak demand
reduction effect contributed significantly to the decrease in total energy
costs, as the demand charge is proportionally larger than the energy
charge under the current utility rates. Finally, for future NZE commu-
nities, enabling carbon net-metering will help further reward energy
prosumers, especially when large EV loads or carbon price is present.

This work has the limitation of modeling the EV loads with static pro-
files, which are only correlated with factors such as the building type
and charging behavior, but are independent of the building floor area or
occupancy status. Also, no building load shifting or EV load control was
implemented, which could potentially further reduce the peak demand
and energy costs by aligning the loads with PV production. Finally, be-
cause EnergyPlus prototypical building models of various types were
adopted, the same default building schedules were simulated for each
type. This could have led to a higher modeled community peak demand
than would be expected. Future research directions include:

» Implementation of stochastic building occupancy schedules to mimic
more realistic building load shapes.

+ Adoption of dynamic modeling of EV loads based on building infor-
mation and occupancy status.
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« Introduction of building and EV load control, as well as thermal en-
ergy storage, to enable higher load flexibility and better coordination
with PV and the grid.

» Expansion of the research topic to involve PM2.5 emissions of
all-electric communities and the resulting regional air quality and
health aspects.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper

Acknowledgements

This work was authored by the National Renewable Energy Labo-
ratory, operated by Alliance for Sustainable Energy, LLC, for the U.S.
Department of Energy (DOE) under Contract No. DE-AC36-08G028308.
Funding provided by NREL’s Laboratory Directed Research and Devel-
opment program. The views expressed in the article do not necessarily
represent the views of the DOE or the U.S. Government. The U.S. Gov-
ernment retains and the publisher, by accepting the article for publi-
cation, acknowledges that the U.S. Government retains a nonexclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the pub-
lished form of this work, or allow others to do so, for U.S. Government
purposes.

Appendix A

Mixed office and retail (Future NZE)
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Fig. A.1. Building power demand curves for the rest seven building types on
a winter day (January 1, Scenarios 1, 2a, and 2b). This figure complements
Figure 9.
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Fig. A.2. Building power demand curves for all the building types on a winter
day (January 1, Scenarios 2b, 3, and 4).
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