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ABSTRACT: Nanoparticles are an important class of materials
that exhibit special properties arising from their high surface
area-to-volume ratio. Scanning transmission electron micros-
copy (STEM) has played an important role in nanoparticle
characterization, owing to its high spatial resolution, which
allows direct visualization of composition and morphology with
atomic precision. This typically comes at the cost of sample
size, potentially limiting the accuracy and relevance of STEM
results, as well as the ability to meaningfully track changes in
properties that vary spatially. In this work, automated STEM
data acquisition and analysis techniques are employed that
enable physical and compositional properties of nanoparticles
to be obtained at high resolution over length scales on the order of microns. This is demonstrated by studying the localized
effects of potential cycling on electrocatalyst degradation across proton exchange membrane fuel cell cathodes. In contrast to
conventional, manual STEM measurements, which produce particle size distributions representing hundreds of particles, these
high-throughput automated methods capture tens of thousands of particles and enable nanoparticle size, number density, and
composition to be measured as a function of position within the cathode. Comparing the properties of pristine and degraded
fuel cells provides statistically robust evidence for the inhomogeneous nature of catalyst degradation across electrodes. These
results demonstrate how high-throughput automated STEM techniques can be utilized to investigate local phenomena
occurring in nanoparticle systems employed in practical devices.
KEYWORDS: automation, nanoparticles, scanning transmission electron microscopy, Python, proton exchange membrane fuel cell

Nanoparticles are studied and used across multiple
disciplines, including heterogeneous catalysis,1−4

energy storage and conversion,5−8 electronics,9−11

sensors,12−14 medicine,15−18 biomedical engineering,19−21 and
environmental remediation.22,23 Nanoparticles offer special
surface,24 electronic,12 optical,18 magnetic,25 and catalytic26

properties due to their high surface area-to-volume ratio and
tunable physicochemical characteristics, resulting in enhanced
performance compared to their bulk counterparts. For both
physical26−28 and biological systems,29,30 the performance of
nanoparticles can be impacted by both particle size distribution
and chemical composition. Current methods for quantifying
nanoparticle size distributions include X-ray diffraction
(XRD),31 small-angle X-ray scattering (SAXS),32 scanning
probe microscopy (SPM),33 and scanning/transmission
electron microscopy (S/TEM).34 STEM is often chosen for
nanoparticle characterization when atomic-scale information or
local variations in properties are sought, as direct imaging and

spectroscopy can be performed with sub-Ångstrom spatial
resolution.35,36 However, application of STEM to practical
nanoparticle systems used in devices is often met with
challenges of statistical significance arising from limitations in
the area/quantity of material that can be examined.
For example, STEM is frequently utilized for characterizing

proton exchange membrane fuel cell (PEMFC) cata-
lysts,28,37−40 which typically comprise Pt-based nanoparticles
supported on carbon black. Minimizing degradation of the Pt-
based oxygen reduction reaction (ORR) cathode catalyst is
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one of the main challenges for implementing PEMFCs in
heavy-duty vehicles,41 where catalyst durability and efficiency
become increasingly important.42 Analysis of the distributions
of catalyst particle sizes and compositions is crucial for
understanding catalyst degradation during fuel cell opera-
tion,43,44 and STEM can provide direct insight into the relative
contributions of different degradation mechanisms, such as
Ostwald ripening, particle coalescence/migration, and particle
detachment,37,45 to performance loss. The small volume
analyzed during manual instrument operation and time-
consuming conventional data analysis methods yield potential
operator bias and often poor statistics, with particle size
distribution measurements typically limited to hundreds of
particles.28,37−40

In this work, we employ automated data acquisition and
analysis methods that significantly improve the throughput and
statistical robustness of STEM particle analysis while reducing
operator bias and generating spatially resolved results. Using
the PEMFC cathode as a model system, we utilize these
techniques to study the local effects of accelerated stress tests
(ASTs) on catalyst particle degradation within the cathode.
Automated STEM image and energy-dispersive X-ray spec-
troscopy (EDS) map acquisition using commercial software
was paired with high-throughput data analysis using custom
Python codes to provide particle size distribution, number
density, chemical composition, and precious metal loading as a
function of position in the electrode. Using these methods, the
physical properties of over 100,000 particles at the beginning

of test (BOT) and 40,000 particles at the end of test (EOT),
after 90,000 potential cycles, were analyzed in cross-sectional
electrode slices taken from PEMFC membrane electrode
assemblies (MEAs). To verify the accuracy of the average
automated STEM results, cathode catalyst particle size
distributions were determined for the same set of samples
using small-angle X-ray scattering (SAXS), a bulk technique
providing particle size distributions based on scattering from
trillions to quadrillions of particles at typical PEMFC catalyst
loadings. In addition, site-specific compositional information
was obtained by EDS for thousands of particles for the BOT
and EOT electrodes, respectively. Combined, these advance-
ments greatly improve the statistical relevance of STEM data
sets, enhance the efficiency in instrument use, reduce human
bias and error, and allow spatially resolved information to be
obtained across functional devices.

RESULTS AND DISCUSSION
Workflow of Automated Imaging and High-Through-

put Image Analysis. The general workflow of automated
imaging and high-throughput image analysis is shown in Figure
1. Automated image acquisition was performed using the
Thermo Scientific MAPS software. As shown in Figure 1a, the
process begins by manually positioning an array of “tiles” over
a region of the electrode cross section. A slight overlap allows
for minor backlash and drift in the stage movement from one
tile to the next to be corrected in postprocessing, in this case
using image cross-correlation realized by a custom Python

Figure 1. Diagram of workflow for (a) automated HAADF-STEM and spectrum image acquisition using the Thermo Scientific MAPS
software and (b) high-throughput image analysis using custom python codes employing geodesic active contour and watershed algorithms to
measure individual particle properties.
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code. Once the image acquisition parameters are set, the
software iteratively moves through the tile set, autofocusing at
each position before recording and saving an image. In
addition to the high-angle annular dark-field (HAADF) signal,
spectroscopic data can also be recorded automatically to
correlate particle size with composition. The STEM-EDS
arrays cover a smaller area of the electrode due to the longer
acquisition times required to generate spectra with sufficient
signal-to-noise for reliable quantification.
Following completion of the automated acquisition, the

large data sets are transferred to high-performance computers
for analysis. Particle size measurements are generally
performed by separation of the particle area from the
background through thresholding, with additional segmenta-
tion to separate overlapping particles. A brief review of this
topic can be found in the Supporting Information. Semi-
automated procedures following these basic steps have
previously been developed to identify and analyze nano-
particles from TEM micrographs.46−48 Here, we expand on
this initial work by fully automating the process49−60 to
provide spatially resolved statistical measurements of physical
and compositional properties. Figure 1b illustrates our
workflow for automated particle size measurements from
HAADF images. Briefly, the boundaries, or contours, of
particles were identified using a morphological geodesic active
contour (GAC) method (scikit-image Python package) based
on the concept and algorithm introduced previously in the
literature.61−63 The morphological GAC method is able to
distinguish particles on a varying background created by the
porous carbon support and accurately estimate their

boundaries, whereas more common methods like Otsu
thresholding tend to underestimate the particle sizes at this
step. To separate overlapping particles, further segmentation
was performed using a watershed algorithm (OpenCV Python
package). Particle size was then defined as the diameter of a
circle with area equal to the particle region. Objects <1 nm in
diameter were excluded from the analysis, as features of this
size exclusively originated from morphological GAC artifacts.
Particles >30 nm, which account for <1% of total number of
particles, were also excluded as these tended to be dense
agglomerates consisting of smaller particles that could not be
segmented properly using the watershed algorithm. The
coordinates of each particle within a given image were also
determined. Combined with positions of the tiles obtained
from the automated image acquisition (Figure 1a), the position
of each particle could be determined, allowing spatially
resolved measurements to be made. For spectrum images,
the segmented particles defined in the simultaneously recorded
HAADF-STEM images were used as masks to obtain a
summed spectrum for each particle that could be quanitified.
For additional details on the automated acquisition and
analysis, see the Methods section.
Particle Size Distribution at BOT vs EOT. Automated

STEM data sets acquired from the cathodes of BOT and EOT
MEAs are presented in Figure 2a,b. Each data set is composed
of an array of over 100 images spanning the full electrode from
the gas diffusion layer (GDL) to the membrane. As average
particle size generally increases with cycling, a larger pixel size,
and hence reduced number of images, was used to capture the
EOT data.

Figure 2. Area of MEA cathodes used for particle measurements at (a) BOT and (b) EOT. (c) Particle size distribution obtained from three
manually selected images containing a total of ∼1000 particles for each sample. (d) Particle size distribution obtained from high-throughput
STEM analysis of ∼108k particles at BOT and ∼43k particles at EOT. (e) Particle size distribution obtained from SAXS with high-
throughput STEM data overlaid in dotted lines.
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Figure 2c shows the particle size distributions obtained from
a set of three STEM images containing ∼1000 particles chosen
manually from the image array to avoid agglomerates, as is the
typical practice for conventional STEM particle size measure-
ments. This is compared with the particle size distributions of
the full BOT and EOT data sets consisting of tens of
thousands of particles spanning the full electrode (Figure 2d),
along with the particle size distributions of the same MEAs
obtained by SAXS (Figure 2e). The overall particle size
distributions appear to roughly agree among the three
methods, but the conventional approach (Figure 2c) shows
more variation in the histogram than the high-throughput
analysis (Figure 2d). The particle size distribution obtained
using SAXS (Figure 2e) agrees with the STEM data, where the
BOT effective particle diameter peaks around 3−4 nm and the
EOT peaks above 5 nm with a tail that extends to ∼25 nm.
To establish the lower limit for the number of particles that

must be analyzed to achieve accurate results, we analyzed the
effect of sampling on the BOT and EOT particle size
distributions. As opposed to Figure 2c, where images avoiding
particle agglomerates were intentionally chosen, a random
number generator was used to select subsets of particles from
the full data set. In this case, no operator bias should be
present. Figure 3 shows the results for subsets of the data
consisting of 100, 250, 500, 1000, and 2500 randomly selected
particles. For each sample size, the random selection process
was repeated five times to capture the degree of variation. With
increasing sample size, the median particle size gradually trends
toward the value of the full data set (indicated by the blue
arrows in Figure 3a), and the standard deviation of the
measured medians decreases. Correspondingly, the standard
deviation in the particle size distributions also decreases with
increased sample size. It is noted that the EOT electrode shows
higher standard deviation than the BOT electrode because the
particle sizes are generally larger and distributed over a wider
range as the catalyst degrades. Based on the standard
deviations presented Figure 3, at least 1000 particles are
recommended for reliable particle size measurement of a given

region. This is consistent with Figure 2c, where the
conventional-sized data set, albeit noisier, reasonably matches
the larger sample sizes of the automated data set and SAXS
measurement. It is acknowledged that this work only examines
the through-plane inhomogeneity of catalyst particles from a
very small volume of the original MEA. Degraded fuel cell
electrodes can also exhibit in-plane particle growth and metal
dissolution inhomogeneities depending on the location relative
to the gas flow field.64,65 Capturing these broader variations
will be the subject of future efforts.
Particle Size Variations as a Function of Electrode

Position. In addition to improved statistics, the high-
throughput automated STEM approach unlocks the ability to
track changes in particle properties as a function of the position
across the electrode. For spatially resolved particle size
distribution analyses, we separated the overall data sets into
sections along the through-plane direction from the GDL to
membrane. Each section contained approximately 3000
particles, resulting in section widths of 200 and 400 nm for
BOT and EOT, respectively.
Figure 4 shows plots of the variation in particle size between

the GDL and membrane for the BOT and EOT cathodes. The
red dots represent the median particle size in each slice, the
blue region represents the middle 50% of particle sizes, and the
green region represents the middle 90% of particle sizes. These
results show that the distribution of particle sizes is skewed
toward large particles for both the BOT and EOT MEAs. The
entire particle size population shifts toward larger sizes after
cycling, including the median particle size as well as all
boundaries. Along the through-plane direction, the median
particle size at BOT is relatively constant, whereas at EOT, the
median size decreases from the GDL to the membrane. This
phenomenon is attributed to a faster Pt dissolution rate near
the membrane, where dissolved Pt ions diffuse quickly toward
hydrogen that has crossed over from the anode and are
reduced to Pt metal in the membrane.28,37,66−69 While this has
been observed by conventional imaging28,37,66,67 and derived
by modeling68,69 previously, Figure 4 offers a direct and

Figure 3. (a) Variations in measured median particle size as a function of the number of particles measured. Median particle sizes were
measured from five random sets of particles at each sample size, and results are displayed as the mean (points) and standard deviation
(shaded regions) of these measurements. Blue arrows indicate median particle sizes from the full data set. (b) BOT and (c) EOT particle size
distributions displayed as the means (solid lines) and standard deviations (shaded regions) for the data shown in (a).
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statistically robust observation of this trend. In addition, Figure
S1 shows particle size distributions corresponding to each
point in Figure 4. Interestingly, the fraction of small particles
increases near the membrane/cathode interface for the EOT
MEA, in agreement with Figure 4b, whereas the distributions
at BOT are similar throughout the electrode.
Acquiring images across the whole electrode also enables the

absolute number of particles and consequently the catalyst
loading to be estimated. This analysis reveals a staggering loss
of over 75% of the smaller Pt particles (<10 nm) as a result of
AST cycling (Figure 5a−c), which is not fully captured by the
change in particle size distribution alone. Figure 5a,b displays
the number of particles per square micron across the MEA
cross section, termed particle number density, at BOT and
EOT, respectively. Figure 5c then displays the estimate of the
total particle loading per unit electrode area (cm2) based on
particle number densities in Figure 5a,b and a nominal
microtome cross section thickness of 75 nm. Unlike the smaller
particles, the number of larger particles and agglomerates (>10
nm) remains mostly unchanged after cycling (Figure S2a),
except in the region near the membrane (Figure S2b).
According to the Gibbs−Thomson relation, the rate of Pt
dissolution increases as Pt particle size decreases.70 Thus, the
more drastic loss of smaller particles relative to larger particles
and agglomerates is to be expected. The decreased particle
number density near the membrane at EOT suggests enhanced
Pt dissolution in this region28,37,67−69 (Figures 5b and S2b).
This is caused by hydrogen crossover from the anode which
reduces the dissolved Pt ions into metallic Pt particles near the
cathode and further drives the diffusion of Pt ions from the

cathode into the membrane.68,69 Thus, a depleted region is
observed in the region of the cathode near the membrane, and
a Pt band is formed in the membrane, as shown in Figure 2b
and the STEM-EDS maps of Figure S3. A net Pt loss of ∼36%
was estimated by taking the ratio of the net Pt-L counts from
the electrode to that from the Pt band (Table S1).50 The
significant loss in total precious metal loading was corrobo-
rated from the automated particle size measurements by
calculating the Pt loading from the particle size distributions.
As shown in Figure 5d,e and Figure S2c,d, the Pt loading
profile from GDL to the membrane follows a trend similar to
that of the number density. The estimation of the total Pt
loading at BOT (Figure 5f) is comparable to the nominal Pt
loading of 0.25 mg/cm2 as measured by X-ray fluorescence
(XRF). In line with the STEM-EDS quantification (Table S1),
the estimated Pt loading at EOT dropped by ∼25% (Figure
5f), with nearly three-fifths of that loss arising from the
dissolution of particles <10 nm in size. It is worth noting in
Figure 5f that particles >10 nm contribute to the majority of
estimated Pt loading at both BOT and EOT. This agrees with
SAXS results where a similar trend can be seen in Table S2.
While SAXS measures several orders of magnitude more
particles than the high-throughput automated STEM method,
Table S2 shows that both techniques arrive at comparable
values of median particles and percentages of Pt volume (or
loading) attributed to small (<10 nm) and large (>10 nm)
particles. Considering that the two techniques sampled
different regions from the same MEAs, such agreement
provides a strong validation for the high-throughput method
developed in this work. Furthermore, the estimated geometric
surface area (GSA) between the two techniques is in close
agreement with each other and with the MEA measurement of
electrochemical surface area (ECSA) of 34 m2/gPt at BOT.
The ECSA is measured in a fuel cell using cyclic voltammetry
where the adsorption of hydrogen on Pt can be quantified and
represents the ratio of the electrochemically active Pt surface
area to the Pt loading (m2/gPt). Conventionally, ECSA
calculated at EOT is normalized to the Pt loading at BOT,
which convolutes surface area losses from particle growth with
Pt migration into the membrane (Figures 5 and S2 and S3).
Not surprisingly, the EOT GSA determined by STEM and
SAXS are significantly larger than the EOT ECSA, as these
values are normalized to the EOT Pt loading. Taking the range
in Pt loss (25% from Figure 5f and 36% from Table S1) into
account, the ECSA at EOT can be corrected to 21−24 m2/gPt,
which is in good agreement with the high-throughput method
and SAXS (Table S2). This analysis also indicates that roughly
two-thirds of the ECSA loss originates from particle growth,
while the other one-third can be attributed to irreversible Pt
migration into the membrane. Operating schemes or specially
designed electrode structures which prevent Pt migration out
of the electrode may help reduce ECSA losses and
consequently improve fuel cell durability.
Particle Compositions. The change of Co atomic percent

(at. %) relative to Pt, i.e., Pt1−xCox, from BOT to EOT is
another important indicator of electrocatalyst degradation, as
the presence of Co in the nanoparticle core contributes to the
enhancement of ORR activity by modifying the surface lattice
strain and Pt d-band center of the catalyst particles.24,28 The
Co at. % obtained from wide-angle X-ray scattering (WAXS)
(Figure S4) is comparable with STEM-EDS quantification of
the spectrum from the entire electrode (Table S3). Averaged
line scans extracted from the STEM-EDS maps of the entire

Figure 4. Variations in particle size as a function of through-plane
position for (a) BOT and (b) EOT electrodes. Median particle
sizes (red dots) are plotted along with the middle 50% (blue) and
95% (green) of particle sizes.
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electrode show an uneven distribution of Co composition for
the EOT MEA, as plotted in Figure S5a. Areas near the
membrane show relatively higher Co at. % (with higher
standard deviation, as well) than the rest of electrode. In

addition to Co leaching, Pt dissolution and redeposition
contribute to the relative change of Co at. %. Areas near the
membrane show higher loss of PtCo particles and smaller
particle size due to a higher Pt dissolution rate (Figures 4 and

Figure 5. (a,b) Particle number density as a function of through-plane position from the GDL to the membrane at BOT and EOT,
respectively. (c) Particle loading at BOT and EOT for particles <10 nm and >10 nm. (d,e) Pt loading as a function of through-plane position
from the GDL to the membrane at BOT and EOT, respectively. (f) Estimated electrode Pt loading for BOT and EOT.

Figure 6. Co atomic percent (at. %) plotted versus particle size (nm) for individual particles as a function of position in the cathode at (a)
BOT and (b) EOT. Color indicates the relative position in the cathode. Median values are indicated by the dashed lines in the histograms.
BOT and EOT MEA data sets contained 1560 and 1857 particles, respectively. Dashed boxes highlight the particles with high Co content
observed near the membrane at EOT.
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5), which results in a higher net Co at. %. On the other hand,
areas near the GDL maintained the BOT Pt loading, despite a
large decrease in the total number of particles. This suggests Pt
dissolved in these regions is much more likely to redeposit on
other particles than move through the electrode and into the
membrane. Known as the Ostwald ripening mechanism, Pt
from the more rapidly dissolving small particles redeposits
onto the larger particles in this process, leading to a
concomitant decrease in particle number and increase in
particle size. This Pt redeposition has an additive effect with
any Co dissolution that occurs, resulting in lower relative Co
at. % in regions further away from the membrane.
The automated method allows us to push beyond electrode-

level STEM-EDS mapping and conduct a spatially resolved
analysis of Co at. % versus particle size across the MEA.
Results of automated STEM-EDS mapping and analysis are
presented in Figure 6 as scatter plots of Co at. % as a function
of particle size, along with the corresponding particle size and
Co at. % distributions. The STEM-EDS spectrum images were
collected from four areas across the electrode, as indicated in
Figure S6. The four regions are color-coded in Figure 6; blue
data points represent particles near the GDL, whereas red
points represent particles near the membrane. The size of the
points is proportional to the particle volumes, based on their
measured size and assuming a spherical shape. At BOT, the
scatter plots show a wide range of Co at. % for particles <5 nm,
from 0 to 40%. As particle size increases, the average Co at. %
trends to a higher value until plateauing for particles >10 nm.

Volume averaging all of the particles used in the individual
particle measurements yields a decrease in Co at. % from 25−
30% at BOT to 10−15% at EOT, in agreement with WAXS
and EDS data from the entire electrode (Table S3), and the
correlation between Co at. % and particle size becomes less
pronounced at EOT. Interestingly, an unexpected bimodal
distribution arises for the particles in the depletion zone near
the membrane. Here, the automated imaging and high-
throughput analysis reveal an ensemble of larger particles
(>10 nm) within this depletion zone that exhibit exceptionally
high Co at. %, in the range of 30−40%, as indicated by dashed
boxes in the scatter plot. This likely contributes to the
increased Co at. % near the membrane that was observed in
the STEM-EDS line scans spanning the electrode (Figure S5).
To further explore the bimodal distribution revealed in the

depletion zone, aberration-corrected STEM-EDS mapping of
single particles was performed. Representative particles are
shown in Figure 7 at BOT and EOT, with additional data such
as size and Co at. % summarized for these particles in Tables
S4 and S5 and corresponding HAADF images in Figures S7
and S8. At BOT, Co is distributed homogeneously throughout
the particles, with a thin (1−2 monolayer) Pt skin on the
surface. By EOT, a strong core−shell morphology emerges,
consistent with previous observations,28,71−74 with most
particles exhibiting either a thick, uneven Pt shell over a
small PtCo core or showing nearly complete loss of Co from
the particle core. Consistent with the bimodal particle
composition observed in Figure 6b, a mix of smaller, Co-

Figure 7. Overlaid STEM-EDS maps of representative individual nanoparticles showing decrease in (green) Co content and increase in (red)
Pt-skin/shell thickness from BOT to EOT. The Co atomic percent (at. %) of each particle is labeled at its top right. The bimodal distribution
of low and high Co content nanoparticles in the depletion zone is also shown.
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depleted nanoparticles and larger, Co-rich nanoparticles were
observed in the depleted zone at the EOT. The average Co at.
% and its variations measured from individual particle EDS
maps fall in line with the high-throughput analysis (Figure 6).
The identification of particles with high Co content in the
depleted zone shows the benefit of the automated method
which led to targeted analysis for high-resolution STEM-EDS
mapping. The mechanism behind this bimodal distribution in
the depletion zone merits future investigation.
It is worth noting that particle faceting is not obvious after

cycling, although some facets can be observed for large
particles (>10 nm). Most particles have round edges or close
to a spherical shape after cycling. To show the evolution of
particle shape after cycling, we calculated eccentricity during
the high-throughput analysis. Eccentricity is defined as the
ratio of the distance between two focal points and the length of
the major axis for an ellipse that has the same normalized
second central moments as the region of the particle. An
eccentricity of 0 represents a perfect circle. The resulting
histograms (Figure S9) show a decreasing trend in eccentricity
for particles <10 nm from BOT to EOT, suggesting that
particles become more spherical due to degradation. For
particles >10 nm, there is no obvious change of the
distribution, suggesting that they may be more stable against
degradation. The peak at 0.8−0.9 for particles <10 nm could
be an artifact due to overlapping particles that are not
separated by the software, leading to a highly elliptical shape.

CONCLUSION
This work demonstrates the combination of high-throughput
automated data acquisition and analysis techniques that
significantly improve the statistical relevance of STEM-derived
nanoparticle size distributions and compositional measure-
ments. The larger data sets allow for changes in particle size
distribution, number density, composition, and loading to be
determined as a function of location in real devices,
demonstrated here using fuel cell electrodes before and after
ASTs. We observed that Pt dissolution led to a pronounced
loss of small particles, resulting in a shift of the particle size
distribution toward larger sizes. In addition, we found that loss
of Pt was most severe in the region near the membrane, with
this depletion region showing a slightly smaller median particle
size compared with the rest of the EOT electrode. The
geometric surface area losses from automated STEM and
SAXS measurements suggest two-thirds of the observed ECSA
losses arise from particle growth, with the other third
attributed to Pt migration into the membrane. Individual
particle compositions extracted from STEM-EDS spectrum
images and paired with size measurements using automated
methods revealed an unexpected bimodal distribution in the
Co at. % of the alloy nanoparticles in the depletion region near
the membrane. This motivated additional targeted high-
resolution STEM-EDS mapping, which confirmed the presence
of the bimodal distribution. Our results show that automated
acquisition and high-throughput analysis can reveal details
about the inhomogeneity of catalyst degradation in electrodes
that are unavailable by other methods. The methods used in
this work are applicable to a range of real devices that contain
either supported or unsupported nanoparticles. For heavier
supports with varying contrast, such as alumina-supported
noble metal catalysts for pyrolysis of biomass, oxidation of CO
and hydrocarbons, and water−gas shift reactions, the contrast
between the support and particles can be enhanced by

adjusting parameters associated with background removal. As
the commonly used watershed has limitations dealing with
overlapping particles, future work will focus on better
algorithms and explore machine learning for segmenting
overlapping particles, which would also be beneficial for
characterizing unsupported nanoparticles, such as mixed metal
oxide nanoparticles for gas sensing and metal or macro-
molecule nanoparticle-based therapeutics.

METHODS
Materials. High surface area carbon (HSC)-supported PtCo

(PtCo/HSC, ElystPt500690, Umicore) was used as the cathode
catalyst in this study. Catalyst-coated membranes (CCMs) were
fabricated by Umicore with a nominal cathode loading of 0.25 mgPt/
cm2 and cathode ionomer to carbon ratio (I/C ratio) of 0.83. The
anode utilizes Pt/HSC catalyst (ElystPt200390, Umicore) with a
loading of 0.05 mgPt/cm2. The CCM was sandwiched between two 50
cm2 Freudenberg H23C8 (Fuel Cell Store) gas diffusion layers
(GDLs) to form the membrane electrode assembly (MEA).
MEA Testing Protocols. The MEAs were tested using fuel cell

hardware with a 14 channel serpentine flow field and 50 cm2 active
area on both the anode and the cathode and installed with a bolts’
torque of 40 in-pounds. The assembled cells were installed with a
counter-flow configuration. During the break-in procedure, H2 and air
were supplied to the anode and cathode with a stoichiometric ratio of
0.8 and 2.5. The cell temperature was kept at 80 °C and went through
a series of voltage cycles between 0.6 and 0.9 V, with each potential
hold of 4 min. The voltage recovery (VR) is conducted by holding the
cell voltage at 0.1 V with a flow rate of 0.9 slpm H2 at the anode and
0.5 slpm air at the cathode for 2 h at 40 °C and 150% RH. The VR
improves the electrochemical performance of the cell across the entire
fuel cell potential range, as has been previously reported.75 H2/O2
polarization curves were obtained at 80 °C cell temperature, 100%
RH, and 150 kPa backpressure. The current density value was
recorded at each cell voltage for 4 min and in an anodic direction
from 0.75 V to open-circuit voltage (OCV). H2/air polarization
curves were obtained at a range of cell temperatures and RH
conditions using constant current mode (2.25−0.01 A/cm2). The
stoichiometric ratios at the anode and cathode are 1.5 and 2,
respectively.

The catalyst durability AST was performed by applying square-
waveform potential cycling between 0.6 and 0.95 V to the cell. The
holding time at each potential was 2.5 s, with a ramping time of 0.5 s
and a ramping rate of 700 mV/s between the potential hold. During
the AST cycles, the cell was operating at 80 °C in H2 (anode)/N2
(cathode) environment and 100% RH. More details can be found in
Table P.1 of ref 76. A total of 90,000 (90k) AST cycles were
performed.
Microscopy Sample Preparation and Characterization. To

prepare cross sections of the BOT and EOT cathodes for STEM
analysis, portions of the MEA were embedded in epoxy resin and then
cut by diamond-knife ultramicrotomy, with a target thickness of ∼75
nm. High-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) and energy-dispersive X-ray spectrum
(EDS) images were recorded using a Talos F200X transmission
electron microscope (TEM) (Thermo Fisher Scientific) operated at
200 kV and equipped with Super-X EDS system with 4 SDD
windowless detectors. The Co composition for each MEA cathode
was obtained from EDS elemental maps (21 nm pixel resolution, 10.9
μm field of view) which was processed with the Esprit 1.9 software
(Bruker). HAADF images and EDS maps of individual PtCo particles
were recorded using a JEM-ARM200F “NEOARM” analytical
electron microscope (JEOL Ltd.) operated at 80 kV and equipped
with dual SDD windowless detectors each with a 100 mm2 active area.
Automated Imaging. Automated imaging and EDS acquisition

were performed on the Talos F200X using the Thermo Scientific
MAPS software. Imaging for particle measurements utilized a pixel
size of 0.098 nm and a 200 nm field of view for each image of the
BOT MEA. Considering the reduced density and increased size of
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particles at the EOT, a pixel size of 0.195 and 400 nm field of view
were used for the EOT MEA to increase the total imaging area. The
200 kV electron beam was set to a current of ∼600 pA and a
semiconvergence angle of 10.5 mrad. An array of images (tiles)
covering the entire cathode cross section was generated using the
MAPS software with the above parameters, forming a tile set.
Adjacent tiles were overlapped by 10% for alignment during analysis.
Automatic focusing was performed for each tile. Automated imaging
of the BOT MEA was performed over ∼7 h for a total of 408 images,
acquired overnight without operator intervention or oversight. For the
EOT MEA, 150 images were acquired over approximately 2 h of
automated imaging time.

Automated STEM-EDS acquisition followed a similar workflow
with the addition of recording of a spectrum image before iterating to
the next tile. The spectrum image was recorded with the same field of
view and semiconvergence angle as the image for particle measure-
ment but with a higher beam current of 2 nA to increase X-ray counts
of individual particles. Each spectrum image was recorded with a pixel
size of 0.098 nm and a dwell time of 5 μs, with a total of 150 drift-
corrected frames. Figure S6 shows EDS acquisition areas for each
MEA. As each spectrum image requires ∼15 min acquisition time, the
number of EDS maps acquired was fewer than the number of images
used for the full electrode particle measurements. Maps were recorded
from four zones representing different locations across the cathode.
Notably, the zone near the membrane/cathode interface represents
the “depleted zone” for the degraded cathode at the EOT. Eight maps
were acquired in each zone.
High-Throughput Automated Image Analysis. A custom

Python code was developed to automatically identify particles in an
image and analyze their properties. The code utilized open-source
packages including NumPy, SciPy, scikit-image, OpenCV, and
Matplotlib and was run on high-performance computing resources
in the Compute and Data Environment for Science (CADES) facility
at ORNL.

Contour evolution algorithms (morphological GAC)61 were used
to define the boundary of particles. Following the identification of
particles, segmentation is performed on overlapping or agglomerated
particles using the watershed algorithm which is employed in most
works of automated image analysis.47,52−54,59 Euclidian distance
transformation is performed to compute the Euclidean distance to the
closest zero of each foreground pixels. The local maxima of the
Euclidean distance map are then fed into the watershed function
where a matrix of labels is returned. A label value is assigned to each
pixel and pixels that have the same label value belong to the same
object (particle). Correspondingly, coordinates of the local maxima
are regarded as the position of the particle. The relative shifts between
neighboring images were then determined by cross-correlation of
their overlapping regions, and the particle positions within individual
images were combined with these shifts to define the overall positions
of the particles within the full image array.

Quantification of spectrum images was performed using a custom
Python code on the raw data files recorded by the MAPS software
(Thermo Fisher Scientific). Particles with a signal-to-noise ratio
threshold below five were not considered for quantification.77 In this
context, “signal” refers to background-subtracted and summed Co-K
and Pt-L peak counts, and “noise” is represented by the square root of
the total counts at these peaks, including background. The Python
codes developed for particle size and compositional analysis are
available upon request.
SAXS/WAXS. X-ray scattering at beamline 9-ID-C at the Advanced

Photon Source was utilized to determine the catalyst particle size and
lattice spacings of the PtCo nanoparticles. The cathode catalyst layers
were removed from the catalyst-coated membranes using a press and
peel technique to transfer the layers to Scotch Magic tape (3M).
Monochromatic X-rays with an energy of 21 keV were used and
focused to a beam spot size of 0.8 × 0.2 mm. The scattered X-ray
intensity was obtained over a range of scattering angles/scatterer
dimensions utilizing a Bonse-Hart camera for small-angle X-ray
scattering, a Pilatus 100 K detector for pinhole SAXS (pinSAXS) and
Dectris detector, which is a modified Pilatus 300 K-W detector, for

wide-angle X-ray scattering.78,79 The complete scattered intensity,
I(q), was then obtained by combining the SAXS (10−4 to 6 × 10−2

Å−1) and the pinhole SAXS (3 × 10−2 to 1 Å−1). The WAXS data
covered a d-spacing range from approximately 6 to 0.8 Å. Scattering
from the Scotch tape was subtracted from that of the cathode catalyst
layers. The WAXS data analysis utilized powder diffraction multi peak
fitting 2.0, an Irena macro.80 The position of the (311) scattering peak
was utilized to determine the lattice spacing and this spacing was then
utilized to calculate the Pt to Co ratio in the crystalline portions of the
catalyst particles using Vegard’s law and the nearest neighbor (NN)
distances of 2.7747 and 2.4917 Å for Pt and Co, respectively. The
SAXS data were corrected and reduced with the NIKA software
package,80 and data analysis was conducted using the IRENA software
package.81 Both packages were run on IGOR Pro 7.0 (Wavemetrics).
Particle size distributions were obtained from the measured scattering
data using the maximum entropy (MaxEnt) method, which involves a
constrained optimization of parameters to solve the scattering
equation:

I q F q r V r r r( ) 2 ( , ) 2( ( ))2Np( )d int= | | | | (1)

where I(q) is the scattered intensity, ϱ is the scattering length density
of the particle, and F(q,r) is the scattering function at scattering vector
q of a particle of characteristic dimension r. V is the volume of the
particle, and Np is the number density of particles in the scattering
volume.
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