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a b s t r a c t 

Residential customers use more than one-quarter of the electricity in the world. Optimally managing home energy 

consumption is an effective way of easing the operational challenges facing the electric grid with increasing solar 

photovoltaics (PV). This paper studies the impact of the future proliferation of home energy management systems 

(HEMS) in the presence of PV on large-scale distribution systems. First, we present a stochastic HEMS model 

that minimizes residential customers’ thermal discomfort and energy costs under uncertainty. The HEMS model 

schedules the optimal operations of residential appliances in the presence of PV within a mixed-integer linear 

programming-based model predictive control framework that links the proposed HEMS to a quasi-steady-state 

time-series simulation tool. Extensive simulations are conducted for a stand-alone residential home using two 

tariff structures and for 1977 homes on an 8,500-node distribution feeder. Simulation results quantify the impact 

of the future proliferation of HEMS on the large-scale distribution system with PV. 
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. Introduction 

In 2021, more than one-quarter of the electricity in the world is con-

umed in the residential sector [1] . A home energy management system

HEMS) is one of the most effective tools to monitor the energy usage

f smart appliances and subsequently sending the control commands to

ach controllable appliance for energy cost savings and peak load re-

uction. 

HEMS related research has been focused on developing algorithms

nd mathematical approaches to effectively reduce peak demand, en-

rgy charges, and the carbon footprint of residential buildings while

aintaining an acceptable level of comfort for the occupants [2] . A cou-

le of deterministic optimization models have been studied. An energy

cheduling model was presented in [3] , in which residential consumers

ptimally schedule their electricity consumption, generation, and stor-

ge in a dynamic pricing environment. An intelligent heating and air-

onditioning scheduling method was proposed in [4] to address cus-

omer convenience and energy cost while considering the characteristics

f the thermal appliances. In [5] , an efficient power scheduling scheme

or electric appliances was determined by combining real-time electric-

ty pricing and inclining block rates; the proposed approach reduced

oth the electricity cost and the peak-to-average ratio. In [6] , response
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atigue phenomenon was considered in HEMS models to prevent con-

umers from getting tired of making decisions based on different tariffs

nd electricity usage. A HEMS-based, real-time control system that con-

rols the schedules of appliances for demand response was proposed in

7] . An approximate dynamic programming algorithm was proposed in

8,9] to solve the HEMS problem with significant improvement in com-

utation time while maintaining acceptable solution accuracy. In [10] ,

 human-centric smart HEMS that integrates ubiquitous sensing data

rom the physical and cyber layers to discover the patterns of power

sage and cognitively understand the behavior of residents was pro-

osed. In [11] , recent studies on residential building energy manage-

ent were reviewed. It has been found that building energy manage-

ent can help the grid improve stability by optimizing flexible loads as

 result of the advanced technologies of smart sensing, smart metering,

mart appliances, electric vehicles and energy storage. In [12] , a multi-

bjective, multi-scale, mixed integer linear programming (MILP) based

ulti-energy management system was proposed to optimally determine

he operation of a mix of electric vehicles and battery energy storage

ystems for greenhouse gas mitigation. The model was evaluated in five

ypes of residential buildings in Switzerland. 

A wide variety of approaches has also been proposed to deal with

ncertainty in HEMS optimization. Uncertainties in real-time electricity

rices were considered in the residential appliance scheduling problem
022 
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Fig. 1. Conceptual diagram of individual HEMS. 
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Nomenclature 

𝑁𝑇 Number of time periods 

𝑁𝑆 Number of scenarios 

𝑇 𝐵 , 𝑇 𝐿 Binding and look-ahead time periods in MPC 

𝑃 𝑟 𝑠 Occurrence probability of scenario s 

𝑝 
𝑔𝑟𝑖𝑑 

𝑡,𝑠 
Power from grid at time t in scenario s 

Θmin 
𝑖,𝑡 

, Θmax 
𝑖,𝑡 

Min/max substance temperature set point for 

appliance i at time t, i ∈ {hvac,wh} 

Θ𝑑𝑒𝑠𝑖𝑟𝑒𝑑 
𝑖,𝑡 

Desired substance temperature controlled by 

appliance i at time t, i ∈ {hvac,wh} 

𝜏 Time interval, in hours 

𝜑 

( ⋅) 
( ⋅) Thermal coefficients 

𝑠𝑙𝑜𝑝𝑒 𝑖,𝑡 Penalty factor of appliance i for substance tem- 

perature deviation from the desired tempera- 

ture 

𝑄𝐶 

min 
𝑖 

, 𝑄𝐶 

max 
𝑖 

Min/max charge power, i ∈ {ev,bess} 

𝑄𝐷 

min 
𝑖 

, 𝑄𝐷 

max 
𝑖 

Min/max discharge power, i ∈ {ev,bess} 

𝑆 𝑂𝐶 

min 
𝑖 

, 𝑆 𝑂𝐶 

max 
𝑖 

Min/max state of charge, i ∈ {ev,bess} 

𝐶𝑎𝑝 
𝑖 

Capacity, i ∈ {ev,bess} 

𝐸 

𝑟𝑒𝑞 

𝑖 
Estimated energy requirement to reach target 

SOC, i ∈ {ev} 

𝜂𝑐ℎ𝑎𝑟 
𝑖 

, 𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟 
𝑖 

Charge/discharge efficiency, i ∈ {ev,bess} 

𝑃 𝑒𝑛𝑎𝑙𝑡𝑦 𝑖 EV penalty for insufficient energy at departure 

𝜆𝑡 Electricity price at time t 

Θ̂𝑜𝑢𝑡 
𝑡,𝑠 

Outdoor temperature at time t in scenario s 

�̂�
𝑡,𝑠 

Solar irradiance at time t in scenario s 

�̂� 𝑡,𝑠 Hot water usage at time t in scenario s 

�̂� 
𝑠𝑜𝑙𝑎𝑟,𝑡,𝑠 

Solar generation at time t in scenario s 

�̂� 𝑛𝑐𝑙,𝑡,𝑠 Noncontrollable loads at t in scenario s 

𝜃
𝑖,𝑡,𝑠 

Substance temperature of thermal appliance i at 

time t in scenario s 

𝜃𝑆𝑃 
𝑖,𝑡,𝑠 

Substance temperature set point of thermal ap- 

pliance i at time t in scenario s 

𝑝 
𝑖,𝑡,𝑠 

Electricity consumption (+) or generation (-) 

of appliance i at time t in scenario s 

𝑆𝑂𝐶 𝑖,𝑡,𝑠 State of charge of appliance i at time t in sce- 

nario s 

𝑆𝑙𝑎𝑐𝑘 𝑡,𝑠 Nonnegative slack variable for EV energy re- 

quirement at time t in scenario s 

n [13] by adopting a scenario-based Monte Carlo simulation. To cap-

ure the trade-off between the expected costs and the risk of exposure to

ncertainties in the stochastic inputs, the conditional value-at-risk was

sed in [14] for the real-time scheduling of residential appliances in

he HEMS. In [15] , the monetary expense of the household was min-

mized by considering the uncertainties in the operation time of the

ppliances, the volatility in the renewable resources, the time-varying

rices, and the comfort of the customers. The proposed approach ad-

usts the deterministic solution by using adaptation variables to ac-

ommodate the stochastic energy consumption patterns. An approach

o modeling and optimizing home energy consumption by categoriz-

ng the classes of loads was proposed in [16] , wherein several classes

f demand-including heating, ventilating, and air-conditioning (HVAC);

lug-in hybrid electric vehicles (EVs); and deferrable loads (e.g., washer

nd dryer) are considered; and a multi-scale, multistage, stochastic op-

imization framework was proposed to control these classes. The au-

hors of [17] proposed dual decomposition into several subproblems

nd a stochastic gradient to handle the temporally coupled constraints

n scheduling deferrable loads considering future price uncertainty; the

rice forecast error is mitigated using an online approach in a dynamic

ricing environment. An uncertainty quantification approach was pro-

osed in [18] to address the challenge of balancing highly stochastic

emand with volatile energy supply characterized by renewable energy
2 
esources; here, the dependence of the cost of service on the volatil-

ty in demand is underlined, and a framework is proposed to mine the

atterns in the distributions of energy demand to justify the choice of

nergy demand distribution signature in terms of the characteristics of

he users. In [19] , a two-stage stochastic optimization method was pro-

osed to schedule a real-time, hydrogen-based vehicle for a multi-energy

ystem including electrical power, natural gas, heating power, cooling

ower networks, and energy storage-coupled with different energy car-

iers from an economic point of view. An energy management system

as developed in [20] to optimally schedule an electric water heater

hile considering the self-consumption of a residential PV installation

ith performance losses due to production uncertainties. 

These works used various methods to show modeling improvements

n handling uncertainties or to underline theoretical advancements in

olutions compared to previous algorithms; however, only a few of these

odels were evaluated in a large-scale distribution feeder. It is still

nder-researched how the future proliferation of HEMS would affect

he distribution system with solar PV. 

This paper aims to fill the gap by using a stochastic HEMS within a

odel predictive control (MPC) framework [21] to demonstrate the po-

ential impact of HEMS in large-scale distribution systems. The HEMS

ecides the optimal operational schedules of residential appliances in

he presence of PV, as illustrated in Fig. 1 , based on price and weather

nputs. Extensive simulations linking the proposed HEMS to a quasi-

teady-state time-series (QSTS) simulation tool are conducted in a smart

esidential home using two tariff structures and on an 8,500-node distri-

ution feeder with 1977 smart homes with diverse comfort settings. The

onceptual diagram of the distribution system is illustrated in Fig. 2 , in

hich homes with HEMS are connected to each of the three phases of

he feeder. Real-time communications to weather and energy price fore-

asts enable the HEMS to look into the future and optimally meet the

esidential customers needs. The contributions of this paper are three-

old: 

1) Stochastic scheduling models for home appliances were exten-

ively studied in the literature [21–24] . however, existing models rarely

nclude high-fidelity and realistic representations of residential home

nd appliance models to demonstrate HEMS algorithms. This work

xpands upon prior work [2,25] by incorporating stochastic HEMS

21] into high-fidelity residential home models that explicitly model the

hermal envelope, air conditioner, EV, and water heater. Much finer-
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Fig. 2. Conceptual diagram of integrating HEMS in a distribution feeder. 
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(  
ranularity modeling details of the thermal envelope and appliances

han those in the literature allow for a more accurate assessment on

he impact of the stochastic HEMS on distribution feeders. 

2) A co-simulation framework is developed to integrate the stochas-

ic HEMS by leveraging National Renewable Energy Laboratory’s

NREL’s) Integrated Energy System Model (IESM) framework [25] to

nclude a larger number of homes on a realistic distribution feeder. The

ESM integrates the simulation of DERs (including PV and battery sys-

ems), a distribution feeder, buildings (including building appliances

nd building thermal performance), and HEMS under different markets

r tariff structures through a co-simulation coordinator. The integration

f the stochastic HEMS and the IESM provides the ability to assess an

ccurate impact of HEMS on the physical performance of a large-scale

istribution feeder. 

3) We evaluate the impacts of HEMS managing EVs, battery energy

torage systems (BESS), air conditioners, and water heaters in the pres-

nce of PV. We conduct the co-simulation on an IEEE 8,500-node feeder

ith 1977 homes. This paper builds on prior work [2,25] —by consid-

ring a more complex HEMS algorithm that controls multiple residen-

ial appliances —to provide insights into the expected performance of

 portfolio of households with both rooftop PV systems and multiple

ontrollable consumer technologies in a large-scale distribution feeder. 

The rest of the paper is organized as follows. The mathematical for-

ulation of the HEMS model is provided in Section 2 . The MPC frame-

ork and co-simulation platform are described in Section 3 . Extensive

imulation results are presented and analyzed in Section 4 . The conclu-

ions are made in Section 5 . 

. HEMS model 

.1. Objective function 

The details on the stochastic HEMS model [21] , including the objec-

ive functions and associated constraints, are presented in this section.

e consider the following functions, which are used to describe the

onstraints for and the needs of the end users, typically utilities and/or

esidential customers: 

1. Thermal discomfort, which is represented by a linear penalty func-

tion (1) for temperature deviation between the predicted value and

the customer’s desired temperature [26] : 

𝐽 1 = 

NS ∑
𝑠 =1 

𝑃 𝑟 s ⋅
∑

𝑖 ∈{ hvac , wh } 

NT ∑
𝑡 =1 

slop 𝑒 𝑖,𝑡 ⋅
|||Θdesi red 

𝑖,𝑡 
− 𝜃𝑖,𝑡,𝑠 

||| (1) 

2. Total energy cost ($), which represents the cost of electricity and the

cost of battery degradation (2) . Time-based pricing schemes, includ-

ing dynamic and time-of-use (TOU) pricing, could be applied to the
3 
stochastic optimization model: 

𝐽 2 = 

𝑁𝑆 ∑
𝑠 =1 

𝑃 𝑟 𝑠 ⋅
𝑁𝑇 ∑
𝑡 =1 

𝜏 ⋅ ( 𝑝 𝑔𝑟𝑖𝑑 
𝑡,𝑠 

⋅ �̂�𝑡,𝑠 + 𝑐 𝑏𝑑 
𝑡,𝑠 
) (2)

A combination of these two objectives through a weighted average

ecomes the overall objective function (3) : 

𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽 = 𝛼1 ⋅ 𝐽 1 ∕ ̃𝐽 1 + 𝛼2 ⋅ 𝐽 2 ∕ ̃𝐽 2 
+ 

∑
𝑖 ∈{ 𝑒𝑣 } 

∑𝑁𝑆 

𝑠 =1 𝑃 𝑟 𝑠 ⋅ 𝑃 𝑒𝑛𝑎𝑙 𝑡𝑦 𝑖 ⋅ 𝑆𝑙 𝑎𝑐𝑘 𝑖,𝑠 
(3) 

here 𝐽 1 , 𝐽 2 are the upper bounds of the corresponding objective com-

onents from (1) –(2) , which are estimated by a computationally effi-

ient method in a preprocessing stage to combine different objective

omponents. Specifically, if the user-specified preference is identified

s a two-objective optimization, the deterministic model with the fore-

asted time series is run with the integer variables relaxed, and the re-

ulting optimization problem is solved by using linear programing. The

bjective of the first deterministic run is to minimize the total energy

ost such that the upper bound of the thermal discomfort, i.e., 𝐽 2 , is

btained. The solution time of this run is trivial because a linear pro-

raming problem of a single scenario is solved. Then the deterministic

odel is executed again with the objective of minimizing the thermal

iscomfort such that the upper bounds of other objective components

re determined. The solution time for the second run is also minimal

ecause another deterministic linear programing problem is solved. By

xecuting the relaxed deterministic models twice with negligible com-

utational effort, good estimates of the upper bound for each objective

omponent can be procured according to our numerical experiences. 

Slack variables are introduced into (3) to provide the HEMS with

ore flexibility by allowing some constraints to be violated at an ex-

remely high penalty cost; the third line in (3) reflects these penalty

osts. The proposed stochastic optimization model minimizes the

eighted average of multiple objective components while aiming to sat-

sfy the operational constraints described in the next subsection. In addi-

ion to the weighted average of multiple objective components, another

pproach to handle the proposed multi-objective optimization problem

s to obtain a Pareto front; however, this approach is not widely applied

n the home energy management since another criterion is still required

o select the final appliance schedule from all Pareto efficient solutions.

n the other hand, the relative weights of the objective components can

e straightforwardly derived from the user preference survey, for exam-

le, by using the Simple Multi-Attribute Rating Technique Exploiting

anks (SMARTER) method [27] . 

.2. HEMS constraints 

.2.1. House-level constraints 

The home-level power balance constraint is listed in (4) . Constraint

4) guarantees that the electricity generation and load are balanced at
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ime 𝑡 , where 𝑝 
𝑔𝑟𝑖𝑑 

𝑡,𝑠 
is positive when the house extracts electricity from

he grid and negative when the house injects electricity into the grid,

nd �̂� 𝑛𝑐𝑙,𝑡,𝑠 is the noncontrollable load. Here, the scheduled power con-

umption/generation at each time interval is the average value during

 given time interval: 

 

𝑔𝑟𝑖𝑑 

𝑡,𝑠 
+ �̂� 

𝑠𝑜𝑙𝑎𝑟,𝑡,𝑠 
= 

∑
𝑖 ∈𝐴 

𝑝 
𝑖,𝑡,𝑠 

+ �̂� 
𝑛𝑐𝑙,𝑡,𝑠 

, ∀𝑡, ∀𝑠 (4)

.2.2. HVAC 

A first-order linear thermodynamic model, i.e., 1R1C model, is used

o describe the evolution of the room temperature as a function of the

ower consumed by the HVAC, outdoor temperature, and solar irradi-

nce. The HVAC constraints are listed as follows: 

min 
ℎ𝑣𝑎𝑐,𝑡 

≤ 𝜃𝑆𝑃 
ℎ𝑣𝑎𝑐,𝑡 

≤ Θmax 
ℎ𝑣𝑎𝑐,𝑡 

, ∀𝑡 (5)

in 
𝑡,𝑠 

= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝜑 

rm 𝜃in 
𝑡 −1 ,𝑠 + 𝜑 

𝑐 
hvac 

𝑝 hvac ,𝑡,𝑠 + 𝜑 si ̂𝜒𝑡,𝑠 + 𝜑 

out Θ̂out 
𝑡,𝑠 

if cool ing 

𝜑 

rm 𝜃in 
𝑡 −1 ,𝑠 + 𝜑 

ℎ 
hvac 

𝑝 havc ,𝑡,𝑠 + 𝜑 si ̂𝜒𝑡,𝑠 + 𝜑 

out Θ̂out 
𝑡,𝑠 

if heat ing 

(6) 

Constraint (5) shows that the cooling or heating set points should be

ithin their respective ranges, as prescribed by the residential customer.

onstraint (6) represents the thermal dynamics of the room temperature

n both cooling (c) and heating (h) modes, wherein a combined heat

nd power (CHP) heating contribution is included in heating mode. The

eating or cooling mode, known a priori to the model, is selected by the

esidential customers. Here, the cooling or heating set points are the only

ecision variables of the HVAC; other variables, such as the ON/OFF

tatus and power consumption, are associated with the set points in the

roposed HEMS. 

.2.3. Water heater 

The operational constraints of the water heater, listed in (7) and

8) , are similar to the HVAC constraints, but they consider terms for

orecasted hot water usage and CHP heat contribution: 

min 
𝑤ℎ,𝑡 

≤ 𝜃𝑆𝑃 
𝑤ℎ,𝑡 

≤ Θmax 
𝑤ℎ,𝑡 

, ∀𝑡 (7)

𝑤ℎ 
𝑡,𝑠 

= 𝜑 

𝑡𝑚𝑝 

𝑤ℎ 
𝜃𝑤ℎ 
𝑡 −1 ,𝑠 + 𝜑 

𝑢𝑠𝑔 

𝑤ℎ 
�̂� 𝑡 + 𝜑 

𝑤ℎ 
𝑝 
𝑤ℎ,𝑡,𝑠 

+ 𝜑 

𝑜𝑢𝑡 
𝑤ℎ 

Θ̂𝑜𝑢𝑡 
𝑡,𝑠 

∀𝑡, ∀𝑠 
(8) 

nalogously, the heating set point of the water heater is the decision

ariable, whereby its ON/OFF status and power consumption are deter-

ined. Here, the heating or cooling set points of the HVAC, refriger-

tor, and water heater are constrained within the user-specified upper

nd lower bounds of the substance temperature, whereas the substance

emperatures are allowed to go beyond the upper and lower bounds. 

.2.4. Battery-related appliances considering degradation 

The BESS and EV constraints include the charging and discharging

ate limits, state-of-charge (SOC) dynamics, SOC limits, and energy re-

uirement, which are given in (9) –(12) , respectively. In (9) , is positive

hen charging, negative when discharging, and zero when the storage is

dling. Constraint (12) is applied only to EV, which ensures that the EV’s

nergy requirement is satisfied or can be relaxed with a high penalty: 

 

𝑖,𝑡,𝑠 
∈ {0 , [− 𝑄𝐷 

max 
𝑖 

, − 𝑄𝐷 

min 
𝑖 

] , [ 𝑄𝐶 

min 
𝑖 

, 𝑄𝐶 

max 
𝑖 

]} 
𝑖 ∈ { 𝑒𝑣, 𝑏𝑒𝑠𝑠 } , ∀𝑡, ∀𝑠 

(9) 

 𝑂𝐶 𝑖,𝑡,𝑠 = 

{ 

𝑆 𝑂𝐶 

𝑖,𝑡 −1 ,𝑠 + 𝑝 
𝑖,𝑡,𝑠 

⋅ 𝜂𝑐ℎ𝑎𝑟 
𝑖 

∕ 𝐶𝑎𝑝 𝑖 , 𝑝 𝑖,𝑡,𝑠 > 0 
𝑆 𝑂𝐶 

𝑖,𝑡 −1 ,𝑠 + 𝑝 
𝑖,𝑡,𝑠 

∕ 𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟 
𝑖 

∕ 𝐶𝑎𝑝 𝑖 , 𝑝 𝑖,𝑡,𝑠 < 0 (10)

 𝑂𝐶 

min 
𝑖 

≤ 𝑆 𝑂𝐶 

𝑖,𝑡,𝑠 
≤ 𝑆 𝑂𝐶 

max 
𝑖 

, 𝑖 ∈ { 𝑒𝑣, 𝑏𝑒𝑠𝑠 } , ∀𝑡, ∀𝑠 (11)
4 
∑
 ∈𝑇 𝑖 

𝑝 
𝑖,𝑡,𝑠 

⋅ 𝜏 + 𝑆𝑙𝑎𝑐𝑘 𝑖,𝑠 ≥ 𝐸 

𝑟𝑒𝑞 

𝑖 
, 𝑖 ∈ { 𝑒𝑣, 𝑏𝑒𝑠𝑠 } , ∀𝑠 (12)

he EV’s energy requirement can be estimated by calculating the dif-

erence between the arrival and departure SOC. To calculate the energy

equirement in the MPC-based approach, five charging cases are con-

idered, each of which represents one possible correlation among ini-

ial, arrival, and departure SOC. In addition, the estimated costs of the

attery degradation are captured through a linearization of the model

roposed in [ 28 ], which estimates both energy capacity fade and power

ade and includes effects caused by temperature ( 𝑇 ), average SOC, and

epth of discharge (DoD). The battery degradation cost, 𝑐 𝑏𝑑 
𝑡,𝑠 

, calculated

n (13) , is added in the energy cost component in the overall objective

unction (2) : 

 

𝑏𝑑 
𝑡,𝑠 

= max 
{ 

( 𝑐 𝑄,𝑇 
𝑡,𝑠 

+ 𝑐 
𝑄,𝑆𝑂𝐶 
𝑡,𝑠 

+ 𝑐 
𝑄,𝐷𝑂𝐷 
𝑡,𝑠 

) , 

( 𝑐 𝑃 ,𝑇 
𝑡,𝑠 

+ 𝑐 
𝑃 ,𝑆𝑂𝐶 
𝑡,𝑠 

+ 𝑐 
𝑃 ,𝐷𝑂𝐷 
𝑡,𝑠 

) 
} (13) 

here 𝑐 𝑄,𝑇 
𝑡,𝑠 

, 𝑐 𝑄,𝑆𝑂𝐶 
𝑡,𝑠 

, and 𝑐 𝑄,𝐷𝑂𝐷 
𝑡,𝑠 

are the capacity-fade costs associated

ith temperature, SOC, and DOD, respectively. 𝑐 𝑃 ,𝑇 
𝑡,𝑠 

, 𝑐 𝑃 ,𝑆𝑂𝐶 
𝑡,𝑠 

, and 𝑐 𝑃 ,𝐷𝑂𝐷 
𝑡,𝑠 

re the power-fade costs associated with temperature, SOC, and DOD,

espectively. More details about the definition and the calculation of

ach term in (13) can be found in [ 28 ]. Other appliances —such as dish-

asher, clothes washer and dryer, pool pump, and micro-CHP —can be

ntegrated into the HEMS model as described in [21] . A stochastic op-

imization model for the optimal schedules of residential appliances is

ormulated in (1) –(13) as an MILP problem. 

. Proposed co-simulation framework 

.1. Uncertainty representation 

The proposed stochastic optimization model uses scenarios for repre-

enting uncertainties, which can include outdoor temperature, PV gen-

ration, hot water usage, and noncontrollable load. The probability dis-

ribution functions of the uncertainties for those parameters are inputs

o the HEMS. The uncertainties can be characterized by an autoregres-

ive moving average (ARMA) [ 29 ]. Because the autocorrelation factor

f the time series would decrease dramatically as the time lag increases,

he forecast error is represented by a lower-order ARMA (1,1) as follows:

 𝑡 = 𝛼 ⋅𝑋 𝑡 −1 + 𝛽 ⋅𝑍 𝑡 −1 + 𝑍 𝑡 (14)

he ARMA constants are acquired by minimizing the root-mean-square-

rror between the simulated ARMA time series and the measured data

 30 ]. For simplicity, the ARMA constants in this work are assumed to fol-

ow a truncated normal distribution function with a standard deviation

qual to a certain percentage of the forecast; however, different proba-

ility distributions can also be used to represent heterogeneous uncer-

ainty components. The ARMA model adopted provides a parsimonious

escription of a stationary stochastic process for statistical forecasts of

ime series. To improve the efficiency of the Monte Carlo sampling over

 high dimension of uncertainty space, a low-discrepancy method, Latin

ypercube sampling (LHS), is used to generate evenly distributed ran-

om samples with smaller variance [ 31 ]. 

Scenario-reduction techniques are used to find a trade-off between

omputational speed and accuracy. The scenario-reduction method de-

ermines a scenario subset of the prescribed cardinality and a probabil-

ty measure based on this subset that is closest to the initial distribution

n terms of a probability metric [ 32 ]. Scenario-reduction algorithms in-

lude the fast backward method, the fast backward/forward method,

nd the fast backward/backward method [ 32 ]. The algorithms have dif-

erent computational performance and accuracy, so the selection of an

lgorithm depends on the size of the problem and the required solution

ccuracy. The forward method is adopted here because the number of

educed scenarios is small (strong reduction). 
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Fig. 3. QSTS simulation flowchart for a single house. 

Fig. 4. Diagram of the IESM, including a co-simulation coordinator, simulated 

distribution feeder, simulated homes with HEMS, and markets. 
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.2. MPC 

MPC is a method of process control while satisfying a set of con-

traints. It optimizes a finite time horizon, but it only implements the

urrent timeslot and then optimizing again, repeatedly. Based on the

rinciple of MPC, the proposed stochastic optimization model is de-

cribed in Algorithm 1 : 

lgorithm 1 MPC-Based Stochastic HEMS. 

Step 1. At time 𝑡 , gather updated forecast data: 

�̂�𝑡, 0 , Θ̂𝑜𝑢𝑡 
𝑡, 0 , �̂� 𝑡, 0 , �̂� 𝑠𝑜𝑙𝑎𝑟,𝑡, 0 , �̂� 𝑛𝑐𝑙,𝑡, 0 , ∀𝑡 ≤ 𝑇 𝐵 + 𝑇 𝐿 ; 

get initial status: �̄� 
𝑖, 0 , ∀𝑖 ∉ hvac , wh and �̄�

𝑖, 0 , ∀𝑖 ∈ hvac , wh from

the QSTS simulation tool. 

Step 2. Preprocess the multi-objective of the user preferences. Generate

scenarios by using LHS, and further reduce the number by using

scenario reduction methods. 

Step 3. Run the proposed stochastic HEMS model to obtain optimal ap-

pliance schedules and set points, 

i.e., �̄� ∗ 
𝑖,𝑡 
, ̄𝜃𝑆𝑃∗ 

𝑖,𝑡 
, ∀𝑡 ∈ 𝑇 𝐵 and �̄� ∗ 

𝑖,𝑡,𝑠 
, ̄𝜃𝑆𝑃∗ 

𝑖,𝑡,𝑠 
, ∀𝑡 ∈ 𝑇 𝐿 . 

Step 4. Pass 𝑝 
𝑖,𝑡 
= �̄� ∗ 

𝑖,𝑡 
,and 𝜃𝑆𝑃 

𝑖,𝑡 
= �̄�𝑆𝑃∗ 

𝑖,𝑡 
, ∀𝑡 ∈ 𝑇 𝐵 to the QSTS simulation

tool, and run the QSTS simulation. 

Step 5. Let t = t+1; go back to Step 1 until t = NT. 

Remarks: 

1. It is imperative to identify decisions made by the MPC-based HEMS.

Here, the decisions associated with binding intervals i.e., 𝑇 𝐵 are im-

plemented. In contrast, the decisions pertaining to the look-ahead

(advisory) intervals-i.e., 𝑇 𝐿 -are scheduled but not implemented. For

example, at 08:00, the HEMS optimally schedules the operation of

appliances for the entire schedule horizon-e.g., the next 12 hours-but

the dispatch points scheduled from 08:00 to 08:05 are implemented,

and this process repeats every 5 minutes. The frequency of running

the MPC-based HEMS as well as the length of the binding and look-

ahead time intervals are entirely configurable. 

2. The forecast errors in pricing, outside temperature, PV generation,

hot water usage, and noncontrollable load can be mitigated by two

means: i ) the MPC-based approach, which incorporates predictive

or measured values —this approach is somewhat similar to the ap-

proach used by system operators in bulk power systems where a pro-

duction cost model is continuously solved in a real-time market (e.g.,

every 5 minutes) with the latest information to avoid large forecast-

ing errors; and ii ) the stochastic optimization, which, by its nature, is

capable of dealing with forecast errors and making an optimal deci-

sion under uncertainty. The use of an MPC-based approach combined

with the stochastic optimization to manage the uncertainty facing a

residential customer constitutes another contribution of this paper. 

.3. QSTS co-simulation 

To demonstrate the impact of HEMS on future smart cities, we first

evelop a co-simulation framework that couples the HEMS decision

aking to a GridLAB-D simulation of a single house. GridLAB-D is

 power distribution system simulation tool developed by the Pacific

orthwest National Laboratory [ 33 ]. It performs QSTS simulations of

istribution feeders and homes and uses agent-based methods to simu-

ate end-use loads, such as appliances and heating/cooling systems. It

lso provides retail market modeling tools, including price-responsive

nd-use loads. Fig. 3 shows the HEMS and GridLAB-D simulation for

 single house. Consumer preferences, such as the objective function

eights and desired set point profiles, are inputs to the HEMS. Price and

eather data are provided to both the HEMS and the house simulation.

he HEMS optimizes the appliance set points during the whole schedul-

ng horizon and outputs the set points for the next time period —i.e.,
5 
inding decisions —to GridLAB-D, which uses them to calculate appli-

nce power and customer utility values, such as indoor air temperature

nd battery SOC. These values are provided as inputs to the HEMS for

he next optimization. 

To include a larger number of homes on a realistic distribution

eeder, we further integrated the HEMS with the houses using a mod-

fied version of NREL’s IESM simulation framework [25] , as shown in

ig. 4 . The IESM integrates the simulation of a distribution feeder, DERs

including PV and battery systems), buildings (including building ap-

liances and building thermal performance), and HEMS under different

arkets or tariff structures through a co-simulation coordinator coded

n Python [ 34 ]. 

The co-simulation coordinator is responsible for the data exchange

etween various components and the timing of the execution of all the

omponents with different time steps. The coordinator interfaces with

he building and distribution feeder simulations, the HEMS, and the mar-

et that sets the different tariff structures. The different components of

he simulation are described in more detail in [ 34 ]. The simulations

re performed using high-performance computing to accommodate hun-

reds of HEMS using an MPC approach. 
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Fig. 5. Optimized cooling set points and predicted room temperature and HVAC 

power for 24 hours generated by HEMS at 9:00 a.m. on June 1. 

Fig. 6. Simulation results for the air conditioner for June 1. 
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Fig. 7. Simulation results for the water heater for June 1. 

Fig. 8. Simulation results for the EV. The figure shows June 1, and the morning 

of June 2, 2014. 
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. Simulation results 

.1. Simulations on a single home 

We present a case study wherein the HEMS optimizes the cooling

et point for the air conditioner, the EV charging rate, and the heat-

ng set point for the water heater; therefore, the thermal envelope, the

ir conditioner, the EV, and the water heater are modeled explicitly in

ridLAB-D. Other loads are collectively represented as a ZIP load [ 33 ].

e use equal weights in the objective function for energy cost and ther-

al discomfort. 

The HVAC parameters used within the MPC were obtained by apply-

ng linear regression to data obtained from a GridLAB-D simulation of

he house without the HEMS. The GridLAB-D simulation for the HVAC

arameters was conducted using different indoor temperature set points,

utside temperature, and solar irradiance with a fixed HVAC set point.

e used weather data from the city of Fresno, California, for both the

ouse simulation and the weather forecast input for the HEMS. We per-

ormed simulations as follows: 

.1.1. Single-tariff simulations 

The first tariff we adopted is the ETOU-B plan, which is used by

acific Gas & Electric Company (PG&E) [ 35 ], where the peak price of

0.356/kWh is applied from 16:00–21:00 (4:00 p.m.–9:00 p.m.), and the

ff-peak price of $0.2529/kWh is applied the rest of the day. Figs. 5–

 show results from a simulation that ran for a 24-hour period with a

-minute granularity. The HEMS optimization was performed every 15

inutes using a 24-hour time horizon. The shaded regions in all fig-

res represent the peak price periods. 

Fig. 5 shows the prediction variables that the HEMS used to make its

ecision at 9:00 a.m. on June 1. The predicted HVAC power consump-

ion solved by the HEMS model is shown in green. As shown, the HEMS
6 
recooled before the peak pricing period and followed the customer’s

esired room temperature as well as the bounds of their preference. 

The room temperatures are shown in Fig. 6 for the optimized case

with HEMS) and the nonoptimized case (without HEMS), along with

he customer’s desired temperature profile, the outdoor temperature,

nd the HVAC power consumption for the same day. Results for the

onoptimized case are obtained by setting the cooling set points equal

o the customer’s desired temperature. 

The initial indoor air temperature in the house was set to 72°F, and it

ncreased as the outdoor temperature increased. It was assumed that the

ouse was not occupied during the day; therefore, the desired cooling set

oint was increased to 80°F between 8:00 a.m.–05:00 p.m. Fig. 5 shows

hat during the early hours of the morning, when the room temperature

as lower than the desired comfort temperature, the HVAC did not turn

n. We can see that, given the same initial conditions, the room tem-

erature with a HEMS was initially similar to that without a HEMS. At

2:00 p.m., the HEMS turned on the HVAC to precool the house. This

ncreased the air-conditioner power before the peak price period and

ecreased it during the peak price period to minimize the cost while

aintaining customer comfort. 

Figure 7 shows the heating set point and electricity consumption of

he water heater. As shown, the HEMS preheated before the peak pricing

eriod and followed the customer’s desired hot water temperature as

ell as the bounds of their preference. 

Figure 8 depicts the SOC of the EV with and without the HEMS.

he initial SOC was set to 50%. The sharp changes in SOC slightly af-

er the arrivals and departures were a result of GridLAB-D’s EV model,

hich applies the full discharge because of vehicle miles traveled at

hose times. Without the HEMS, the EV’s battery is charged during peak

ours, shortly after the vehicle arrives home. With the HEMS, charging

s delayed until closer to departure to both reduce energy cost and limit

attery degradation [ 28 ]. 
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Fig. 9. Comparison of HVAC simulation results for 5 days under different tariffs. 
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.1.2. Two-tariff simulations 

We evaluated the effectiveness of the proposed HEMS to handle

ifferent tariff structures through comparative simulations using both

G&E’s ETOU-B and TOU-E6 plans [ 35 ]. For the TOU-E6 plan, rates are

owest in the morning and late evening during weekdays, with a peak

rice of $0.44/kWh applied from 13:00–19:00 (1 p.m.–7 p.m.), a par-

ial peak price of $0.32/kWh from 10:00–13:00 (10 a.m.–1 p.m.) and

9:00–21:00 (7 p.m.–9 p.m.), and an off-peak price of $0.23/kWh ap-

lied the rest of the day. Fig. 9 compares the simulation results of the air

onditioner for June 1–5 under the two different tariff structures con-

idered. Under either tariff structure, shown in Fig. 9 (a) and (b), the

VAC behaved somewhat similarly for each of the five days when it

recooled the house before the electricity price increased. The precool-

ng before the peak price or partial-peak periods and then the reduction

n power consumption during those periods could minimize cost while

aintaining customer comfort. 

As shown in the comparison of Fig. 9 (a) to (b), the HEMS consumed

uch more electricity during off-peak hours under the ETOU-B. This is

ecause the outside temperature reached its peak during off-peak peri-

ds under ETOU-B. These results show that tariff structures affect the

iming of and total demand for electricity when a HEMS is used. The

roposed HEMS and MPC framework allow us to understand the impact

f various tariff structures on end-use decisions made by energy man-

gement systems, which might be the first step toward a fundamental

nderstanding of the physical performance of the distribution feeder and

he market structures driving operations for the utilities. 

.2. Large-scale distribution feeder simulations 

.2.1. Simulation setup 

We simulated in GridLAB-D an 8,500-node test feeder with 1977

omes that was created for the Transactive Energy Modeling and Simu-

ation Challenge facilitated by the National Institute for Standards and

echnology [ 36 ]. This feeder is used to represent a feeder in a hypothet-
7 
cal city. To mimic the diversity of the city, these house models have

ifferent combinations of attributes, such as square footage and insula-

ion. All the homes have an air conditioner, but only 1013 of the homes

ave an electric water heater (the rest have natural gas water heaters).

e modified the feeder model by randomly adding rooftop PV systems

o 25%, i.e., 494, of the homes. The PV panels are sized based on the

ouse square footage following the methodology described in [ 37 ], and

he inverter ratings match the PV panel ratings. We also added BESS

andomly to a subset of homes with PV. We aimed for a BESS penetra-

ion of 2%, resulting in 39 of the 494 homes that have a rooftop PV

ystem receiving a BESS. All BESS are sized at 5 kW/13.5 kWh, based

n commercially available residential battery systems. 

We first simulate a baseline scenario with no HEMS and with the

ESS in an idle mode, i.e., not charging or discharging, because some

orm of control is required to operate the BESS when it is active, which

ould set a more complicated baseline behavior to compare against.

hen we simulate a price-responsive scenario with some of the homes

oupled to a HEMS. We assigned the HEMS in a prioritized way such that

ll houses that have a BESS, rooftop PV, and an electric water heater

eceived a HEMS. Next, we assign HEMS to houses with a BESS and

ooftop PV, and finally to houses with an electric water heater. In total,

00 houses are coupled with a HEMS, resulting in a HEMS penetration

f approximately 20%. The HEMS is set to run every 30 minutes and

ptimize based only on cost to simplify the analysis. 

We use typical weather data for Phoenix, Arizona, for a full week in

he spring for the month of April when air-conditioning use is high but

ot continuous, as would be the case on a typical summer day. The out-

oor temperature, solar insolation, and TOU price are shown in Fig. 10 .

e use retail electricity rates that are currently in place for households

n Arizona. The TOU rate has a varying electricity price with peak and

ff-peak rates. The summer peak and off-peak rates are 23.068 c/kWh

nd 10.873 c/kWh, respectively. Summer peak hours are from 3:00 p.m.

o 8:00 p.m., Monday through Friday [ 38 ] and are indicated by the ver-

ical grey bars in this and other figures. All weekend hours are off peak;

herefore, we only simulated weekdays. For this study, we assume that

he houses are compensated for exported power at the TOU rate. 

The desired air and water temperature profiles are set to constant

alues. The desired temperatures for each house are different, varied

niformly between 70 ◦F and 75 ◦F for the air temperature and between

20 ◦F and 140 ◦F for the water temperature. A randomized water draw

rofile from [ 36 ] is used for each home. Each HEMS uses the MPC de-

cribed in Section 3.2 to adjust the air and water temperature set points

rom the desired temperature to minimize the cost. The HEMS is allowed

o adjust the air temperature set points up to 2.5 ◦F above or below the

esired air temperature and up to 10 ◦F above or below the desired wa-

er temperature. This allows the air to be precooled and the water to

e preheated before the peak electricity prices. The battery and SOC

onstraint are set to 50% in the HEMS. 
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Fig. 11. Comparison of the total net power of only the homes that are coupled 

to HEMS in the controlled scenario. 

Fig. 12. Comparison of the total net power of all homes. 

Fig. 13. Net power differences for each day (light blue) and average difference 

over all days (dark blue). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 14. Comparison of total power of controlled devices in all houses, averaged 

over the simulated days, for controlled (top) and baseline (bottom) scenarios. 

Fig. 15. Comparison of total power of controlled devices in only the homes that 

are coupled to HEMS in the controlled scenario, averaged over the simulated 

days, for controlled (top) and baseline (bottom) scenarios. 
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.2.2. Simulation results 

First, we evaluate the changes in household power consumption and

hen the changes in the operation of the BESS, water heaters, and air con-

itioners. We also examine the resulting impact on consumer comfort

nd system voltages, and, finally, we consider the impact on consumer

nergy cost. 

Figure 11 shows a comparison of the total net power of only the

omes that are coupled to a HEMS in the price-responsive —or con-

rolled —scenario, and Fig. 12 shows a comparison of the net power of

ll homes. The net power differences are further illustrated in Fig. 13 .

ifferences in net power, calculated by subtracting the power for houses

ith HEMS from the power for houses without HEMS, for each day are

hown in light blue, and the differences averaged over all the simu-

ated days are shown in dark blue. For the controlled scenario, the net

ower increases just before the peak price because the HEMS precools

he air and preheats the water, and the net power is decreased during

he peak price period, especially at the beginning of the peak price pe-

iod, compared to the baseline case. The daily net power profile of the

omes coupled with HEMS in the controlled scenario have more vari-

bility and higher rates of change in power in the controlled scenario
8 
han in the baseline scenario, which is a much more demanding elec-

ric utility. When comparing all houses in Fig. 12 , the differences are

ess pronounced because only the 20% of homes that are coupled with a

EMS in the controlled scenario behave differently. In addition, because

riority is given to homes with BESS and electric water heaters when as-

igning the HEMS (recall that all homes have air conditioners), a lower

ercentage of homes that are coupled with HEMS in the controlled sce-

ario have PV systems, so these homes’ total net power remains positive

t all times, whereas the total net power for all homes is negative when

he total PV production exceeds the total load. 

Fig. 14 shows the total power of the controllable devices —batteries,

ir conditioners, and water heaters —and the total PV system output

ower averaged over all the simulated days for all homes. The top graph

s the result for the controlled scenario, and the bottom graph is the base-

ine result without HEMS and without BESS. Fig. 15 shows the same

omparison for only the homes that are coupled with HEMS in the con-

rolled scenario. The HEMS aims to reduce air-conditioning and water

eater power consumption, especially during the peak price period, to

inimize the consumer-s electricity bill. It achieves this by precooling

he air and preheating the water, by allowing the air temperature to rise
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Fig. 16. Comparison of air temperature in only the homes that are coupled to 

HEMS in the controlled scenario, averaged over the simulated days, with no 

control (left), with control (middle), and a comparison of average temperatures 

(right). 

Fig. 17. Comparison of voltages at all homes, averaged over the simulated days, 

with no control (left), with control (middle), and a comparison of average volt- 

ages (right). 
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Fig. 18. Comparison of the average cumulative cost of electricity for only the 

homes that are coupled to HEMS in the controlled scenario in the baseline (or- 

ange) and controlled (blue) scenarios. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 19. Comparison of distributions of total cost of electricity for only the 

homes that are coupled to HEMS in the controlled scenario in the baseline (or- 

ange) and controlled (blue) scenarios. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this 

article.) 
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e

bove the desired air temperature, and by allowing the water tempera-

ure to drop below the desired water temperature. The hot water has a

ignificant draw during the peak price period, which limits the power

avings possible. The HEMS schedules the batteries to charge just before

nd after the peak price period, making use of the PV output, and to dis-

harge during the peak price period to reduce cost to the homeowner. 

Fig. 16 compares the air temperatures in homes that have a HEMS

oupled in the controlled scenario, and Fig. 17 compares the voltage at

ll the homes between the baseline and controlled scenarios. In these

gures, the graph on the left shows the baseline results with no control,

he center graph shows the controlled scenario results, and the graph

n the right shows a comparison of averages. In all these graphs, the

olid lines display the mean over all 4 days, calculated at 5-minute in-

ervals, and the shaded areas around the solid lines show how the data

re distributed as a function of time with the 60%, 20%, 10%, and 2%

ntervals of the simulated data. The HEMS allows the air temperatures

o be higher by up to 2.5 ◦F than the desired air temperatures during

nd after the peak price period, as shown in Fig. 16 , to reduce the air

onditioner power consumption. The HEMS precools the air prior to the

eak price period to shift power use from times when the cost is higher

o earlier hours when it is not as expensive. Because of the high outside

emperatures compared to the desired air temperature set points, the air

onditioner still needs to operate for most of the peak price period, as

hown in Fig. 15 . 

Figure 17 shows that the feeder’s voltage profile is not significantly

ifferent between the baseline and the controlled scenarios. The average

oltages are slightly higher for the controlled scenario during the peak

rice period because of the reduction in power drawn by the homes

ith HEMS during that time. A small percentage of homes experience

oltages that exceed the ANSI limits —indicated by the horizontal dotted

ines —because of the PV output in both scenarios. 

Figure 18 compares the average cumulative cost of electricity for

nly the homes that are coupled to HEMS in the controlled scenario. As
9 
hown, most of the savings are attained during the peak price period

hen the HEMS reduces the power drawn from the grid. Fig. 19 shows

he distribution of electricity cost for these homes. The costs vary be-

ause of variations in the desired air and water temperatures between

ouses as well as variations in house attributes. For the time period

nalyzed, the expenses for homes in the controlled scenario are slightly

ower than in the baseline scenario —but not statistically significant, and

or homes that earn income from the utility, the incomes are higher. This

s mainly because these houses take advantage of the credit for exported

ower during the peak price period by discharging their batteries during

hat time, as discussed earlier. The average cost is approximately 12%

ess in the controlled scenario. Fig. 19 compares the cumulative cost of

lectricity for houses with HEMS. 
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. Conclusions 

In this paper, we present a stochastic HEMS model that minimizes

esidential customers’ thermal discomfort and energy costs under un-

ertainty. The HEMS model optimally schedules residential appliances

perating in the presence of solar PV within a mixed-integer linear pro-

ramming. A co-simulation framework is developed to integrate the

tochastic HEMS by leveraging the IESM framework to include a larger

umber of homes on a realistic distribution feeder. Extensive simula-

ions are firstly carried out for a single residential home. The simulation

esults show the validity of the HEMS model. 

The impacts of 1977 homes on an 8,500-node distribution system

ere simulated. Approximately 25% of the homes had solar panels, and

pproximately 20% (400 homes) were coupled to a HEMS operating

nder a TOU rate with net energy metering. The results reported here

onfirm earlier findings that consumers’ electricity costs can be reduced

nder a TOU tariff if customers invest in BESS and associated controls,

uch as a HEMS, that can respond to a TOU rate. The HEMS shifts the

eak load to off-peak hours, resulting in increased variability and rates

f change in power profiles. These results point to both a need for the

areful design of tariff structures and to opportunities for aggregator ser-

ices to coordinate loads and DERs to achieve cost savings for consumers

nd to gain load profile improvements for utilities. We also studied the

mpact on the voltage profile across the feeder, and for the scenarios

imulated, the impact was not significant. 

Future work to evaluate different feeders in different geographic lo-

ations can be considered as well as the extension of the HEMS to in-

lude faster (second-level) controls with demand response capabilities

n addition to the optimization that is performed at intervals of several

inutes. Further, a similar impact study can be done under the real-time

ricing scheme, in which the electricity price is correlated to both the

upply and demand in a distribution market. 
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