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Project Objectives 
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Challenge #1: 
Operations with extreme 

penetrations of 
distributed PV

Challenge #2:
Communicate  

and control with 
millions of DERs

GO-Solar Solution

Manage extreme penetrations of solar and other DERs using only a few 
measurement points through matrix completion and multi-kernel learning-based 
predictive state estimation (PSE) and only a few control nodes dispatched through 
dual timescale online multi-objective optimization (OMOO) using voltage-load 
sensitivities to guide fast feedback response



GO-Solar Key Activities
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GO-Solar Interface with Enterprise Systems
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GO-Solar Technology
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Integrated GO-Solar Platform
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Multi-Kernel 
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Slow (every X minutes)
• Solves OPF to mitigate 
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for DERs and legacy devices 
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Matrix Completion for State Estimation
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vs. Conventional state estimation
– Weighted least squares
– Objective:  Minimize the 

weighted residuals

Requires redundant 
measurements

Concept:
Netflix Recommendation System
+ Power Systems Constraints (linearized) [1]-[3]

Key idea: Estimate unknown 
elements using correlation

[1] Y. Zhang, A. Bernstein, A. Schmitt, and R. Yang, “State Estimation in Low-Observable Distribution Systems Using Matrix Completion,” HICSS-52 conference, 2019.
[2] P. Donti, Y. Liu, A. Schmitt, A. Bernstein, R. Yang, and Y. Zhang, “Matrix Completion for Low-Observability Voltage Estimation,” in IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2520-2530, May 2020.
[3] Y. Liu, A. Sagan, A. Bernstein, R. Yang, X. Zhou, and Y. Zhang, “Matrix Completion Using Alternating Minimization for Distribution System State Estimation,” IEEE International Conference on 
Communications, Control, and Computing Technologies for Smart Grids, Tempe AZ, October 6-9, 2020.

State variables MeasurementsUnknown Partially known

Node

Quantity

Constraints Known elements in        =  Measurements
(2-point Linearized) power flow equations

Objective function min (Rank of matrix      ) New



Multi-Kernel Learning for State Forecasting
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Kernel Learning Concept
• Use kernel functions to map the input 

space to a higher-dimension feature space
• Learn the relationship in the feature space

Source: R. G. Esfahani and A. A. Mohammad, “Towards an anomaly detection technique for 
web services based on kernel methods,” IEEE Innovations in Information Technology, 2009.

Goal: Learn the spatiotemporal correlation between measurements and system states
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Slow-Scale OMOO: VLSM-based Optimization

• Voltage-Load Sensitivity Matrix (VLSM) based mixed-integer linear problem [6]

• Can handle integer constraints for taps/caps

[6] X. Zhu and Y. Zhang, “Coordinative Voltage Control Strategy with Multiple-Resource for Distribution Systems of High PV Penetration,” World 
Conference on Photovoltaic Energy Conversion (WCPEC-7), Waikoloa, Hawaii, June 10-15, 2018.
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[7] A. Bernstein and E. Dall’Anese, “Bi-Level Dynamic Optimization with Feedback,” the 5th IEEE Global Conference on Signal and Information 
Processing (GlobalSIP), Montreal, Quebec, Canada, Nov. 2017.

• Goal: Follow OPF trajectory

• Key ideas [7]:
• Hierarchical control
• Lots of math with 

provable bounds
• Single-step gradient

• Rather than converging at each 
timestep, loosely converge 
across fast time steps

Fast-Scale OMOO: Online Optimization

15

Output: Adjusted DER setpoints in real time



• Different sensors
• Substation SCADA: P, Q, |V|, θ
• Grid 2020: P, Q, |V|
• AMI: P, |V|

• Realistic scenarios

Voltage Estimation
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Voltage Magnitude

Voltage Angle

Case 1 2 3 4 5 6 7

0 Inj. √ √ √ √ √ √ √

Sub. √ √ √ √ √ √ √

Grid 2020 X 1% 1% 1% 1% 1% 1%

AMI X X 1% 2% 3% 4% 5%

Accurate state estimation with Sub. + 1% Grid 2020 + 1% AMI

HECO Feeders
2576 nodes
535 nodes w/ loads
100% PV penetration
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Training Testing (1/5 of data)
95% CI: ±0.91% 95% CI: ±1.13%
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• 15-minute-ahead @ 1-minute resolution
• Input: P and Q at load nodes for the past 1 hour
• Training: 1-minute power flow results for 3 days (sliding window)

Magnitude Forecasting Error (%) Magnitude Forecasting Error (%)

93.26% of the absolute errors smaller than 1%



Slow-Scale OMOO
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The voltage is closer to the voltage objective which is 1 p.u. after the slow-scale 
control is performed 

Time series voltage control results Snap-shot voltage control results 



Fast-Scale OMOO
Time series voltage control results PV P set point tracking profile PV Q set point tracking profile 

Voltage PV P set point PV Q set point

Tracking Error (%) 0.06 0.02 2

Tracking Error 
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Hardware-in-the-Loop
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ADMS Test Bed Setup for GO-Solar

• Test objective: evaluate voltage
regulation performance of the GO-
Solar Platform in a realistic testing
environment

• Accurate modeling of a full-
scale distribution system of
Mikulua 3 and sub-transmission
system

• Software control algorithm
• 90 hardware PV and Battery

inverters
• Standard communication

protocols

21



Schematic Diagram of the HELICS Architecture

SOC SOC

SE
Agent
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Photo of Hardware Setup for Six DER Racks/PCCs
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HIL Testing Results – Scenario #1: Baseline Scenario

Total PV measurements

0.081% of total 
curtailment
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HIL Testing Results – Scenario #2: Control 100% PVs 

0.4% of total curtailment for OMOO and 0.081% for Volt-Var

25



HIL Testing Results – Scenario #3: Control 30% PVs 

• The simulated PV inverters have
similar responses in active and
reactive power as the inverters in
Rack #1, #2, #4, and #5.

• Confirm the simulated and hardware
inverters work correctly.

• Higher reactive power outputs than
the 100% PV scenario

26



Large-Scale Co-Simulation
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• 3 layered co-simulation using HELICS
• Transmission (MATLAB)
• Subtransmission (OpenDSS)
• Distribution (OpenDSS)
• For each OpenDSS network, a GO Solar Control 

Stack is assigned and included in the workflow

Simulation Overview

28



Representation Results – Voltage Controls

• Voltage distribution

29

Run time = 7 hours Run time = 12 hours

Voltages closer to 1 p.u. with less over/under voltage violations using GO-Solar 



• State estimation accuracy
• 80% of feeders with state estimation MAPE ≤ 0.5%
• Larger voltage estimation errors due to larger voltage swings from the OMOO 

control points in some feeders

Representative Results – State Estimation
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Key Accomplishments

• Real-time and predictive situational 
awareness from PSE

• Coordinated control of legacy 
devices and DERs

• Scalable solution for heterogenous 
measurements and controllers

• Large scale co-simulation and large 
scale HIL for extended performance 
testing

Summary

31

GO-Solar Solution
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(PSCC), Dublin, Ireland, June 11-15, 2018. (Partly funded by the ENERGISE Go-Solar project and partly by the GMLC 1.4.10 [Control Theory] project.)

2. A. Bernstein and E. Dall’Anese, “Bi-Level Dynamic Optimization with Feedback,” the 5th IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, Quebec, 
Canada, Nov. 2017.

3. X. Zhu and Y. Zhang, “Coordinative Voltage Control Strategy with Multiple-Resource for Distribution Systems of High PV Penetration,” World Conference on Photovoltaic Energy 
Conversion (WCPEC-7), Waikoloa, Hawaii, June 10-15, 2018.

4. Y. Zhang, A. Bernstein, and A. Schmitt, “State Estimation in Low-Observable Distribution Systems Using Matrix Completion,” HICSS-52 conference, Jan. 2019.
5. B. Liu, H. Wu, Y. Zhang, R. Yang, and A. Bernstein, “Robust Matrix Completion State Estimation in Distribution Systems,” IEEE PES General Meeting, Atlanta, GA, Aug. 4-8, 2019.
6. P. L. Donti, Y. Liu, A. J. Schmitt, A. Bernstein, R. Yang, and Y. Zhang, “Matrix Completion for Low-Observability Voltage Estimation,” IEEE Transactions on Smart Grid, IEEE Transactions 
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7. M. Emmanuel and J. Giraldez, “Net Electricity Clustering at Different Temporal Resolutions Using a SAX-Based Method for Integrated Distribution System Planning,” IEEE Access, vol. 

7, pp. 123689-123697, 2019.
8. G. Cavraro, A. Bernstein, V. Kekatos and Y. Zhang, "Real-Time Identifiability of Power Distribution Network Topologies With Limited Monitoring," IEEE Control Systems Letters, vol. 4, 

no. 2, pp. 325-330, April 2020. 
9. X. Zhu, M. Emmanuel, G. Julieta, I. Krad, B. Palmintier, W.-H. Chen, A. Hirayama, and M. Asano “Realistic Distribution System Model Development for Integrated Transmission-

Distribution Simulation,” the 47th IEEE Photovoltaic Specialists Conference (PVSC 47), June 14-19, 2020.
10. Y. Liu, A. Sagan, A. Bernstein, R. Yang, X. Zhou, and Y. Zhang, “Matrix Completion Using Alternating Minimization for Distribution System State Estimation,” IEEE International 

Conference on Communications, Control, and Computing Technologies for Smart Grids, October 6-9, 2020.
11. A. Sagan, Y. Liu, and A. Bernstein, “Decentralized low-rank state estimation for power distribution systems,” IEEE Transactions on Smart Grid, 2021.
12. J. Wang, J. Simpson, R. Yang, B. Palmintier, S. Tiwari, and Y. Zhang, “Hardware-in-the-Loop Evaluation of an Advanced Distributed Energy Resource Management Algorithm,” the 

Twelfth Conference on Innovative Smart Grid Technologies, February 15-18, 2021.

• Presentations
13. R. Yang, “Machine Learning-based Predictive State Estimation,” Virtual Workshop on Distribution and Transmission System Monitoring, U.S. Department of Energy, Solar Energy 

Technologies Office, Oct. 2020.
14. R. Yang, “Predictive Analytics for Power Systems Decision Making,” IEEE Smart Grid Webinar, April 25, 2019. [Online].
15. B. Palmintier, “Grid Optimization with Solar (GO-Solar) Experiences with: Data-driven and Machine Learning Approaches for High-pen PV Grids,” Workshop on Challenges for 

Distribution Planning, Operational and Real-time Planning Analytics for Small Scale PV Integration, U.S. Department of Energy, Solar Energy Technologies Office, Washington DC, May 
15-16, 2019.

16. R. Yang, “Data and Algorithms for Grid Optimization with Solar (GO-Solar),” Big Data Analytics Workshop, SLAC National Accelerator Laboratory, Dec. 10, 2018.
17. Y. Zhang, “Predictive State Estimation – a Step Towards Proactive Operation of Power systems,” IEEE PES 2018.

• Book Chapter
18. R. Yang and Y. Zhang, “Predictive Analytics for Coordinated Optimization,” to appear in Intelligent Power Grid of Tomorrow: Modeling, Planning, Control, and Operation, Springer.

• Patent
19. R. Yang, Y. Liu, A. Bernstein, Y. Zhang, “Low-observability matrix completion” US Patent App. 16/246,998
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Questions?
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