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• Charged particles naturally appear in flame during the 
chemical decomposition of hydrocarbons

• An electric field (e-field) can be used to apply a force on 
these particles

• The interactions of the charged particles with the surrounding 
gas result in a flame global response to electric fields called 
ion wind

• It can be use to provide an active control over the flame, in 
order to:

- increase the flame speed

- improve the flame stabilization

- reduce NOx and soot emissions

- …
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Schematics of the interactions between a 
flame and an external electric field

Turbulent flame subjected to e-field 
(courtesy of ClearSign Combustion)
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• Multi-species Navier-Stokes equations, in the low 
Mach number limit

• Spectral deferred correction (SDC) to ensure coupling 
of the fast reaction/diffusion with advection, while 
enforcing the velocity divergence constraint

• Adaptive Mesh Refinement (AMR) using the AMReX 
library (Zhang et al, 2019)

• Implemented in the open-source solver PeleLM, 
developed under the ExaScale Computing Program

Computational framework
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Swirled turbulent hydrogen flame (Day 
et al., 2015)

https://amrex-combustion.github.io/PeleLM/



• To enable flow/electric field coupling:

• Navier-Stokes augmented with electron transport and electro-static Poisson equation:

• Charged species transport includes to a drift flux:

• Momentum and energy equations include source terms for Lorentz forces and Ohmic 
heating, resp.:

Computational framework
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• The electron motion and tight electron/electric field coupling 
introduces very fast time scales

• We implemented the non-linear implicit solve presented in Esclapez et 
al, 2019 into the PeleLM solver

• To enable the implicit solve in an AMR context, a non-subcycling (all 
the AMR level advance at the same time) version of PeleLM was 
developed

Computational framework
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https://amrex-combustion.github.io/PeleLMeX/
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• Burner-stabilized methane/air flame of Speelman 
et al., 2015

• GRI3.0 mechanism + chemi-ionization 
submechanism of Belhi et al., 2018 (9 ions + 
electrons) 

• Local field approximation: electron transport 
properties tabulated as function of the reduced 
electric field |E|/N 

• Varying the external electric voltage ∆V to covers 
the range of engineering applications

1D premixed flame
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• Experimental data consist of i-V curves, measuring the current across the flame as 
function of the imposed electric field:

1D premixed flame
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• PeleLMeX is able to reproduce 
experimental trends and match our 
initial, purely 1D, implementation

• The large differences observed 
between positive and negative 
polarity are related to the 
asymmetric position of the flame in 
the domain 



• Effect of increasing external forcing on the electronic structure of the flame:

• The electric field is able to penetrate further into the flame, driving a flux of 
the charged particles to the electrodes

1D premixed flame
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• Effect of increasing external forcing on the electronic structure of the flame:

• Progressively sweeping the charged particles, creating steep gradients

1D premixed flame
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• Edge flames are a essential feature of 
flame stabilization and propagation in 
many combustion devices.

• They exhibit a flame complex 
structure with combustion occurring in 
both premixed and non-premixed 
mode.

• Their propagation speed is the key 
characteristic we are interested in.

2D propagating edge flame
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Air Fuel

∆V

Schematics of the computational 
domain



• What happens when we start applying 
the external voltage ?

• Electrons rapidly move across the 
domain and establish the electro-static 
potential (right)

• The slower positive ions are pulled 
towards the bottom, resulting in a 
downward Lorentz force (left)

• The edge flame accelerates !

2D propagating edge flame
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Transient Lorentz forces (left) and electro-static 
potential (right) upon applying external ∆V



• Effect of increasing external forcing: 

• Integral of the Lorentz forces 
initially increases with external 
electro-static voltage intensity and 
eventually plateau

• A more practical measure: how 
much the flame speed increases 
when submitted to this force for 2 
ms

• Ionic wind (effect of the Lorentz 
forces) can be used to modify 
flame stabilization

2D propagating edge flame
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Unforced edge speed



1
2
3
4

5

Content

Motivation

Computational framework

One-dimensional burner-stabilized flame

2D Freely-propagating edge flame

3D laminar burner flame

16



• Methane/air premixed burner of Kuhl et al., 
2017

• Three different equivalence ratio, 
maintaining a constant inlet flow speed

• Forced axially with a constant mean electric 
field of 120kV/m between a downstream 
electrode and the bunsen tube

• Available measurement of current, local 
temperature, velocity field and OH 
luminescence

3D premixed bunsen flame
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Experimental setup of Kuhl et al.. Distances in 
mm



• 1/4 domain with lateral symmetry 
employed in the simulation

• Parabolic laminar profile in the bunsen 
inlet, 0.1 m/s coflow

• Burner lip represented on the inflow face

• Ambient conditions

• levels of refinement, ∆x = ~25µm

3D premixed bunsen flame
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• Unforced flames:

3D premixed bunsen flame
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• Unforced flames: 

3D premixed bunsen flame
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• Applied external forcing: slow process, inducing small changes in the overall flame and 
plume shapes:

3D premixed bunsen flame
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Rich conditions

0 kV 6 kV

• Slight shortening of the flame 
length

• Widening of the hot gas region 
close to the grounded burner lip

• No significant changes in the 
flame thickness or major species 
distribution



• Applied external forcing: electronic structure

3D premixed bunsen flame
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• Applied external forcing: temperature measurements

3D premixed bunsen flame
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• The trends appear to be captured, but simulations and further analysis are still ongoing

• Experiments show an increase of the burner lip temperature with the applied voltage, not 
accounted for in the simulations

• The simulation remains expensive:

• Convective time scale of the burner of ~10 ms, but time step size constrained to 
~0.1µs —> 1e6 steps !

3D premixed bunsen flame
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• Successfully extended our initial SDC-JFNK method to multi-
dimensional AMR simulations

• Time step size 2 order of magnitude larger than explicit constraint, but 
still relatively small compared to advection scales

➡Further improvements are under considerations

• Starting a collaboration with UCI to explore their micro-gravity 
experimental data (NASA-PSI project) with PeleLM

Conclusion
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