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Main Reliability Challenges in Evolving Grid

* Degrading grid strength with high levels of inverter-based
resources (IBRs):
* Impact on stability
* Impact on transient performance
* Impact on protection.

* Degrading synchronizing torque, reduced inertia
* What provides grid forming (GFM)?
e Reliability services, wide-area stability services

e Resilience and black-start with GFM IBRs:
* What is providing inrush current?
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Importance of Grid Strength

A power system with low system strength is expected to exhibit the following behavior:

Undamped voltage and power oscillations

Degradation in the IBRs’ fault ride-through capabilities

Protection system malfunctioning due to reduced levels of short-circuit current
Longer voltage recovery after voltage faults and disturbances

Larger transient voltage steps caused by switching capacitor or inductor banks
Dynamic voltage control stability issues

Increased levels of harmonic distortion in the grid

Deeper voltage dips and higher overvoltages during transients

More severe transient characteristics of the system (much deeper or much higher voltage events).
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Hybrid Concept

. Super flexible AC transmission system (SuperFACTS)
. Combination of mature technologies a scalable module under
central control
. Hybrid approach:
. SuperFACTS = SC + GFM BESS + Smart integrated
control
. Research project funded by U.S. Department of Energy
(Office of Electricity Transformer Resilience and
Advanced Components program).

. What makes it different from prior battery energy storage
system (BESS)-synchronous generator hybrid work?

. Prior work was focused on limited sets of services (gas-
battery peakers) of synchronous condensers with grid-
following (GFL) BESS.*

. SuperFACTS has controls that can provide a full
spectrum of grid services.

. Scalability:
. Grid strength, inertia, and fault current
. Energy services and resilience services
. Reliability services
. Black-start services.
* M. Nuhic and G. Yang, “A Hybrid System Consisting of Synchronous Condenser and Battery —

Enhanced Services in Weak Systems,” presented at the 2019 IEEE PES Innovative Smart Grid
Technologies Europe, September 29, 2019.
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SuperFACTS Hybridization Benefits

Challenge _ Synchronous Condensers SuperFACTS

Various forms of grid services
based on active power control

Inertial response Synthetic, depends on BESS Yes, real rotating inertia Enhanced
operation point

Steady-state and dynamic reactive [RiEC[VEL[E]4]d 2-quadrant (limited by stability and  Enhanced
compensation, voltage support thermal constraints)

Grid strength enhancement No Yes Yes
Overcurrent capability No Yes (up to 300% for 2—3 seconds) Yes

No Yes, very high Yes
Black-start capability Yes (only for BESS with GFM No Yes
inverters)
Transient and fault ride-through Yes (can control levels of fault Yes (no control over levels of fault Enhanced
performance current within inverter rating) current)
Controls to mitigate undesirable Yes Yes (but limited) Enhanced
interactions with other
components on the grid
Moderate Moderate Lower (compared to same

performance by BESS or condenser
only) NREL | 5




Synchronous Condenser Limitations

Simplified model of synchronous machine
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Reactive Capability of Small Synchronous Generator
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SuperFACTS Conceptual Diagram
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SuperFACTS Use Cases

Provision of combined real and configurable virtual inertias
Provision of synchronizing torque
Short-circuit current contribution
Increased grid strength and short-circuit ratios
High overcurrent capability (several seconds)
Grid topology-independent smart voltage recovery contributor/flexible fault response provider
Provision of enhanced voltage and reactive power control with wide dynamic ranges
Provision of all forms of active power controls
Provision of dispatchable operation and flexibility services for variable generation
Provision of all essential reliability services (better and faster than conventional generation)
Black-start and stand-alone operation
Enabler for economic renewable technology hybridization (can be colocated with solar and wind generation)
Provision of active and reactive power flow controls
Full 4-quadrant reactive power capability
High bandwidth for power system oscillations damping
Superior transient and grid fault ride-through performance
° Control of negative-sequence voltages for phase rebalancing might be possible for advanced BESS inverters.
Less than 1-ms response times for damping instabilities caused by control interactions between inverter-coupled variable power generation and the grid
Stabilizing power systems with any desired ratios between GFM and GFL inverters
Fully scalable and modular topology for grid-connected, microgrid, and stand-alone operation
° The same SuperFACTS building blocks will allow deployment in numbers to achieve the desired design parameters (MVA capacity, MWh capacity,
inertia, short-circuit ratio and grid strength levels, ability to provide overcurrent during system faults and inrush currents during black starts, etc.).
° The same basic SuperFACTS building blocks can be used to provide services at the transmission, sub-transmission, and distribution levels, can help
operating microgrids and islanded grids, and can provide black-start services for all of the above.
Can be controlled for electric loss minimization in transmission and distribution grids.

NREL |
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Retiring coal and
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GFM BESS Model with Current Limiting
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Stability Analysis Using Impedance Scan Toolbox
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* Impedance scans are performed for different droop settings to
understand the interactions between BESS and synchronous
condensers.

e Extended to a 39-bus system for evaluating stability in the presence
of multiple SuperFACTS devices.
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Impedance Analysis for Droop Gain: 50 mHz/MW

BESS DQ Admittance Network DQ Admittance System Dominant Poles
& 60 ] F . o o o
%.ao /\ . /\-‘- %20 Jwr 0 ’//\ P
= (]
2 = 20
T 10° 10! 10° _ 0 10° 10? N 0.57]
F 200 200 2 I
] g 200 200 L
g o 0% g OMWF T M-r 0
i W i v
& 200 b am 2 200 200 <
107! 10° 107 10° o 10° 10° > 0 * - -
40 = et ©
S35 o 60 £l v c
E’.:‘:: / 30/ éso \ ZUA\’\[\V %
L e mma il e L 20 S ¥ £
10! 1w0? 10 10° = 10° 10° — 05
& 200 200 ® 200 e 200
) g W» P - -
2 0 0 Z 0 01
§ — % o | I | 3
P IR et S ittt £ 200 - 200 . 0.8 0.6 0.4 0.2 0
107 10 107 10 10 10
Frequency (Hz) Frequency (Hz) Frequency (Hz) Frequency (Hz) Real AXiS
Red cross: measurements Black lines: analytical fitting Blue: without BESS; Red: with BESS

e Result: BESS with droop of 50 mHz/MW does not affect the synchronous
condenser mode at 0.7 Hz.
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Impedance Analysis for Droop Gain: 5 mHz/MW
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e Result: BESS with droop of 5 mHz/MW damps the oscillations at 0.7 Hz.
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Islanded Operation: 4-MW Load Step

BESS Droop: 50 mHz/MW BESS Droop: 100 mHz/MW BESS Droop: 5 mHz/MW
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Black Start of Renewable Plants
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Black-Start Use Case

Self black start:

e Soft start by GFM BESS.
Energizing lines and loads
Staring PV and wind generation

* |slanded operation.
Synchronization with grid.
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Oscillations in Modified IEEE 39-Bus Test Bed
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Case: Drop of 500-MW Generation, 830-MW

Wind, 1,000-MW PV

39-bus Reulsts
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System Separation, Wind + Solar, SF Systems

Deployed in Four Buses
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REACTIVE POWER (MVAR)

SuperFACTS Test Platform
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Conclusions and Future Plans

Proposed SuperFACTS concept:

— Useful tool for system operators and utilities to
consider for addressing reliability challenges in IBR
grids.

— Provides scalable building blocks to address many
integration and reliability challenges.

Validation and demonstration testing in Fiscal
Year 2022 at NREL:

— Testing under grid fault conditions.
SuperFACTS allocation optimization problem

Levelized cost of energy and production cost
analysis.

NREL test site. Photo by NREL
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Background Slide
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