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Importance of charge self-consistency in first-principles
description of strongly correlated systems
Swagata Acharya 1✉, Dimitar Pashov 2, Alexander N. Rudenko 1, Malte Rösner 1, Mark van Schilfgaarde2,3 and
Mikhail I. Katsnelson 1

First-principles approaches have been successful in solving many-body Hamiltonians for real materials to an extent when
correlations are weak or moderate. As the electronic correlations become stronger often embedding methods based on first-
principles approaches are used to better treat the correlations by solving a suitably chosen many-body Hamiltonian with a higher
level theory. The success of such embedding theories, often referred to as second-principles, is commonly measured by the quality
of self-energy Σ which is either a function of energy or momentum or both. However, Σ should, in principle, also modify the
electronic eigenfunctions and thus change the real space charge distribution. While such practices are not prevalent, some works
that use embedding techniques do take into account these effects. In such cases, choice of partitioning, of the parameters defining
the correlated Hamiltonian, of double-counting corrections, and the adequacy of low-level Hamiltonian hosting the correlated
subspace hinder a systematic and unambiguous understanding of such effects. Further, for a large variety of correlated systems,
strong correlations are largely confined to the charge sector. Then an adequate nonlocal low-order theory is important, and the
high-order local correlations embedding contributes become redundant. Here we study the impact of charge self-consistency
within two example cases, TiSe2 and CrBr3, and show how real space charge re-distribution due to correlation effects taken into
account within a first-principles Green’s function-based many-body perturbative approach is key in driving qualitative changes to
the final electronic structure of these materials.
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INTRODUCTION
Density functional theory1–3 has been the workhorse for materials-
specific electronic structure calculations for the last half of the
century. Despite enormous success in many respects, it has
however some intrinsic limitations. First of all, although the
Hohenberg-Kohn theorem1 guarantees the existence of some
density functional providing an exact ground state energy at a
given charge density distribution ρ, its exact form is unknown. In
practice, this functional is considered as being local or almost local
(generalized gradient corrections), which is generally speaking an
uncontrollable approximation (for detailed discussions see the
review)3. Next, and even more importantly, the Kohn-Sham
quasiparticles2 are, generally speaking, just auxiliary quantities to
calculate the total energy and their direct comparison with
experimental spectroscopic information is hardly justifiable.
Although this is regularly done with partial excellent agreement,
there are numerous counterexamples starting from the famous
“gap problem” in semiconductors4.
An alternative approach is based on the concept of functionals

of the Green’s function. Luttinger-Ward5 and Baym-Kadanoff6

theorems respectively prove the existence of such functionals in-
and out-of-equilibrium. Conceptually, this way is more attractive
since the knowledge of an exact single- and two-particle Green’s
functions guarantees an accurate description of spectroscopic
properties of solids7. On the other hand, again, an exact form of
this functional is practically unknown and we have just its formal
definition in terms of infinite sums of skeleton free-leg dia-
grams5,6. If we are interested in a description of subtle
phenomena such as, e.g., the Kondo effect8 or nonquasiparticle

states in half-metallic ferromagnets9, the necessary sequence of
diagrams seems to be too complicated to be practically taken into
account for a complete first-principle realization.
Therefore, alternative embedding approaches were introduced

which combine first-principle calculations with model treatments
to describe the strong correlations within some low-energy
subspace. This way, weakly correlated states at high energies
are described within a low-level theory, while the strongly
correlated sub-space is treated in higher-level approaches. This
is popularly done by mapping the low-energy space to multi-band
generalized Hubbard models, which are afterwards often solved,
e.g., using dynamical mean-field theory (DMFT)10, a program
suggested and called ‘LDA++’ in ref. 11 and which we refer to in
the following as ‘second principles’. In many cases, this leads to a
dramatic improvement of description of strong correlation effects
in real materials with itinerant-electron magnets12 and heavy-
fermion compounds13 being two major successful examples (for
detailed reviews see refs. 9,14,15). Of course, DMFT16 is a local
approximation that takes only the energy dependence of
electronic self energy into account and completely neglects its
momentum dependence. However, the latter can be taken into
account via various beyond-DMFT diagrammatic approaches17,
rendering it a technical problem rather than a fundamental one.
Also the way how one can map the first-principle electronic
structure onto efficient Hamiltonians can be, in principle,
improved. The contemporary way is based on the so-called
constrained RPA (cRPA) approach18,19 but there are no principle
obstacles to improve it further if necessary.
A key impediment to second-principles approaches is, however,

that multiple energy scales are operative: the high-energy scales
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controlling low-energy fluctuations cannot be integrated out
without model assumptions. High-energy scales contain informa-
tion about chemistry and disorder specific to real materials. Yet
while first-principles theories contain this information, their
application to strongly correlated systems has been limited. In
weakly correlated materials, ‘first-principles approaches tend to
predominate because they rely on a minimum of model
assumptions, and are often predictive. This is not the case when
correlations are strong because standard methods, usually based
on extensions of density functional theory (DFT), lack the
sophistication to encapsulate the strong spin and charge
fluctuations, or the fidelity to characterize one-particle properties
near the Fermi level (which are essential to capture low-energy
excitations characteristic of correlated systems); nor are they
adequately equipped to generate the (two-particle) suceptibilities.
Even in weakly correlated cases, dynamical screening (perhaps the
most important many-body effect20) is not well treated by such
standard one-body descriptions21,22. The difficulties are even more
severe for spin fluctuations, where the characteristic energy scale
for excitations can be very small.
Models such as the Hubbard Hamiltonian do indeed contain,

within some region of parameter space, key many-body effects
such as the metal-insulator transition, pseudogap phases,
quantum criticality, and both conventional and unconventional
superconductivity. Thus, applications of this model has become
the canonical approach to characterizing such phenomena.
However, the limits to such an approach become apparent when
the high-energy scales that control parameters for the low-energy
ones are nontrivial. Furthermore, within any model Hamiltonian,
there are only two possibilities for the correlation effects to modify
the electronic structure, namely via the energy- and/or the
momentum-dependencies of the self-energy Σ. In first-principle
approaches there is, however, an additional possibility in form of
the charge self-consistency. That is, if the correlation effects can
essentially modify the charge distribution ρ, than one needs to
recalculate the model Hamiltonian at every iteration which makes
the mapping procedure very cumbersome or even practically
useless. Several DFT + DMFT works have been published23–32

where charge self consistency is performed and shown to make
quantitative and/or qualitative changes to the real space charge
distribution. However, owing to the lack of internal self-
consistency in choosing the correlated Hamiltonian, the correla-
tions parameters and double counting corrections, systematic and
unambiguous understanding of real space charge distribution has
been limited. Both DMFT and GW are functionals of the Green’s
function, and they can be made first-principle. In a recently
developed advanced G0W0 + DMFT approach33–36, authors have
surmounted many of the problems that hinder an internal self-
consistency and this is a very promising path for embedding
approaches to become truly first principles. Yet many correlated
systems, except for a few specific non-perturbative physical

situations (typically when spin fluctuations are strong), can be well
captured within a many body perturbative framework that is
completely free of ambiguities that plague most commonly
practiced second-principles approaches, and moreover, the
additional high-order correlations are redundant. The physical
question of fundamental importance, in such cases, is the
following: can a real-space charge redistribution due to correlation
effects be qualitatively important leading not just to a moderate
renormalization of the model parameters but also to a reconstruc-
tion of the electronic structure beyond any purely model
consideration? In this work we give a positive answer on this
question providing two examples, namely, TiSe2 and CrBr3.
We show in the following how different levels of theory

significantly modify the effective one-body potential through
changes in the electron density. To this end, we employ three
different levels of theory: the local-density approximation (LDA),
QSGW theory37–39, which, in contrast to conventional GW,
modifies the charge density and is determined by a variational
principle40, and finally an extension of QSGW, where the
polarizability needed to construct W is computed including vertex
corrections (ladder diagrams) by solving a Bethe-Salpeter equa-
tion (BSE) for the two-particle Hamiltonian41. We denote the latter
QSG bW , with the substitution W ! bW signifying that a BSE was
solved to compute W. In each cycle, the RPA polarizability is made
anew, which determines the RPA W. In each cycle the four-point
polarizability is recomputed from the (newly updated) static part
of W, to update bW . These first-principles approaches allow us to
carefully analyze the impact of the full charge self consistency
taking correlation effects with increasing diagrammatic precision
into account.
In terms of diagram classes taken into account QSGW and QS

G bW represent the forefront of currently available first-principle
approaches. As we show, it is essential that the first-principles
starting point is of sufficiently high fidelity to capture physics the
second-principles scheme cannot reach. First-principles schemes
are too cumbersome to handle more than a limited class of
diagrams, and it may still be true in general that second-principles
schemes may still be needed to capture physics outside the reach
of the first-principles scheme. Kondo effect, non-quasi-particle
states in weakly doped Mott insulators, Hund’s metals, and half-
metallic ferromagnets are archetypal examples. For TiSe2 and
CrBr3, however, QSGW/QSG bW adequately describes most physical
observables, both for its ground- and excited-states42,43 obviating
the need for higher-order spin-fluctuation diagrams, usually
accomplished by second-principles schemes. QSGW and QSG bW
don’t include spin fluctuation diagrams beyond Fock exchange,
but these extra diagrams are unimportant for TiSe2, being non-
magnetic and not para-magnetic, and CrBr3, an Ising ferromagnet
with a large local moment. The rest of the paper discusses the
crucial role of charge self-consistency in such materials, which
form an enormous proportion of the condensed matter systems,

Fig. 1 Ball-and-stick model of the crystal structure, and the Brillouin zone. a Bulk TiSe2 and b 1L-CrBr3. b1, b2, and b3 denote reciprocal
lattice vectors.
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where ‘second-principles’ approaches and corresponding ambi-
guities emerging from splitting of the all-electron problem into
impurity and bath can be avoided altogether. While self-
consistency may also be also important in some highly correlated
materials QSGW cannot address, an analysis of them is beyond the
scope of this paper.

RESULTS
Electronic structure of TiSe2
TiSe2 is a layered diselenide compound with space group P3m1
(Fig. 1). Below 200K, it undergoes a phase transition to a charge-
density wave (CDW), forming a commensurate 2 × 2 × 2 super-
lattice (P3c1) of the original structure. At the transition there is a
softening of the zone boundary phonon accompanied by changes
in the transport properties44–49.
A number of works have tried to determine the energy

dispersion around the Fermi level in both phases with a special
focus on the overlap/gap between the Se-4p valence band at Γ
and the Ti-3d conduction band at L, sometimes with discordant
results. In the high-temperature P3m1 phase, reports range from
predicting a semimetal (overlap < 120 meV) between these bands,
to an insulator with <60meV gap, depending on the study50–57. In
the CDW P3c1 phase there is a greater consensus, namely that the
gap is small and positive. In brief, upon cooling the system, the
CDW transition induces a distortion that either (slightly) increases
the existing gap or leads to a gap opening between these bands
with the gap for the CDW phase being ~100–150 meV50,53–55,57.
At high temperature, the positive or negative (i.e., overlap) indirect

gap between Se-4p and Ti-3d bands is larger than the negative gap
obtained with standard DFT calculations. In fact, DFT is not helpful
because it predicts a negative gap in both the undistorted and CDW
phases. Bianco et al.58 finds with LDA + U (U= 3.9 eV) a gap of
14meV in the P3m1 phase and 200meV in the CDW phase. LDA+U
is a kind of ‘second-principles’ method because the answer depends
U, which is not known. To check whether the negative gap is merely
an artifact of the model, Cazzaniga et al.59 considered a G0W0

calculation based on the LDA, and found a gap of ~200meV in the
high-temperature P3m1 structure.
We show here that while GW does indeed modify the

quasiparticle spectrum, the true situation is more complex. This
is because not only the eigenvalues but the density is significantly
renormalized relative to the LDA. This induces a corresponding
change in the effective potential through the inverse of the
susceptibility, χ−1(x1, x2)= δV(x1)/δn(x2). What appears to be
special about TiSe2 is that χ−1(1, 2) is large, and the correction
to the LDA density modifies the effective potential V in such a way
as to reduce the splitting between occupied and unoccupied
levels. This is very unusual: it has long been established that in the
vast majority of cases, GW based on the LDA continues to

underestimate the gap in semiconductors, albeit less so than
the LDA60.
These effects can only be found through self-consistency. QSGW

is ideally suited for this case, as its excitation spectra are generally
superior to fully self-consistent GW61–65. We find that the P3m1 is
indeed semimetallic, as is the case with DFT, but for different
reasons. We first revisit the GW calculation of the undistorted P3c1
structure, but with some modifications:

● we did not include a Z factor. There are various justifications
for this, most notably as an approximate way to incorporate
self-consistency in G with fixed W; see Appendix in ref. 60.
Omission of Z tends to widen bandgaps.

● the full matrix GLDAWLDA is used, in the QSGW sense38:

Σ0ij ¼
1
2

X
ij

ψij i Re½ΣðεiÞ�ij þ Re Σεj
�� �

ij

n o
ψj

� �� (1)

Panel (a) of Fig. 2 shows LDA and GLDAWLDA bands similar to the
GLDAWLDA calculation of ref. 59. Focusing on the LDA bands,
the highest occupied state at Γ turns red very close to Γ, indicating
the penetration of the Ti-derived conduction band into the
valence band (indicating a ‘negative’ direct gap). This is an artifact
of the LDA’s well known tendency to underestimate splittings
between occupied and unoccupied states, and GLDAWLDA

increases this separation (blue dashed lines) as it typically does.
The (indirect) GLDAWLDA gap of 300 meV is slightly larger than
ref. 59, in line with the unit Z factor used in the present calculation.
Figure 2b shows that self-consistency is crucially important in

TiSe2. The off-diagonal elements of Σ0ij modify the density n(r) and
thus V(r). A simple way to estimate ΔV is to make an ansatz that the
LDA adequately yields χ−1= δV/δn. For a modified n the potential
becomes VðnÞ ¼ Σ0 � VxcðnLDAÞ þ VxcðnÞ. n can be determined
self-consistently in the usual manner by adding a fixed external
potential Σ0− Vxc(nLDA) to the LDA Hamiltonian and allowing it to
go self-consistent. Remarkably, the gap becomes negative again, as
shown by the blue dashed lines in Fig. 2b, but the dispersion is very
different from the LDA. In particular the inverted gap character at Γ
disappears, which is topologically essential for a gap to form at Γ.
The quality of the ansatz can be checked by carrying out a
complete QSGW calculation. This is shown as solid lines in Fig. 2b,
and it demonstrates the ansatz is reasonable. As we will show
elsewhere, the experimentally observed low-temperature gap forms
as a consequence of the charge density-wave instability.

Electronic structure of CrBr3
Monolayer (1L) of CrBr3 is a two-dimensional ferromagnetic (FM)
insulator where the magnetic moments of monolayer CrBr3 align
normal to the plane (see Fig. 1 for the crystal structure). The
spontaneous magnetization persists in monolayer CrBr3 with a
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Fig. 2 Energy bands of the undistorted P3c1 structure. a Solid lines are LDA results, with red and green depicting a projection onto Ti and
Se orbital character, respectively. Blue dashed line shows shifts calculated in the GW approximation based on the LDA, as described in the text.
b Blue dashed line shows results from GW based on the LDA (same Σ as in panel (a)), with an extra potential ΔVLDA deriving from a ρ shift
computed from the rotation of the LDA eigenvectors. Solid lines are QSGW results, with the same color scheme as in panel (a).
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Curie temperature of 34 K66. Within a purely atomic picture, fully
determined by the crystal field environment and the Hund’s
multiplet structure67, the low-energy properties of the materials
and the magnetism should be entirely governed by Cr-d electrons.
However, the ligands, their masses, and the number of core states
they have, play an integral role in determining the low-energy
properties of CrBr3. In a separate work we discuss the role of the
ligands like Cl, Br and I in determining the crucial low-energy
properties of the entire class of 1L Chromium trihalides42. The Br-p
states strongly hybridize with Cr-d states in CrBr3. In the present
work we show how charge self-consistency at different levels of
the theory controls the nature of the eigenfunctions and the Br
component in the valence band manifold of 1L CrBr3.
We simulate the free standing 1L of ferromagnetic CrBr3 within

LDA, QSGW and QSG bW . We also perform a rigorous check for
vacuum correction to all relevant observables by increasing the
vacuum size from 20 to 80Å42. We check for convergence and
scaling of band gap and the dielectric constant ϵ∞ with vacuum
size as discussed in a separate work42. We observe that FM-1L
CrBr3 is an insulator with 1.3 eV of electronic band gap in LDA,
which is significantly lower than in QSGW yielding a gap of 5.7 eV.
The large enhancement in QSGW band gaps relative to the LDA is
standard in polar compounds37. Nevertheless, within the random

phase approximation (RPA), it has long been known that W is
universally too large68,69, which is reflected in an underestimate of
the static dielectric constant ϵ∞. Empirically, ϵ∞ seems to be
underestimated in QSGW by a nearly universal factor of 0.870, for a
wide range of insulators71,72 resulting in slightly overestimated37

band gaps. This can be corrected by extending the RPA screening
to introduce an electron-hole attraction in virtual excitations.
These extra (ladder) diagrams are solved by a BSE, and they
significantly improve the optics and largely eliminating the
discrepancy in ϵ∞

73. When ladder diagrams are also added to
improve W in the GW cycle (W ! bW), it significantly improves the
one-particle gap as well41,74. In detail, our QSG bW implementation
is self-consistent in the sense that the updated bW also updates Σ
and hence the cycle continues until bW , Σ and G converge
iteratively. This scenario is played out in CrBr3: the QSGW bandgap
is slightly larger than QSG bW bandgap, as seen in Table 1. Also we
converge the observables like band-gap and ϵ∞ by increasing the
size of the two-particle Hamiltonian within our self-consistent BSE
implementation. We find that for CrBr3 to converge both
observables we find it necessary to include 24 valence bands
and 14 conduction bands in two-particle Hamiltonian that we
solve within BSE. Twenty-four valence bands are effectively all
bands that emerge from hybridization between occupied Cr-d-t2g↑

Table 1. Fraction of spectral weight that the Halogen (Br) contributes to the total within an energy window of 0 (Fermi energy) to 0.6 eV below the
Fermi energy (bound states).

variants LDA QSGW QSG bW ΣQSGW[ρ(LDA)] ΣQSGW ½ρðQSG bWÞ� ΣQSG
bW ½ρðQSGWÞ�

% of Br 31 69 37 23 58 47

Cr-d 4.44 4.3 4.35 4.36 4.32 4.31

gap (eV) 1.3 5.7 4.65 6.0 5.7 4.69

The Cr-d occupancies, and the electronic band gaps with different choices of self consistent ρ and Σ are shown.
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orbitals (3 from each Cr, totaling 6 for 2 Cr atoms in the unit cell)
and Br-p orbitals (total 18 states from 6 Br atoms in the unit cell).
Fourteen conduction states comprise all the unoccupied Cr-d t2g↓
and eg↓ states. Larger sizes of the two-particle Hamiltonian do not
lead to any significant changes in the optical properties. The
convergence with respect to the number of states entering into
the two-particle is significantly slower than in simple sp
semiconductors, which reflects the Frenkel-like character of the
electron-hole attraction. We also converge the observables in
terms of (artificial) vacuum size.
Next we examine independent variations of the Hartree

potential, via the density ρ, and the self-energy Σ0. In the GW
case, Σ0 denotes the quasiparticlized version of the dynamical
self-energy Σ(ω); for the LDA it denotes the LDA exchange-
correlation potential. Unless stated otherwise, results are
presented with ρ and Σ0 internally self-consistent. Considering
this case at first, there is a remarkable difference between
the LDA and QSGW electronic band structures. Within LDA (see
Fig. 3a), the valence band maximum falls at the M point, while
within QSGW it shifts to the Γ point (see Fig. 3b). The
eigenfunctions are also quite different: the Br contribution to
the low-energy valence band manifold is significantly larger
within QSGW. At a still higher level of theory replacing W ! bW ,
a portion of the strong perturbation of the LDA band structure
is partially undone (Fig. 3c); shifts Br contribution to the
valence eigenfunctions in the direction of the LDA (see
Table 1). This is readily understood as a softening of W by
the ladder diagrams, as noted above. With the QSG bW , the

bandgap in CrBr3 is reduced slightly to 4.65 eV. The top most
valence band in QSG bW has a shape similar to LDA but the band
gap is approximately three times as large and the valence
bandwidth gets renormalized by a factor of ~2. The observa-
tion that QSG bW more closely resembles the LDA than QSGW is
remarkable and calls for further analysis.
To this end, we consider independent variations of ρ and Σ0 in

the following senses:

● ρ from LDA and Σ0 from QSGW, which we denote as ΣQSGW[ρ
(LDA)]. This scheme produces a valence band structure similar
to LDA (Fig. 3d), but with 6.0 eV electronic gap, close to the
QSGW gap of 5.7 eV. This clearly establishes the important role
of the density in determining the effective one-body
hamiltonian. As in the case of simple sp tetrahedral
semiconductors where the LDA density is already rather
good, the gap change is mainly controlled by the nonlocality
in the self-energy which the LDA misses75,76.

● ρ from QSG bW and Σ from QSGW, which we denote as
ΣQSGW ½ρðQSG bWÞ� (Fig. 3e). Now the valence band structure is
much closer to the QSGW band structure, although the top
most valence band is significantly narrowed. Also, the gap is
similar to QSGW gap (5.7 eV). This tells us that the Hartree and
many-body contributions cannot be decoupled. The addition
of electron-hole ladder diagrams should considerably improve
on the RPA’s known inadequacy in describing short-ranged
correlations77, and here we see that it affects both Hartree and
exchange-correlation parts.
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while contours of negative δρ are depicted by increasing strength in the change blue→ green.
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● ρ from QSGW and Σ from QSG bW , which we denote as
ΣQSG

bW ½ρðQSGWÞ� (bottom right panel of Fig. 3f). This shows in
a different way how the Hartree and correlation contributions
to the potential are interwined.

To further probe the role of the charge density, we plot ρ in the
planes passing through the Cr and Br atoms at different levels of
theory (Fig. 4). The density is plotted in real space, and the
abscissa and ordinate are defined by the inverse transpose of the
2 × 2 matrix composed of b1 and b2 (Fig. 1) with x and y defined
by aligning b2 parallel to y. In this notation, the M point is on the
b2 line, or the y axis. On the formation of the 2D crystal charge is
augmented on the Cr–Cr and Br–Br bonds, taking it away from the
atoms. QSGW accentuates this tendency (Fig. 4a, b), as does QS
G bW , but to a relatively lesser extent (Fig. 4c, d). However, although
the structure of the top most valence band seems similar
within LDA and QSG bW and different within QSGW and QSG bW ,
we show in Fig. 4e, f that the real-space ρðQSG bWÞ is much closer
to ρ(QSGW) compared to LDA. In short, QSG bW weakly modifies
and slightly localizes charges in comparison to QSGW. In a
separate work42 we have shown that there is a generic tendency
across this entire class of systems CrX3 to realize a very different
Cr-d-X-p hybridization within QSGW compared to QSG bW . We
added a small U of 1 eV to the Cr-d in QSG bW and allowed further
charge and Σ self-consistency and, curiously enough, it reproduces
the QSGW electronic band structure. Applying U shifts the Cr
majority spin down and the minority spin up and leads to an
increase is hybridization with the Br-p. The key takeaway is that
the QSGW solution is same as the self consistent solution from QS
G bW+U. This is expected as the ladder in the QSG bW screens the W
compared to QSGW. However, the addition of U to our self-
consistent QSG bW ability not only changes the one-particle
eigenvalues, also changes its eigenfunctions.

DISCUSSION
In conclusion, using a self-consistent first principles Green’s
function approach we show how correlations induce large
changes in both the one-body (Hartree) and many-body
contribution to the potentials, and that the two are inherently
intertwined. To demonstrate the effect we considered two
currently popular materials systems: a three-dimensional charge-
density-wave candidate TiSe2 and a two-dimensional ferromagnet
CrBr3. Such changes to the electronic wavefunction go way
beyond any weak renormalization of the parameters that
determine the electronic structure within a second-principles
approach and thus calls for the development of better first-
principles approaches that solve many-body Hamiltonians for real
materials with better approximations.

METHODS
One-particle basis functions
The one-body part of the calculations are performed in an augmented-
wave basis whose envelope functions consist of smooth Hankel functions
(convolutions of generalized Gaussian functions and Hankel functions).
This basis is a generalization of the classic LMTO method of Andersen78,
with more flexibility, better accuracy, and adapted to a full potential
framework. It also has a unique augmentation scheme that converges
much more rapidly with augmentation l-cutoff than conventional
augmented-wave methods. Details are presented in ref. 39. For all
calculations we used a uniform l cutoff of 4. For CrBr3 we used a basis
of spdfspd augmented envelope functions on each Cr, Br, Ti and Se site.
Smooth Hankel energies were set to −0.3 and −1.1 eV, and l-dependent
smoothing radii determined by fitting envelope functions to numerical
free atom wave functions. For Cr and Ti we also included 3p extended and
4d conventional local orbitals. Convergence studies wrt basis size are
presented in ref. 60 for several materials.

QSGW calculations
The Quasiparticle Self-Consistent GW approximation was introduced in
ref. 79 and our all-electron, augmented-wave implementation of it
described in detail in ref. 38. For the plane wave part, we used a coulomb
cutoff of 4.4 Ry; for the augmentation part, we used an l-cutoff of l= 8. The
frequency mesh had a spacing of 0.02 Ry for small frequency ω, the
spacing increasing linearly with ω.
The one-body calculations for the kinetic energy, band structure, and

charge density were performed in a 16 × 16 × 16 (TiSe2) and 16 × 16 × 1
(CrBr3) k-mesh while the (relatively smooth) dynamical self-energy Σ(k) was
constructed using a 8 × 8 × 8 (TiSe2) and 6 × 6 × 1 (CrBr3) k-mesh and Σ0(k)
extracted from it. For each iteration in the QSGW self-consistency cycle, the
charge density was made self-consistent. The QSGW cycle was iterated
until the RMS change in Σ0 reached 10−5 Ry. Thus the calculation was self-
consistent in both Σ0(k) and the density. Numerous checks were made to
verify that the self-consistent Σ0(k) was independent of starting point, for
both QSGW and QSG bW calculations; e.g., using LDA or Hartree-Fock self-
energy as the initial self energy for QSGW and using LDA or QSGW as the
initial self-energy for QSG bW .

Self-consistent ladder-BSE, QSG bW , calculations
For the present work, the electron-hole two-particle correlations are
incorporated within a self-consistent ladder-BSE implementation41,73 with
Tamm-Dancoff approximation80,81. The effective interaction W is calcu-
lated with ladder-BSE corrections and the self energy, using a static
vertex in the BSE. G and W are updated iteratively until all of them
converge and this is what we call QSG bW . Ladders increase the screening
of W, reducing the gap besides softening the LDA→ QSGW corrections
noted for the valence bands.
For CrBr3, we checked the convergence in the QSG bW band gap by

increasing the size of the two-particle Hamiltonian. We increase the
number of valence and conduction states that are included in the two-
particle Hamiltonian. We observe that for all materials the QSG bW band gap
stops changing once 24 valence and 14 conduction states are included in
the two-particle Hamiltonian.

DATA AVAILABILITY
All input/output data can be made available on reasonable request. All the input file
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the tutorials available on the Questaal webpage https://www.questaal.org/get/.

CODE AVAILABILITY
The source codes for LDA, QSGW, and QSG bW are available from https://www.
questaal.org/get/under the terms of the AGPLv3 license.
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