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Grid-Interactive Electric Vehicle and Building Coordination Using
Coupled Distributed Control

Dylan Wald1,2, Kathryn Johnson1,2, Christopher J. Bay2, Jennifer King2, and Rohit Chintala2

Abstract— As an increasing number of controllable devices
are introduced onto the grid, they can individually provide
ancillary services in support of grid stability. However, the
goals of each device differ due to their type and individual
objectives, causing instances where they may conflict. To reduce
the chances of these devices contributing to grid instability,
these devices must effectively communicate in a cooperative
manner to both meet their own needs while providing services
to the grid. Previous work demonstrates that the Network Lasso
- ADMM - Limited Communication - DMPC (NALD) algorithm
allows coordination between two subsystems that use different
control algorithms (building and charging stations) to provide
services to the grid and individually optimize their performance
in a specific scenario. The ideal NALD algorithm should be
generalized to allow plug-and-play capabilities across devices
of differing characteristics. This paper takes a step toward
achieving this generalization by updating the electric vehicle
charging objective and redefining the communication scheme
compared to prior work to generalize the coordination and, as
a result, improve the performance of the NALD algorithm.

I. INTRODUCTION

As an increasing number of smart devices and electricity
sources are integrated into the grid, an introduction of
new voltage fluctuations and bidirectional power flows can
negatively impact the control and operation of the grid
[1]. Autonomous energy grids (AEGs) aim to autonomously
optimize the operation of the grid as a whole in real time
to promote affordability, reliability, and resiliency [1], [2].
Reference [2] uses this idea, wherein a network of AEGs is
controlled using a hierarchical, distributed method, allowing
systemwide load balancing despite the different types of
loads and generation in each AEG. This balancing is facili-
tated through increased flexibility, a byproduct of many con-
trollable devices, along with ample sensor information [1]–
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[3]. The increased flexibility and controllability of devices
on the grid of the future enables real-time response to grid
demands, requiring advanced coordination across devices to
meet those demands.

An example of new controllable devices that could affect
the grid are electric vehicles (EVs). Total EV sales around
the world are expected to reach 58% by 2040 [4], leading
to an increase in charging infrastructure and electrical loads
on the grid. This increase could become a problem if many
EVs are simultaneously charging during times of peak load
which may cause demand to exceed the capacity of the grid
infrastructure, leading to grid instability.

A typical controls solution to this problem is load shifting,
i.e. shifting EV charging loads to times when the demand is
lower [5]. Successful load shifting in the form of valley-
filling is described in [6] and [7]. Other literature, such
as [8] and [9], use demand-side management (DSM) to
drive the EV charging control. Last, [10] uses a hierarchical
model predictive control (MPC) approach to shift the EV
charging load based on owner needs, reducing complexity
and communication. While [6]–[10] all use unique methods
to control EV charging to minimize the impact of EV
charging on the grid, none allow coordination between EVs
and other controllable devices to provide ancillary services.
As a result, this paper proposes a method to control EV
charging while coordinating with another device to meet a
global objective.

Buildings are another example of controllable grid-
connected devices. According to [11], in 2014, buildings
accounted for more than 76% of all electricity use and 40%
of the greenhouse gas emissions in the United States. Conse-
quently, significant efforts in advanced heating, ventilation,
and air conditioning (HVAC) system control [12] have been
made to improve the building efficiency.

MPC has been a leader in HVAC control in buildings
due to its many advantages such as handling of multiple
states and disturbances and use of constraints [12]. Some
MPC methods for building control are described in [13]–
[16]. The case study in [17] uses MPC to optimize building
efficiency while maximizing occupant comfort as a function
of worker productivity. Machine-learning approaches, such
as reinforcement learning, are also starting to gain traction
in building control. Due to nonlinear complexities in most
building models, some purely data-driven approaches have
been applied to learn the optimal control strategies without
knowing the building dynamics, such as [18]. Likewise, [19]
further advances the work in [20] by using an artificial
neural network to learn the MPC control actions in [20],
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reducing computational burdens. Additionally, distributed
MPC (DMPC) can be a solution in larger systems [21], [22].
Reference [22] uses DMPC to optimally control a six-zone
building to follow a temperature setpoint.

While the works of [12], [17]–[22] describe the benefits of
building control, few consider the building’s impact on the
grid infrastructure or communication amongst diverse neigh-
boring devices. The work in [23] leverages work in [24],
specifically its use of MPC for building control. However,
additional communication among heterogeneous devices (the
EVs and building) is introduced in [23] to aid the grid.

While the results in [23] validate the importance of co-
ordinated communication between subsystems, the commu-
nication is very subsystem-specific (non-generalized). This
paper works to generalize the Network Lasso-ADMM -
Limited Communication - DMPC (NALD) algorithm to both
improve the performance of the algorithm, and to allow the
possibility for plug-and-play capabilities across other unique
controllable devices. The main contributions of this paper,
compared to [23], include: 1) an altered objective function in
the charging station subsystem, 2) an updated communication
scheme, and 3) tuning the objective function weights and
smoothing the control actions. These contributions lead to
an overall improved performance of the NALD algorithm.

II. NALD ALGORITHM

In [23], the purpose of the NALD algorithm is to allow
coordinated communication between two devices with dif-
ferent objectives achieve of both local and global objectives.
The global objective is to

minimize et = P tref − P ttot (1)

where Ptot is the total power including both the building
and charging stations and Pref is the power reference from
the grid. In the NALD algorithm summarized in Fig. 1,
the framework presented in [24] and [25] is used wherein
each subsystem communicates only with its neighboring
subsystems. Sections II-A – II-C explain the subsystems
in Fig. 1. Note that the communication in Fig. 1 occurs
a designated amount of times, or communication iterations,
between each control time step.

A. Grid Aggregator Configuration

Identically to [23] and [24], the grid aggregator subsystem
(left subsystem in Fig. 1) uses the limited-communication
distributed model predictive control (LC-DMPC) framework
described in [24] and [25]. In the NALD algorithm, the grid
aggregator subsystem receives and distributes the bulk power
reference signal Pref from the grid. The subsystem’s two
objectives are to 1) follow the bulk reference signal from
the grid and 2) ensure an appropriate power setpoint value
Pset is communicated to the building. The grid aggregator
must provide the building with a setpoint that is sufficient
for the aggregate building and charging station subsystems’
load. In Fig 1, the grid aggregator’s objective function also
includes a sensitivity term ΨgaZga (left subsystem, middle
block). A sensitivity that is received from another subsystem

is denoted as Ψ and a sensitivity that is communicated to
other subsystems is denoted as γ. Using LC-DMPC, the
grid aggregator optimizes its control action across a finite
horizon, calculates a sensitivity γga, and communicates this
information each communication iteration, implementing the
first step of the optimized control action each time step.

B. Building Configuration

The building subsystem also utilizes the LC-DMPC frame-
work in [24] and [25]. In the NALD algorithm, the building
subsystem aims to 1) track the power setpoint value from
the grid aggregator Pset and 2) track the building’s internal
temperature reference Tm. Details of the building subsystem
controller can be found in [23] and [24]. The building’s
objective function includes a sensitivity component ΨbZb, as
shown in Fig. 1 (middle subsystem, middle block). Although
using a weight matrix S with all 0 entries appears to decouple
the control action U from the objective, U still impacts
the output vector Y for indirect inclusion. The building
optimizes its control action over a finite horizon using LC-
DMPC, calculates a sensitivity γga, and communicates this
information each communication iteration, applying the first
control action to the building model each time step. Like
in [23] and [24], the building dynamics are approximated
using a reduced-order 3-resistor, 2-capacitor (3R2C) model,
developed from EnergyPlus [26] using an extended kallman
filter (EKF) to estimate its parameters [27]. It is assumed
that only the building’s HVAC system is controllable and is
the main source of power consumption. Hence, the internal
temperature estimation from the 3R2C model is based on
cooling provided by the HVAC system, as well as current
weather conditions (generated from EnergyPlus [26]) and
a small internal load (data based on building occupant
schedules within a U.S. DOE large office building [28]).

C. Electric Vehicle Configuration

Like [23], the charging station subsystem in this work uses
a hierarchical, consensus-based EV charging control logic. In
this subsystem, there are N charging stations, each with ni
number of plugs, in which each plug in charging station i ∈
N is represented as p where p ∈ ni. Each charging station is
connected via an undirected graph G with vertices and edges
defined as V and E , respectively [29]. Each charging station
in set V communicates across its edges E to optimize each
charging rate xi,p and come to consensus on their aggregate
charging loads xi. The level of consensus is facilitated by
the size of the regularization parameter λ; refer to [29] for
details. Across this undirected network, the charging station
subsystem uses its own distributed control logic to minimize
the total EV charging load. The charging station objective
function is of the form

minimize
∑
i∈V

fi(xi)︸ ︷︷ ︸
node objective

+
∑

(j,k)∈E

gj,k(xj ,xk)

︸ ︷︷ ︸
edge objective

i = 1, ..., N j ∈ N (i)

(2)
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Fig. 1. Communication schematic of the NALD algorithm. The red (ga) represents the grid aggregator, the blue (b) represents the building, and the orange
(cs) represents the charging stations. The arrows show the direction of communication during an iteration. Specific descriptions for the grid aggregator,
building, and charging station subsystems can be found in Sections II-A, II-B, and II-C, respectively.

where the node objective fi(·) is a cost function associated
with node (charging station) i and the edge objective gj,k(·, ·)
is a cost function associated with edge (j, k) [29].

In the NALD algorithm developed in [23], the local node
objective for the charging station subsystem was to minimize
the peak load while keeping each EV charging rate within
specified bounds to ensure a full charge, or

fi(xi) = Pb +

ni∑
p=0

xi,p︸ ︷︷ ︸
Power Component

+ c

ni,a∑
z=0

(
Ei,a
xi,a

)
︸ ︷︷ ︸

Time Component

s.t. xmin,p ≤ xi,p ≤ xmax,p

(3)

where Pb is the building power, Ei,a the remaining energy
each EV would need to consume to reach full charge, a is
an active plug, and c is a weight on the time component.
The reader is referred to [23] for details of each component.
It was found that this typically imposed a narrow range
of charging rate bounds, limiting the flexibility of the EV
charging controller each iteration and thus its overall ability
to contribute to the reference tracking.

We now define a new node objective function for the
charging station subsystem that allows for increased flexi-
bility. While the distributed, consensus-based control logic
remains, the specific node objective function fi(·) is slightly
altered. In addition to the increased flexibility, the new node
objective function is more similar to the other subsystems’

objective functions. This similarity will enable each individ-
ual objective to be more easily tuned (refer to Section III).
The new charging station node objective function is thus

fi(xi) = ω1

(
(Pset − Pb)−

ni∑
p=0

xi,p

)2

+

ni∑
p=0

ω2 (xmin,p − xi,p)2 + ω3Ψcs

ni∑
p=0

xi,p

s.t. 0.0 ≤ xi,p ≤ xmax

(4)

where the first term is the (global) power setpoint tracking
term, the second is the (local) minimum charge bound
tracking term, and the third is the sensitivity term. From the
bottom right of Fig. 1, Ψcs = γb. Here, Ψcs is used in the
charging station subsystem’s objective function to facilitate
coordination.

Because the the charging station subsystem can only
communicate with the grid subsystem indirectly through the
building, it actually tracks the power difference Pset − Pb
instead of tracking Pset. In the second term of (4), the EV
at each plug p in charging station i attempts to track its
minimum charging rate xmin,p at that time. This minimum
charging rate refers to the minimum possible charging rate
each EV can implement to be fully-charged by its departure
time (updated at each time step). In this new objective
function (4), the bounds described in [23] are removed,
allowing each EV to optimize its charge rate over the full
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charging range 0.0 < xi,p < xmax = 6.6 kW. This wider
range allows the charging station controller to better support
the grid. Last, note that since the charging station subsystem
does not use MPC, it communicates an array of constant
signals across the finite horizon to the building subsystem.

III. COORDINATION THROUGH SENSITIVITY

In Fig. 1, the building and grid aggregator subsystems
calculate their sensitivities γb and γga according to

γ =
∂J

∂V
(5)

where in each case J is their objective function and V is their
incoming disturbance from their neighbor (s). In this work,
the charging station subsystem’s sensitivity γcs is calculated
similarly to facilitate improved subsystem coordination to
prior work [23]. The charging station sensitivity γcs is
calculated using

γcs =
f(xi)

l−1 − f(xi)
l

V l−1cs − V lcs
=

∆f(xi)

∆V
(6)

where f(xi) is the node objective function, Vcs is the
incoming disturbance from the building Pb, and l is the
iteration number. The meaning of this discrete sensitivity
calculation — as read by the building subsystem — can be
reflected in four different cases, providing a framework for
cooperative communication between the subsystems. Table I
summarizes these four cases.

TABLE I
CHARGING STATION SUBSYSTEM SENSITIVITY CASES AND

INTERPRETATIONS

*cont. = continues

Case Characteristics of (6) Interpretation
1 ∆f(xi) > 0; ∆V < 0 Pb keeps ↑ so f(xi) cont. to ↓
2 ∆f(xi) < 0; ∆V > 0 Pb starts to ↑ to help ↓ f(xi)
3 ∆f(xi) > 0; ∆V > 0 Pb keeps ↓ so f(xi) cont. to ↓
4 ∆f(xi) < 0; ∆V < 0 Pb starts to ↓ to help ↓ f(xi)

A. Optimal Weighting

In order to achieve the best algorithm performance, the
weights in each subsystem’s objective function must be
appropriately tuned. Within the NALD algorithm, there
are seven different adjustable weights: the grid aggrega-
tor subsystem objective function weights Qga1 and Qga2 ,
the building subsystem objective function weights Qb1 and
Qb2 , and the charging station subsystem objective function
weights ω1, ω2, and ω3. In this work, weights Qga1 =
1000, Qga2 = 1.0, Qb1 = 2.0, and Qb2 = 2.0 are held
constant. These values were selected based on simulation
experiments and can be modified to achieve user preference.
We then manually tuned ω1, ω2, and ω3 in the charging
station subsystem. We plot their performance in terms of
the normalized (by its maximum value) mean average error
(MAE) and normalized root mean square error (RMSE) for
each subsystem compared to the sum of their local and global
references. We then determine the total error magnitude by

adding each normalized tracking error for each scenario. The
results are shown in Fig. 2.

Fig. 2. Top: Normalized tracking error magnitude at each weight scenario.
The y-axis represents the sum of the normalized tracking errors (three
values each normalized to [0, 1] and then added) and the x-axis indicates
the charging station weights used for each test case (same as the x-axis
in the bottom plot). Bottom: Mean absolute building and charging station
sensitivity values. The sensitivity magnitudes are almost the same in the third
scenario. The black circles represent the results associated with the weights
selected and the square markers represent the scenarios with ω3 = 0.0.

In Fig. 2, ω1 = ω2 and ω3 = 1
2ω1 in all cases except the

last. From the base case to a factor of 10 decrease in weight
values, the normalized error magnitudes (MAE and RMSE)
decrease significantly. Notice a slight point of inflection at
weights ω1 = 0.2, ω2 = 0.2, ω3 = 0.1, indicated as the
circled point in the top plot. At these weights, the sensitivity
values have nearly the same average absolute magnitude
as shown in the bottom plot of Fig. 2, meaning that the
sensitivities of each subsystem will carry approximately
the same weight in the overall optimization to facilitate
subsystem coordination and tuning. For these reasons, these
weights were chosen as the most beneficial and will be used
for the remainder of this paper. If ω3 = 0.0, the optimization
does not depend on the charging station’s sensitivity and the
error is the lowest across all of the weight choices shown
for the scenario studied. However, this weight scheme is not
chosen for reasons described in Section IV-C.

B. Smoothing

With objective function weights Q and ω properly tuned,
the power and sensitivity signals from each subsystem are
still very noisy, resulting in errors greater than desired. To
alleviate this issue, we implement each subsystem’s control
signal U via

U l = βU l−1 + (1− β)U lQP (7)

where l is the communication iteration number, U lQP is the
optimal control action determined by each objective function
at iteration l, and β is the tunable convex combination
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parameter that filters high frequency control changes. This
β smooths out the trajectory of each subsystem’s actions.
Note that the LC-DMPC algorithm in [25] already includes
(7), while the charging station subystem in [23] does not.
Hence, in [23], β = 0.1 for the grid aggregator and building
subsystems. The filter (7) is now applied to all subsystems
and the algorithm performance using different values of β is
shown in Fig. 3.

Fig. 3. Normalized MAE for each objective across different values of
β. There are different minima in the normalized error magnitudes for each
objective depicted by the appropriately colored circles.

Fig. 3 shows that each of the three error measures are
minimized at a different value of β: β = 0.9 for the power
reference tracking error, β = 0.1 for the minimum charge
bound error, and β = 0.5 for the temperature tracking error.
Thus, selecting β depends on operator priorities regarding
which error is most important.

To further investigate the effect of (7) on the performance
of the NALD algorithm, we define a smoothness metric Sφ
to determine the noisiness of a signal as

Sφ = ‖(φm − φm−1)‖2 (8)

where φ represents the signal of interest and m represents
each discrete time step in φ. Equation (8) is the `2-norm on
φ. As Sφ is larger, the signal is more noisy and vice versa.

Fig. 4. Measure of smoothness for each signal (total power Ptot, building
power Pb, charging station power Pcs, building sensitivity γb, and charging
station sensitivity γcs signals) across different values of β.

Fig. 4 plots the smoothness of five separate signals, which
is normalized to aid visualization of the trends. Each signal
in Fig. 4, apart from the charging station sensitivity signal,
increases in smoothness as β increases where β = 0.9
generally results in the smoothest signal. When considering
results in Fig. 3 and 4, we use β = 0.9 for the remainder of
this paper.

IV. RESULTS AND DISCUSSION

A. Simulation Setup

We now establish the simulation environment. First, the
grid aggregator receives an arbitrary six-hour power refer-
ence signal Pref initially centered at 80 kW with a start time
of 08:20, increased to 110 kW at 10:50, and finally decreased
to 60 kW at 12:30. This signal includes some normally
distributed random fluctuations from the mean values. Like in
[23], real weather conditions, including outdoor temperature
and solar irradiance as well as an estimated internal load
profile, are applied to the building model ( [26], [28]). For the
charging station subsystem, three charging stations are used
with 8, 10, and 9 plugs in each. Up to three charging events
on each plug are allowed per day, but not all plugs experience
three events, resulting a total of 43 total events. The EV
events are randomly chosen from a large dataset generated by
the software in [30]. Six communication iterations between
control time steps of one minute are used. A MPC horizon
length of three minutes is used.

B. Simulation Results

To illustrate the performance of the NALD algorithm, we
plot a time series of each tracking term in Fig. 5. The
building internal temperature tracking is shown in the top
plot, followed by the minimum charging rate bound xmin,p
tracking in the middle plot, and finally, the total power
reference tracking in the bottom plot.

As discussed in Section II, the NALD algorithm contains
two local subsystem objectives and one global objective.
The top plot of Fig. 5 shows that the temperature profile
is very smooth and remains within 1.24◦C of the reference
temperature. The oscillations in the temperature profile are
due to the sharp changes in the power reference signal,
changes in individual subsystem power consumption, and in
some cases, the constant increase in outdoor temperature.
The latter two effects can be seen near 09:10. Here, the
charging station initially consumes less power, which means
that to track the power setpoint the building must consume
more power. However, as time progresses, the charging
station begins consuming more power, so the building begins
consuming less. This, along with a steady increase in the
outdoor temperature, causes the rise in building temperature
in the top plot of Fig. 5. In addition to the excellent tracking
of the internal building temperature, the temperature stays
within the thermal comfort bounds, successfully fulfilling the
building subsystem’s local objective.

Recall from Section II-C that the charging station sub-
system’s local objective is to minimize the difference from
the charging rate xi,p of each EV at plug p in charging
station i from its corresponding minimum charge rate xmin,p.
The middle plot in Fig. 5 shows that the aggregate charging
station load somewhat follows the minimum charge bound. It
is relatively smooth, but has some lag in its response between
08:20 – 10:00. This lag is due to the phase lag on the control
action from the large β value along with the selected initial
conditions. It is important for the aggregate charging load
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Fig. 5. Top: Temperature tracking within the building subsystem. The two
grey lines show the temperature bounds, the dashed black line shows the
reference temperature, and the blue line shows the actual building internal
temperature. Middle: Minimum charging rate bound tracking. The black
dashed line represents the aggregate minimum charging rate of each EV
and the orange line represents the actual aggregate charging rate of each
EV. Bottom: Total power reference tracking of the NALD algorithm. The
black dashed line shows the power reference signal Pref and the red line
shows the total power consumed by both the building and charging stations.

to follow the minimum charge bound both to minimize the
overall charging load and to allow the EVs to fully charge by
their departure times td,p. In this work, we do not quantify
whether each EV is fully charged by its departure time
because the simulation occurs during a partial day, i.e., some
charging events have not reached their departure time when
the simulation ends. However, total energy consumed by the
EVs is more than 120% of the energy required to meet the
minimum charge bound. From this calculation, we deduce
that the EVs consume enough energy to at least get near full
charge by their departure times.

The global objective of the NALD algorithm is to provide
ancillary services to the grid by following an allotted power
reference signal. The bottom plot in Fig. 5 shows the power
reference tracking performance of the NALD algorithm for
this specific scenario. After an initial spike due to initial
conditions, the total power signal in the bottom plot of Fig.
5 follows the reference signal extremely well. In fact, the
MAE for the entire time series is less than 3 kW (2.92 kW).

C. Importance of the Charging Station Sensitivity Term

While it may not appear optimal to include non-zero
ω3, in terms of the results shown in Fig. 2 and Fig. 5, it
proves to be critical in other scenarios. Fig. 6 shows the

Fig. 6. Top: New power reference signal used compared to the signal
used to produce the Section IV-B results. Second Plot: Power consumed
by the building. Third Plot: Power consumed by the EVs. Bottom: Internal
temperature of the building as well as the outdoor temperature, including
the upper and lower temperature bounds. Note that each plot shows the
response for cases ω3 = 0.1 (black) and ω3 = 0.0 (red). The temperature
violation is marked by the black circle.

building and charging station power usage along with the
building temperature for the same six-hour period described
in Section IV-B. However, we include another, much smaller
power reference signal, as shown in the top plot in Fig. 6.
When the charging station subsystem does not account for
the building’s sensitivity (ω3 = 0.0) any sort of coordination
is removed. This lack of coordination causes the building
to violate its upper temperature bound, as depicted by the
solid black line in the bottom plot of Fig. 6. Conversely,
if ω3 = 0.1, the charging station can see the needs of
the building and thus coordinates. This coordination slightly
worsens the minimum charge bound tracking of the charging
station subsystem, but improves the temperature tracking of
the building. Hence, ω3 = 0.0 decreases the robustness of
the NALD algorithm in more difficult cases such as the one
shown from Fig. 6. Note that with ω3 > 0, the power signal
shown in the middle plot of Fig. 6 is much noisier than in
Fig. 5. This is a matter of scaling and smoothing and is
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something that will be investigated in future work.

V. CONCLUSIONS

As more controllable devices are introduced onto the grid,
their ability to provide services to the grid is limited by their
individual needs and capabilities. If these devices communi-
cate in a cooperative manner, they have the ability to provide
ancillary services to the grid while continuing to perform
optimally. The NALD algorithm provides a framework to
do just that, even with a diverse set of subsystems. While
the NALD algorithm previously proved to perform well in a
unique scenario [23], this work takes a step toward further
generalizing the algorithm. By altering the objective function
in the charging station subsystem designed in prior work
to resemble the LC-DMPC objective function, the charging
station’s sensitivity value can be calculated in a way that is
similar to and thus better understood by other subsystems
in the LC-DMPC framework. With proper weighting and
smoothing parameters applied, the updated NALD algorithm
yields a much improved performance compared to [23].

While these improvements take a step towards a gen-
eralized method for coordinated communication between
controllable devices, additional opportunities for improve-
ment remain. Future work involves further generalizing the
NALD algorithm by normalizing its objectives and variables.
Additionally, as an attempt to move toward real-world imple-
mentation, real reference signals will be explored, including
real-world performance criteria. Last, as the NALD algo-
rithm becomes more generalized, other controllable devices
(in addition to buildings and EVs) will be explored and
implemented into the framework.
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[13] J. Drgoňa and M. Kvasnica, “Comparison of MPC strategies for
building control,” in Int. Conf. on Process Control, 2013, pp. 401–
406.

[14] F. Oldewurtel, A. Ulbig, A. Parisio, G. Andersson, and M. Morari,
“Reducing peak electricity demand in building climate control using
real-time pricing and model predictive control,” in 49th IEEE Conf.
on Decision and Control, 2010, pp. 1927–1932.
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