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Advanced Distribution Management
System (ADMS) Test Bed

Goal: Accelerate industry adoption of ADMS to:

* Improve normal operations with high DERs

ADMS Test Bed

Other Utility Management Systems
-
Industry Standard Interfaces R ;

ifi icati imulati Hard
evaluate specific use cases and applications. Simulation 2 *:

* Set up a realistic laboratory environment: II ? YT \\“

* Improve resilience and reliability.

Approach: Partner with utilities and vendors to

* Simulate real distribution systems o -
* Integrate distribution system hardware i
* Use industry-standard communications Scenario Generation T l Analysis and Visualization

* Create advanced visualization capability.

https://www.nrel.gov/grid/advanced-distribution-management.html N




OPAL-RT Real- Power and ADMS user
time simulator controller hardware ,, interface

ADMS user

ADMS Test Bed

Expected outcomes: Increased industry
confidence in ADMS technology through:

* Laboratory demonstration of
applications for specific use cases

Test bed -
coordinator ‘
_ o

:‘e‘:’ ‘¥

* Analysis and potential application to N OpenDSS
By ' & DERMS
other utilities. .=

Progress:
* ADMS test bed capabilities developed:

* Multi-timescale cosimulation using
HELICS (OpenDSS/Opal-RT/RTDS)

* Hardware integration
* Communications interfaces
* Data collection and visualization.

* Seven conference papers g .
published/accepted. BDyistalization. . ) g




Future Events

ADMS Test Bed Webinars:
 SOLAR EXPERT, March 15, 2022

* FLISR in the Presence of DERs, May 5, 2022
» Distribution DER provide bulk services, June 9, 2022

|[EEE Smart Grid webinar: March 28, 2022

ADMS test bed workshop: planned for in-person at NREL
We had set a tentative date of April 19-20, 2022

- Need to postpone (again) due to ongoing Covid restrictions
- October/November timeframe

Advanced Grid
Research
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US DEPARTMENT OF ENERGY

L

&) NREL ESIF Retweeted
@ NREL &
@NREL

A recent @ESIFLabs workshop showecased
aur advanced distribution management
system (ADMS) test bed, which helps utilities
evaluate their ability to monitor and
coordinate #AdvancedEnergy assets fora
more efficient and secure #grid. Learn more
about it at bit ly/2MOm3pe

< 3 oJan 10, 2020

NREL ESIF
@ESIFlabs

Arecent @NREL workshop demonstrated our advanced
distribution management system (ADMS) test bed, which
allows a utility to evaluate performance of ADMS
applications on their current and envisioned future system
at a lower cost and no risk to customers, bit.ly/2r6mfMm




ADMS Test Bed Use Cases

Completed:

* Peak load management with ADMS and DERMS
* Holy Cross Energy/Survalent

* ADMS network model quality impact on VVO
* Xcel Energy/Schneider Electric

* AMI-based, data-centric grid operations
* SDG&E + GridAPPS-D

Active:

* FLISR in the presence of DERs (April 2022)
* Central Georgia EMC/Survalent

* T&D: Distribution DER provide bulk services (May 2022)
* Xcel Energy + GridAPPS-D = May 2022

* Federated DERMS for high PV system (August 2022)
* Southern Company/Oracle + GridAPPS-D

ADMS test bed capabilities used by:
Completed:

* Non-wires alternatives HCE HIP

* ECO-IDEA, GO-SOLAR, SolarExpert
Active:

* FAST-DERMS (Feb 2023)

* SDG&E, Oracle, EPRI + GridAPPS-D
RONM (Dec 2022)

* SDG&E, Cobb EMC
REORG (Mar 2024)

» Holy Cross Energy, Minsait ACS
PIVA (Sep 2024)

» GridBright, SDG&E, Oracle
DynaGrid (Dec 2024)

* DTE Energy




GO-Solar Solution

Challenge #1:
Operations with extreme

penetrations of
distributed PV

Challenge #2:
Communicate
and control with
millions of DERs

Manage extreme penetrations of solar and other DERs using only a few
measurement points through matrix completion and multi-kernel learning-based
predictive state estimation (PSE) and only a few control nodes dispatched through
dual timescale online multi-objective optimization (OMOO) using voItage—IoagOLAR N
sensitivities to guide fast feedback response

TECHNOLOGIES OFFICE
U.S. Department Of Energy



GO-Solar Key Activities

Algorithms

Validation

Voltage limits,
Performance targets
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GO-Solar Interface with Enterprise Systems 30 Expecteq

Non-SCADA

ADMS

]

EMS

SCADA

“ [acitin]

SOLAR ENERGY
%}m TECHNOLOGIES OFFICE

U.5. Department Of Energy




GO-Solar Interface with Enterprise Systems With G0-so/r

Non-SCADA

ol

Planning/Operation

models

SOLAR ENERGY
// TECHNOLOGIES OFFICE
v/l U.5. Department Of Energy




GO-Solar Technology




Integrated GO-Solar Platform

Measurements

OoMOO
[Fast (every Y seconds) N

_ * Uses online optimization to

_ follow the optimal trajectory
Optlm.al + Adjusts the set points of
set points . DERs in real time )

I Planned
set points
Forecasted /" slow (every X minutes) )

voltages * Solves OPF to mitigate

— potential voltage violations

Provides nominal setpoints
\_ for DERs and legacy devicey

Z SOLAR ENERGY
/ TECHNOLOGIES OFFICE
f 11 0.5, Department Of Energy

Matrix
Completion

Multi-Kernel
Learning




Matrix Completion for State Estimation

/ vs. Conventlonal state estimation \ Concept:
—  Weighted least squares Netflix Recommendation System

—  Objective: Minimize the + Power Systems Constraints (linearized) 13!
ighted residual :
weighted residuals |____/v Quantity

1
R S P q !
Requires redundant _--,:[-,U-}--\-s,{f-}-J' ....... e M‘-L---__
T 10 3 {EE i— Node
measurements M=ttt e d e SR e e e Rl s
ans ann oo - |
/ X — : : i o ¢ O i
: - R
Key idea: Estimate unknown a1 o E L l
I e 1 : I |
elements using correlation ! =

Unknown < State variables Measurements - Partially known
—_—— e o — —
Objective function ' min (Rank of matrix X ) New
Constraints Known elementsin X = Measurements

(2-point Linearized) power flow equations

[1] Y. Zhang, A. Bernstein, A. Schmitt, and R. Yang, “State Estimation in Low-Observable Distribution Systems Using Matrix Completion,” HICSS-52 conference, 2019. SOLAR ENERGY
[2] P. Donti, Y. Liu, A. Schmitt, A. Bernstein, R. Yang, and Y. Zhang, “Matrix Completion for Low-Observability Voltage Estimation,” in IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2520-2530, May 2020. TECHNOLOGIES OFFICE
[3] Y. Liu, A. Sagan, A. Bernstein, R. Yang, X. Zhou, and Y. Zhang, “Matrix Completion Using Alternating Minimization for Distribution System State Estimation,” IEEE International Conference on U.5. Department Of Energy

Communications, Control, and Computing Technologies for Smart Grids, Tempe AZ, October 6-9, 2020.



Multi-Kernel Learning for State Forecasting

Goal: Learn the spatiotemporal correlation between measurements and system states

Kernel Learning Concept Expanding to Multi-Kernel Learning
*  Use kernel functions to map the input
space to a higher-dimension feature space | P_o"‘fr » Kernels
_ o njection
* Learn the relationship in the feature space
Power Flow » Kernels
o Voltage Voltage
= . » K I
/ﬁ Magnitude ernets Phasors
@
® /e
oo o ¢ Voltage » Kernels
® e ¢ Angle
Input Space Feature Space Current » Kernels
Measurements Kernels System States

Source: R. G. Esfahani and A. A. Mohammad, “Towards an anomaly detection technique for P SOLAR ENERGY
web services based on kernel methods,” IEEE Innovations in Information Technology, 2009. : Nf:{é TECHNOLOGIES OFFICE

IS/ u.s. Department OF Energy



Slow-Scale OMOO: VLSM-based Optimization

- Voltage-Load Sensitivity Matrix (VLSM) based mixed-integer linear problem [®]
Can handle integer constraints for taps/caps

Step 1: Build VLSM (periodically) Step 2: Solve MILP (minutes)
SV|=|VLSM |5 P|+|VLSM,,||50| MinZ = 016C + WAV + w3Myey
oVi| \pn Pn - Pul||9R 9 9o 0 G |90 ¢

n

5"72 B p21 . . pzn 51)2 N q21 . . qzn 5Q2 = ALoaa Zl (PCL:rlzlg*ol(L)) + Agv; control(l) +A V; QCOHfTOl(L)
. . . : : .. . Z( PES l(")) Aea Z (s(z)Q a,,(t))
i=1 i=1

é‘I/n pnl pn2 pnn 5])n in QnZ qnn 5Qn + Areyzt: (MTap(t) MTaP(t))

Output: Dispatch/set points for DERs and utility legacy devices

" - . _— e . - SOLAR ENERGY
[6] X. Zhu and Y. Zhang, “Coordinative Voltage Control Strategy with Multiple-Resource for Distribution Systems of High PV Penetration,” World TECHNOLOGIES OFFICE

Conference on Photovoltaic Energy Conversion (WCPEC-7), Waikoloa, Hawaii, June 10-15, 2018. U.S. Department Of Energy



Fast-Scale OMOO: Online Optimization

* Goal: Follow OPF trajectory

Central Controller (

¢ Key ideas I setpomti//‘ \\ \
Hierarchical control dvertisement

Lots of math with Local Controller (
provable bounds

. . implementation
Single-step gradient Un -
* Rather than converging at each feedback
e Yysel o /0 |

timestep, loosely converge

across fast time steps
Output: Adjusted DER setpoints in real time
[7] A. Bernstein and E. Dall’Anese, “Bi-Level Dynamic Optimization with Feedback,” the 5th IEEE Global Conference on Signal and Information TSEEPE-N%{?O(EQ‘SE()ﬁF?C\; -
Processing (GlobalSIP), Montreal, Quebec, Canada, Nov. 2017. U.5. Department Of Energy



Voltage Estimation

Voltage Magnitude

HECO Feeders

 Different sensors 2576 nodes
Substation SCADA: P, Q, |V]|, 6 535 nodes w/ loads g
Grid 2020: P, Q, | V| 100% PV penetration  &"
’ ’ =

AMI: P, |V|

Cases

Voltage Angle

* Realistic scenarios

Case 1 2 3 4 5 6 7

0 Inj. v v v v v v v 0,\1'5

Sub. v v v v v v v g 1

Grid 2020 | X 1% 1% 1% 1% 1% 1% osl

AMI X X 1% 2% 3% 4% 5% — 1

0 ‘ . . ‘ .
1 2 3 4 5 6 7
Cases

Accurate state estimation with Sub. + 1% Grid 2020 + 1% AMI SOLAR ENERGY -

TECHNOLOGIES OFFICE
U.S. Department Of Energy



Frequency

15-minute-ahead @ 1-minute resolution
Input: P and Q at load nodes for the past 1 hour
Training: 1-minute power flow results for 3 days (sliding window)

0.02

0.015 L

o
=}

0.005 |

Training Testing (1/5 of data)
95%: Cl: iO.I91% ?5% Cl: i1.13‘l%

1 1

1 1

I I 0.03

1 1

1 1 0.025

1 1

I I )

1 1 5 0.02

I I ]

1 1 S 0015

I I @ 005 ¢

1 1 e

1 1 001 L

1 1

1 1

I I 0.005 |-

1 1

Magnitude Forecasting Error (%)

93.26% of the absolute errors smaller than 1%

Magnitude Forecasting Error (%)

SOLAR ENERGY
SRS e

17



Slow-Scale OMOO

Time series voltage control results Snap-shot voltage control results
1.03 ‘ ‘ . . .
1.01 7 g : ; : ,
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Node number

The voltage is closer to the voltage objective which is 1 p.u. after the slow-scale

control is performed
7 SOLAR ENERGY -
IS epartmans of Energy



Fast-Scale OMOO

Time series voltage control results

1.008

1.006

0.996

0.994
12

13

PV P set point tracking profile

PV Q set point tracking profile
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SOLAR ENERGY
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Hardware-in-the-Loop




ADMS Test Bed Setup for GO-Solar

Modbus
(PQ setpoints)

P e o a E Em am am am am am am e

ModBus
Communication

4+—» power
4+— analog
b cosimulation
“+— Comms
> Comms
Cap Bank

GO-Solar Phase 2 HIL

Cap Bank
Controller

DER Rack #1

Grid Sim
(RS45)

e
(RS45)

DER Rack #2

PV Sim

Battery

Test objective: evaluate voltage

regulation performance of the GO-

Solar Platform in a realistic testing

environment

* Accurate modeling of a full-
scale distribution system of
Mikulua 3 and sub-transmission
system

<+ Software control algorithm

* 90 hardware PV and Battery
inverters

e Standard

. protocols

communication

SOLAR ENERGY
///-. /; TECHNOLOGIES OFFICE
#1111 u.s. vepartment 0f Energy



Schematic Diagram of the HELICS Architecture

SE State
Agent  Estimation
0M00 |
Agent - Modbus Agent |
— > Modbus ' » DER Hardware Grid
0M00 * ()* % ()% | .
e Poems H ‘L Interface :P,Q | (Modbus)  |nverters Simulators
(Qmeas, Paval E SOC SOC | A
|
OpenDSS I P Q" :
gent Vvl 6, C v, 6v, 1, B, |
Pmfeeder, Qmfeeder S Pmfeeder, Qmfeeder I To-OPAL
4
OpendSs. _ : 0Pl < oparpr < T&PT
Pfeeder, Qfeeder, Preeder, Qfeeder, Vfeader ' From-(%%?)lj
Vfeeder, Ifeeder, Ifeeder, Pload, Qoad ~ OPAL Agent :
Pload, Qload Vmeas, Pmeas, Qmeas, Paval |

SOLAR ENERGY
// /| TECHNOLOGIES OFFICE
il U.5. Department Of Energy



Photo of Hardware Setup for Six DER Racks/PCCs

' DER Rack #6 |

g . Grid Simulator
Micro PV inverters gl
Rack #1-3

Grid Simulator

#1

" M Simulator
#1

Micro PV
inverters Rack §

#4-6 ' " SOLAR ENERGY -
TECHNOLOGlESI.‘OrF\Fpl'C‘E

U.S. Departmer




HIL Testing Results — Scenario #1: Baseline Scenario
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HIL Testing Results — Scenario #2: Control 100% PVs

Voltage (pu)
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Voltage (pu)

HIL Testing Results — Scenario #3: Control 30% PVs
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Large-Scale Co-Simulation




Simulation Overview

3 layered co-simulation using HELICS

Transmission (MATLAB)
Subtransmission (OpenDSS)
Distribution (OpenDSS)

For each OpenDSS network, a GO Solar Control
Stack is assigned and included in the workflow

G

HELICS

L 1] Y
‘l 'l 1T ] Transmission
I ’-I
| |
.. o | o0

Suh Transmlssmn

% —— .r“-—«r@
| g @
f’\’w -

¢ ',pﬂ* Distribution
r“‘ ﬂr'—é‘

P e — i LU
W RS | ¥
[

h .;-L“m B Ty

; SOLAR ENERGY
///// || TECHNOLOGIES OFFICE
i

U.S. Department Of Energy



Representation Results — Voltage Controls

* Voltage distribution

1e6 Average voltage counts for all feeders for 24h with Unity PF 1e6 Average voltage counts for all feeders for 24h with SE and F-OMQO

40 4.0

is is
2 30 2 30
= =
& &
o+ 25 o+ 25
o o
o o
2 2
5 2.0 5 2.0
E E
E 15 E 15
o o
= =
= =
=} =}
O 10 O 10

0o - - - [ - 0o - - - B

09 095 10 1005 101 1015 1:12 1:)25 103 1035 104 1045 105 1055 106 09 095 10 1005 101 1015 1:12 1:)25 103 1035 104 1045 105 1055 106

Run time = 7 hours Run time = 12 hours

‘ Voltaﬁes closerto 1 H.u. with less over‘under voltaﬁe violations usinﬁ GO-Solar ‘

SOLAR ENERGY
///m. TECHNOLOGIES OFFICE

U.5. Department Of Energy




Representative Results — State Estimation

» State estimation accuracy
80% of feeders with state estimation MAPE < 0.5%

Larger voltage estimation errors due to larger voltage swings from the OMOO
control points in some feeders

A

| Feeders with voltage estimation error 2 0.5%

Voltage Estimation MAPE (%)
o

>

Feeder Number
Accurate state estimation with limited measurements using GO-Solar )7  SOLAR ENERGY -

7/ TECHNOLOGIES OFFICE
/,’////////,- /11 u.s. Department Of Energy



GO-Solar Solution

-

Predictive State Estimation

!

Online Multi-Objective Optimization

Based Set-Point Dispatch

N

EMS / DMS

Broadcast in Existing
Communication System

=T
Devices

Enhanced |
System
Layer

_ tayer |

Traditional |

System |
Layer

-

|

Telecom &
Data

tayer |
I
|
I

Local
Device &
Control

Layer

Estimate and Forecast Using
Scarce Measurements

Online Control of Limited
Number of Devices

Both Transmission and
Distribution Systems

Minimum Additional
Communication Burden

Advanced Devices &
Legacy Devices

Real-time and predictive situational
awareness from PSE

Coordinated control of legacy
devices and DERs

Scalable solution for heterogenous
measurements and controllers

Large scale co-simulation and large
scale HIL for extended performance
testing

SOLAR ENERGY
oS o
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