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ABSTRACT: The [8Fe-7S] P-cluster of nitrogenase MoFe protein mediates electron transfer from nitrogenase Fe protein during
the catalytic production of ammonia. The P-cluster transitions between three oxidation states, PN, P+, P2+ of which PN↔P+ is critical
to electron exchange in the nitrogenase complex during turnover. To dissect the steps in formation of P+ during electron transfer,
photochemical reduction of MoFe protein at 231−263 K was used to trap formation of P+ intermediates for analysis by EPR. In
complexes with CdS nanocrystals, illumination of MoFe protein led to reduction of the P-cluster P2+ that was coincident with
formation of three distinct EPR signals: S = 1/2 axial and rhombic signals, and a high-spin S = 7/2 signal. Under dark annealing the
axial and high-spin signal intensities declined, which coincided with an increase in the rhombic signal intensity. A fit of the time-
dependent changes of the axial and high-spin signals to a reaction model demonstrates they are intermediates in the formation of the
P-cluster P+ resting state and defines how spin-state transitions are coupled to changes in P-cluster oxidation state in MoFe protein
during electron transfer.

Nitrogenase is a two-component enzyme that catalyzes the
conversion of dinitrogen to ammonia. Under ideal

reaction conditions, the Mo-dependent form of nitrogenase,
composed of Fe protein and MoFe protein, catalyzes N2
reduction to ammonia according to eq 1:1

+ + +

→ + + +

− +N 8e 8H 16ATP

2NH H 16ADP 16P
2

3 2 i (1)

During turnover, the electrons required for N2 reduction are
transferred from Fe protein to MoFe protein, which is an α2β2
tetramer that coordinates two sets of unique metal clusters.
The [8Fe-7S] P-cluster functions in electron transfer with Fe
protein, and the [7Fe-9S-1Mo-C-Homocitrate] iron−molyb-
denum cofactor (FeMo-co) functions as the site of N2
reduction.2

One of the unique aspects of how nitrogenase catalyzes
ammonia production is the electron transfer process.3,4 In the
catalytic cycle, the P-cluster forms a metastable intermediate
oxidation state, P+ ([7FeIIFeIII-7S]+1), that is rapidly reduced
(k > 1700 s−1)3 during electron transfer. In addition to P+, the
P-cluster forms two stable oxidation states, PN ([8FeII-7S]0 and
P2+ ([6FeII2FeIII-7S]+2) (Figure 1).5 Transitions between P-
cluster states involve extensive structural changes, including a
switch in Fe-coordination of the central sulfide (S1) that
bridges the two [4Fe-3S] subclusters, and amide nitrogen
coordination to Fe5 by α-88 cysteine (α-88Cys) and β-188
serine (β-188Ser) oxygen coordination to Fe6. Recently, the X-
ray structure of MoFe protein was solved with the P-cluster
poised in the P+ state, with an intermediate structural
arrangement between P2+ and PN (Figure 1).6 In the P+

state, the S1 sulfide is pentacoordinate and β-188Ser
coordinates Fe6. The observation of structural changes in the
MoFe protein P-cluster has been incorporated into conforma-
tional gating7 and mechanical coupling8,9 electron transfer
models. The model predicts that motions near the P-cluster
and β-188Ser are coupled to “switch regions” in the Fe protein
that steer structural interactions within the nitrogenase
complex to enable electron delivery.9

The structural rearrangements of the P-cluster in different
oxidation states also coincide with changes in spin states and
EPR properties. P2+ is an integer spin state, likely S = 4, and
gives rise to an EPR signal at g = 11.8,10,11 whereas PN is an S =
0 spin state and EPR-silent. The P+ oxidation state has a
rhombic, S = 1/2 EPR signal at g = 2.05, 1.94, 1.81 that shifts
to g = 2.03, 1.97, 1.93 when β-188Ser is substituted by
Cys.12,13 Additional magnetic signals associated with the P+

oxidation state include an S = 1/2 signal with g = 2.00 and
1.89,13,14 and low-field S = 5/2 signals12,13 (Table S1).
Variations in P+ magnetic states have been observed in MoFe
protein under different redox titration conditions (Table
S2).13−15 Whether these states have a functional role in
electron transfer in MoFe protein remains unclear. Recently,
the structural and magnetic configurations of the P-cluster
oxidation states were shown to coincide with profound
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differences in the density of low lying electronic states,
implying there is a deeper relationship between the electronic-
structural properties of the P-cluster and its function in
electron transfer.10

Resolving the relationship between the magnetism and
structure of the P-cluster, most notably for the metastable P+

state, is important for elucidating a complete mechanistic
understanding of the P-cluster in the nitrogenase electron
transfer cycle. Herein, we address this goal by combining light-
controlled reduction of MoFe protein in complexes with
cadmium sulfide nanocrystals (CdS)16,17 with EPR to resolve
magnetic changes in the P-cluster during electron transfer that
arise from discrete electronic-structural intermediates in the
reduction of P2+ to P+.
An oxidized sample of nitrogenase MoFe protein was mixed

with mercaptopropionic acid capped CdS quantum dots
(Figure S1; see Supporting Information for details), and the
P-cluster P2+ oxidation state was verified by EPR (Figure S2).
The CdS:MoFe protein complexes were illuminated with a 405
nm LED at either 231 K or 263 K and then allowed to anneal
in the dark at 236 K or 263 K, respectively, to prevent further
light-driven reduction. By illuminating at subambient temper-
atures, the light-driven redox (i.e., electron transfer) process is
decoupled from temperature sensitive chemical (i.e., ligand
switching) steps during electron transfer and P-cluster
conversion from P2+↔P+. As shown in Figure 2A, illumination
at 263 K for 12 min resulted in reduction of the P-cluster
exemplified by loss of P2+ intensity (36%, Figure S2 and Table
S1). This change coincided with the appearance of an S = 1/2
rhombic signal at g = 2.05, 1.94, 1.81 (P+1.81, Figure 2A)

13,15,18

and an S = 1/2 axial signal with g = 2.006, 1.89 (assigned to
P+

1.89, Figure 2B).13,14 Dark annealing at 263 K for 20 min
(Figure 2A, green trace) led to complete loss of the P+

1.89
signal, and an increase in amplitude of the P+

1.81 (21%) and P
2+

(7%) signals (Table S1).
When illuminated at a lower temperature of 231 K for 15.5

min, reduction of the MoFe protein P-cluster led to a decrease
in the P2+ signal intensity (19%) and appearance of the P+

1.89
signal, whereas formation of the P+

1.81 signal was suppressed.
Rather, a low-field inflection at g = 6.54 (Figure 2D) appeared,
resembling other high-spin signals observed for MoFe protein
(Table S2, Figure S3). Rhombogram analysis and simulation of
the g = 6.54 signal (referred to as P+

6.54) indicates that it
originates from a S = 7/2 spin system with E/D ≈ 0.024 (D =
−3.2 cm−1) of the reduced P-cluster, where E and D19 are the
zero-field splitting parameters (see Figure S3 for details).
Dark annealing at 236 K of the CdS:MoFe protein

complexes illuminated at 231 K (Figure 2C) was used to
monitor relative intensities of P+ intermediates following light-
driven electron transfer to MoFe protein (Figure S4). EPR
spectra of CdS or MoFe protein alone, before and after
illumination and annealing, or of CdS:MoFe protein prior to
illumination, did not produce any detectable signal changes
(Figure S5). Simulations of the low-field regions using singular
value decomposition (SVD, Figure S6) and the high-field
region using EasySpin20 (Table S3, Figure S7) enabled time-
dependent changes in signal intensities of P+ intermediates
(P+

1.89, and P+
1.81 and P+

6.54) to be fit to reaction models
(Tables S4 and S5, Figure S8). The P+ signal intensity versus

Figure 1. MoFe protein P-cluster oxidation state structures for P2+,
P+, and PN. The α-88Cys (P2+↔P+) and β-188Ser (P+↔PN) ligands that
undergo redox-coupled coordination changes to the P-cluster are
shown. The P2+↔P+ transition involves exchange of the S1−Fe5
thiolate bond (gray arrow) and α-88Cys amide bond at Fe5 (blue
arrow) and proceeds via proton-coupled electron transfer (PCET),
where changes in bonding (box) may lead to different conformers
during electron transfer. The P+↔PN transition involves exchange of
the S1−Fe6 thiolate bond and β-188Ser serine hydroxylate bond at Fe6
(red arrow). Em = −309 mV at pH 8 for both transitions.11 PDB
Codes: P2+, 2MIN; P+, 6CDK; PN, 3MIN.

Figure 2. Illumination and EPR spectra of CdS:MoFe protein
complexes at 263 K and 231 K. (A) T = 263 K. Blue trace, oxidized
CdS:MoFe protein complexes. Red trace, after 12 min illumination at
263 K. Green trace, spectrum after incubation in the dark at 263 K for
20 min. (B) Illuminated (red trace) minus dark (green trace)
difference spectrum. Simulation (black dashed trace) using g = 2.006,
1.89 assigned to the S = 1/2, P+1.89 signal. Buffer pH = 7; EPR
conditions, T = 12 K, microwave power = 1 mW. (C) T = 231 K. Blue
trace, oxidized CdS:MoFe protein complexes. Red trace, after 15.5
min illumination at 231 K. (D) Low-field EPR spectrum showing the
high-spin, S = 7/2, g = 6.54 signal assigned as P+6.54. Sample pH = 7.
EPR conditions: (C) T = 12 K, microwave power = 1 mW, (D) T =
18 K, microwave power = 25 mW. Populations of EPR signals are
summarized in Table S1.
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annealing time best fit to a three-step reaction model as
summarized in eqs 2 and 3:

→ →+ + +P P P
k k

6.54 1.89 1.81
1 3

(2)

→+ +P P
k

6.54 1.81
2

(3)

The fit shown in Figure 3 gave relative values for rate
constants where k2 > k1 > k3 and predicts the high-spin P+

6.54

P-cluster intermediate originates together with P+
1.89 under

photochemical reduction of the P2+ state (Figure 4). In the
dark, P+

6.54 partitions rapidly between P+
1.89 or P+

1.81.

Therefore, a lack of P+
6.54 under illumination at 263 K (Figure

2) is likely due to more rapid conversion to either P+
1.81 or

P+
1.89 (k1 and k2 > k3) than at 231 K.
Dark annealing was performed over a range of 231 K to 245

K to obtain the temperature-dependence of k3 for the P
+
1.89↔

P+
1.81 step (eq 3, Figure S9, Table S6). An Arrhenius plot of ln

k3 vs 1/T gave a value of Ea = 24 ± 8.3 kcal mol−1. The value
suggests the P+

1.89↔P+
1.81 involves structural changes in MoFe

protein at the P-cluster. For example, reductive formation of
P+

1.81 from P2+ at 298 K is pH-dependent (Figure 1) and is
favored at pH ≈ 6 and nearly undetectable at basic pH (>8).15

Likewise, chemical oxidation of MoFe protein P-cluster from
PN↔P+ at 298 K led to formation of both P+

1.81 and P+
1.89,

13

with P+
1.89 intensity being maximal at pH 8.4.14 The two results

are consistent with formation of P+
1.89 being reversible and

both pH- and temperature-dependent.
In addition to analysis of the P+

1.89 intermediate, photo-
chemical reduction of MoFe protein at 231 K also enabled
assignment of the P+

6.54 high-spin state to a unique electron
transfer intermediate (Figure 3). In the P2+↔P+ reduction step,
the high-spin P+

6.54 state has two possible fates: direct
conversion to P+

1.81 (eq 3) where k2 > k3 or rapid conversion
to P+

1.89 followed by slow P+
1.89↔P+

1.81 conversion (eq 2).
Thus, the reaction model for the P-cluster P2+↔P+ conversion,
summarized in Figure 4, involves two spin-state isomer
intermediates. The observation of multiple electronic inter-
mediates associated with a redox step in the P-cluster is similar
to the observation of low-spin and high-spin S2 states of the
PSII oxygen evolving complex that arise from valence
isomerism in Mn−O−Mn coordination from different S2
conformers that function in the catalytic cycle of water
oxidation.21−25 The interconversion of P+

6.54↔P+
1.89 may

likewise arise from conformational isomerism in Fe-coordina-
tion to S1 (see Figure 1) that guide formation of P+ with
surrounding structural changes. Overall, the results from
combining low temperature photochemical reduction of the
MoFe protein with dark annealing reveal that formation of the
metastable P+ state, P+

1.81, involves intermediate spin states and
electronic configurations that occur with changes in P-cluster
coordination.
As established by kinetic and theoretical studies, correlated

motions within the nitrogenase complex during turnover have
an important function in enabling P-cluster mediated electron
transfer to be integrated with catalysis.7−9,26 As shown here,
during electron transfer, there are also discrete changes in P-
cluster magnetic structure that are linked to changes in
oxidation state. The EPR analysis and kinetic model are most
consistent with these magnetic states originating from different
P-cluster conformers during electron transfer and reduction of
P2+ to P+, which may function in the electron transfer
mechanism within the nitrogenase complex during ammonia
production.27
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A description of experimental procedures including
nanocrystal synthesis, EPR spectroscopy and simulation,
and reaction models. Figures of parallel mode and low-
field perpendicular mode EPR, a detailed analysis for the
high-field P+

6.54 signal assignment, and temperature-

Figure 3. Time-dependent changes of the P+ EPR signals intensities
in CdS:MoFe protein complexes. Initial (time = 0 min) P+ signal
intensities were collected at 231 K. Changes are plotted versus time
under dark annealing at 236 K. P+ signal intensities were determined
using EasySpin and SVD analysis (see Supporting Information,
Figures S6 and S7).20 Solid lines are fits of the experimental data to
differential equations; dP+

1.89/dt = k1[P
+
6.54] − k3[P

+
1.89], dP

+
1.81/dt =

k2[P
+
6.54] + k3[P

+
1.89], and dP+

6.54/dt = −(k1 + k2)[P
+
6.54] (Table S4).

Green, P+
6.54; blue, P

+
1.89; red, P

+
1.81.

Figure 4. Schematic representation of the P2+ to P+ conversion in low
temperature photochemical reduction of the MoFe protein P-cluster.
Photoexcitation at 231 K of CdS:MoFe protein complexes poised in
P2+ (left) leads to electron injection into the P-cluster and reduction
to a mixed population of P+ states; the S = 7/2 P+6.54 and S = 1/2
P+1.89, which are based on the reaction model (Figure 3), correspond
to distinct conformers (inset). Dark annealing at 236 K results in the
conversion of P+6.54 to either P+

1.89 (faster) or P+
1.81 (slower), and

conversion of P+
1.89 to P+

1.81. The rate constants of the conversion of
P+ states are obtained from fits shown in Figure 3 to a reaction model
in Table S4.
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