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The development of materials with precisely tuned elec-
trochemical and physical properties is critical in enabling 
next-generation energy technologies. One example appears 

in redox flow batteries (RFBs), which offer the potential to deliver 
low-cost and reliable energy storage at the grid scale1. Battery 
formulations using organic molecules as the active species are a 
promising alternative, as they are domestically manufacturable, are 
decoupled from markets for transition metals and have a lesser eco-
logical footprint2–4. A wide range of organic redox couples exist and 
have been explored as charge carriers in flow battery applications5. 
Among these, persistent organic radicals are a promising class of 
active species with highly reversible redox processes6. These mol-
ecules have an unpaired valence electron that can be either donated 
or paired with an accepted electron to form a closed-shell species. 
However, due partly to their unique and complex chemistry, rela-
tively few stable radical-containing materials are known to exist6,7. 
As a result, most studies have focused on chemical modifications 
of a handful of well known stable radical scaffolds8, primarily via 
mechanism-based approaches that identify optimal side chains to 
improve performance9–17.

The scarcity of radical scaffolds complicates the tuning of 
their physical and electrochemical properties to meet the strict 
demands of high-performance, low-cost RFBs2,3. For example, 
TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) is currently a 
leading organic catholyte candidate (Fig. 1), but remains uneco-
nomical due to its low oxidation potential (OP) of +0.8 V versus 
the standard hydrogen electrode (SHE)18,19. Viologen derivatives 
have similarly been explored as anolyte materials, but have a 
high equivalent weight (molecular weight per mole of electrons  

transferred)3,14,17,20. The use of separate electrolytes for the anode 
and cathode can result in capacity fade with chemical crossover 
driven by concentration gradients21. The discovery of new stable 
organic radical scaffolds may therefore unlock performance and 
cost targets unachievable with current materials. Recent work has 
demonstrated that the stability of organic radicals, viewed in terms 
of thermodynamic stabilization and kinetic persistence, can be 
estimated using density functional theory (DFT)22. In addition to 
stability, the single-electron half-reaction potentials of organic radi-
cals can be reliably estimated via DFT from their adiabatic electron 
affinity and ionization energy23. Computational screening of many 
requirements for new redox-active moieties is therefore feasible, 
enabling a high-throughput search for potential candidates.

The field of goal-directed molecular optimization has evolved 
rapidly in recent years, boosted in part by improved machine 
learning (ML) tools and generative algorithms24,25. Computational 
lead generation has been predominantly studied in pharmaceuti-
cal research, often through generating serialized molecular struc-
tures as simplified molecular-input line-entry system (SMILES) 
strings that resemble a given training database of compounds26–29. 
Techniques from reinforcement learning (RL) have shown an excel-
lent ability to generate valid molecules with desired properties with-
out relying on an existing database of molecular structures to learn 
valid structural motifs30,31. In particular, methods based on a direct 
tree search of molecular structures using techniques such as Monte 
Carlo tree search (MCTS) offer the ability to precisely control the 
search space of candidate molecules32–36,37.

In this study, we develop a complex and multi-factored objec-
tive function for organic radical charge carriers that includes radical  
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stability, redox potential and synthesizability considerations backed 
by O(105) DFT calculations. We next implement a scalable RL 
approach based on single-player AlphaZero38 that guarantees valid-
ity and low synthetic accessibility score (SAscore)39 for optimized 
molecules. We seek to find a single redox-active species that can 
perform both the oxidation and reduction reactions, simplify-
ing battery design and reducing capacity fade through membrane 
crossover40. Compared with the optimization of an asymmet-
ric battery candidate, this requirement imposes a more complex 
multi-objective optimization challenge, as the quantum chemical 
energies of two one-electron redox processes must be balanced 
within a single small radical scaffold. The generative model yielded 
a large distribution of molecules predicted to meet the desired sta-
bility criteria while simultaneously having suitable OP and reduc-
tion potential (RP). The accuracy of these ML surrogate predictions 
was then validated against DFT calculations, with many radical can-
didates passing all criteria at the DFT level. Furthermore, we per-
formed a post hoc analysis of the predicted retrosynthetic routes for 
the optimized molecules, finding many molecules with reasonable 
synthetic pathways41. This study demonstrates that goal-directed 
molecular optimization, coupled with a highly detailed ML surro-
gate model, can produce realistic candidates for demanding applica-
tions. Additionally, we find that stable radical scaffolds for RFBs are 
more abundant than the limited but well known set of experimen-
tally characterized motifs.

Results and discussion
An overview of the computations performed in this work is shown 
in Fig. 1. We first define our optimization criteria and benchmark a 
DFT workflow against experimental data. We then construct a data-
base of radicals using this workflow, and subsequently train and val-
idate ML surrogate models. RL optimizes these surrogate objectives,  

yielding a set of candidate radicals. We perform both DFT confir-
mation and a post hoc synthesizability analysis on these radicals, 
yielding a final set of candidate results.

Computational features required for organic active species. We 
begin by defining the features required for organic stable radical 
active species to be viable candidates for RFBs (Fig. 1). For com-
mercial viability, RFBs need to achieve a high charge density and 
high reversibility (that is, longevity) at low cost. Active species 
must therefore have a precisely tuned redox potential to take full 
advantage of the solvent’s electrochemical stability window, and a 
highly stable, long-lived radical centre to avoid reactions that might 
reduce the battery’s capacity over time42. We estimate standard 
redox potentials with adiabatic (that is, geometry-optimized) ion-
ization potentials and electron affinities obtained from implicitly 
solvated DFT thermochemistry including vibrational zero-point 
energy. Further, we estimate radical stability using a recently devel-
oped metric that incorporates both thermodynamic and kinetic 
stabilization of the radical centre using three-dimensional (3D) 
structural features and electron spin density obtained via DFT22. 
Highly delocalized and sterically protected radicals are prioritized 
by this approach.

Radical groups must also be synthetically accessible. 
Synthesizability is considered by constraining the SAscore of the 
closed-shell R–H molecule to be less than 4.0 (refs. 39,43) and by 
ensuring that the R–H bond is relatively weak, with a homolytic 
bond dissociation enthalpy (BDE) of 60–80 kcal mol−1 (refs. 44,45). 
While many thermal and photochemical synthetic protocols exist 
to form radicals from a closed-shell parent organic compound (for 
example, deoxygenation, dehalogenation and so on), this BDE con-
straint limits our candidates to those that could be generated by a 
facile and selective late-stage H-atom abstraction.
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Fig. 1 | Overview of the computational strategy and molecular design criteria used for goal-directed optimization of redox-active stable radical moieties. The 
computational workflow (top) demonstrates how top-performing radicals were generated. The bottom panel details criteria considered in the reward function.
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Development of a fast surrogate multi-objective function. To 
ensure the accuracy of aqueous redox calculations, we first bench-
marked a wide number of different density functional, basis set and 
solvation model combinations on an experimental dataset of 174 
redox potentials in acetonitrile (Fig. 2a and Extended Data Fig. 1)46. 
The lowest mean absolute error (MAE) was achieved using M06-2X/
def2-TZVP47 and the SMD solvation model48. An additional bench-
mark comparing calculated and experimental redox potentials in 
water is outlined in Extended Data Fig. 2 (refs. 49,50). We obtain an 
MAE of 0.25 V for 46 molecules using M06-2X/def2-TZVP with 
SMD solvation, with M06-2X similarly yielding the lowest error 
among the functionals considered.

To enable goal-directed molecular optimization, we constructed 
a database of 50,547 OP and 81,854 RP calculations by reoptimiz-
ing radical and charged structures from an existing database of 
organic radicals in an implicit water solvent51. We impose several 
quality checks to ensure convergence of the DFT optimization and 
validity of the resulting energy calculations, including checking for 
normal termination of the DFT method, ensuring that bonds were 
not broken or formed during optimization and that the optimized 
open-shell molecules have minimal spin contamination (Methods).

We next trained a graph neural network (GNN) model to pre-
dict both OP and RP directly from a radical’s chemical connectivity 
(Fig. 2b)52–55. A test set of 2,000 radicals was withheld for validation, 
consisting of 1,773 and 1,052 converged RP and OP calculations, 
respectively. Learning curves plot the models’ prediction error as a 
function of database size (Fig. 2c) and demonstrate that the models 
continue to benefit from additional data even at the full database 

limit. Distributions of prediction errors (in volts) for test-set com-
pounds using the entire training dataset are shown in Fig. 2d, with 
an MAE of 47.4 and 37.4 mV (1.1 and 0.9 kcal mol−1) for OP and RP, 
respectively, close to the ‘chemical accuracy’ target of 1 kcal mol−1.

Using the same chemical connectivity inputs, we trained a second 
surrogate GNN model on a recently published database of radical 
stability scores22,56. In this dataset, radical stability is correlated with 
two quantum chemical descriptors: the delocalization of the radical 
electron’s spin, and the buried volume at the location of maximum 
spin57. This GNN is trained to predict local aspects of the optimized 
3D geometry along with the quantum mechanical electron density 
(more precisely, the density difference between a- and b-spin elec-
trons) at each atomic position. Buried volume and spin density are 
fractional quantities bounded between 0 and 100%. The model 
achieves an MAE of 1% in buried volume prediction and 0.7% in 
predicting quantum mechanical spin densities on each heavy (that 
is, non-hydrogen) atom on 5,000 radicals withheld for validation.

Stabilized radicals tend to have highly delocalized electronic 
structures, where substituents can potentially have a long-range 
influence on stability and redox potential. As demonstrated by 
the learning curves (Fig. 2c,e), the trained GNN models continue 
to benefit from additional training data even with nearly 100,000 
training examples. The GNNs employed in this study use six 
message-passing layers and are therefore able to exchange localized 
chemical information within a radius of six bonds.

These two trained ML models, one for redox potential and one 
for radical stability, quickly and accurately predict many of the rel-
evant parameters for organic radical viability in RFB applications, 
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Fig. 2 | Development of a fast surrogate objective function. a, Prediction accuracy as a function of density functional, basis set and solvation model on an 
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thus fulfilling the role of a viable surrogate for DFT calculations. 
Since RL frameworks typically operate with scalar reward func-
tions, we converted the outputs of these two models into a single 
reward value as follows. First, we computed radical stability scores 
by combining the maximum predicted spin and the buried volume 
at the location of maximum spin. Stability scores range from near 
zero for highly unstable radicals (that is, the methyl radical) to 75 
or higher for radicals known to be stable experimentally22. Second, 
for the redox potential score, a maximum of 100 extra points were 
awarded for meeting each of four separate criteria (25 points each): 
(1) an RP between −0.5 V and +0.2 V, (2) an OP between +0.5 V 
and +1.2 V, (3) a total voltage difference of at least 1 V and (4) an 
R–H BDE between 60 and 80 kcal mol−1. BDEs were predicted for 
the hydrogen-terminated radical using a previously published ML 
model52. We added these two scores together to obtain a single 
reward value. Further details on the exact structure of the reward 
function are provided in Methods.

After constructing an efficient surrogate objective function, we 
next sought to find radicals that maximize this function. Molecule 
optimization was posed as a search over a directed acyclic graph 
(DAG), beginning the search at an initial state of a lone carbon atom. 
In a similar fashion to previous studies, we next considered possible 
actions to transition between states30,31. In this study, each action 
adds a new bond to the molecule, either between two atoms with free 
valence in the original molecule (forming a ring) or between an atom 
in the original molecule and one of a set of possible atom additions. 
We considered only C, N, O or S atoms, as common elements found 
in organic electronic materials (Fig. 3a). To ensure that the molecules 
we generated were realistic, we refined the set of possible successor 
states from a given starting structure by (1) enumerating possible ste-
reoisomers, (2) canonicalizing molecules to tautomer forms58 and (3) 
removing molecules with high SAscore values or highly constrained 
ring systems. To generate radical structures, additional terminal 
successor states were created from intermediate molecules where 
one atom has a hydrogen atom replaced with an unpaired electron.  
A more complete description of the action space, including a com-
parison against previous approaches, is given in Methods.

Candidate optimization through RL. In this study, we limited con-
structed molecules to a maximum of 12 heavy atoms (approximately 
the size of TEMPO), as lower-molecular-weight redox-active moieties  

are preferred for a lower equivalent weight. Including selecting the 
location of the radical electron, this yields a search space of approxi-
mately 109 possible valid radicals, estimated via extrapolating from 
smaller maximum sizes and consistent with previous results59. The 
computational cost of enumerating this space grows exponentially 
with the maximum molecule size, motivating a more efficient strat-
egy for finding top-performing molecules (Extended Data Fig. 3).

A framework for MCTS optimization over the defined DAGs 
was implemented that allows for transpositions, where the same 
molecule can be reached through multiple paths60. Following the 
approach of AlphaZero38, this framework was augmented with a 
policy model that replaces the simulation phase (using a random 
policy) of MCTS with a value score predicted from a GNN, which 
also initializes the prior scores for successor states from the given 
molecule. This policy model is trained in a concurrent process by 
maintaining a buffer of recent MCTS rollouts, sampling in-progress 
molecules and minimizing a multi-objective loss function. The loss 
function contains both the difference between the predicted value 
score and the final rollout reward and the difference between pre-
dicted prior probabilities and the actual search probabilities for 
each of the molecule’s successor nodes (Methods). As MCTS and 
the AlphaZero framework were originally designed for competitive 
games, the ranked reward strategy was used to enable tabula rasa 
self-play for the single-player combinatorial optimization prob-
lem61. In this strategy, the final reward of a rollout is rescaled to {0, 1} 
depending on whether the reward is greater than the 75th percentile 
of the last 250 results. An overview of the connectivity between the 
rollouts, the data buffer and the policy model is shown in Fig. 3b.  
In this fashion, the policy-guided rollouts evolve from an initial ran-
dom walk over molecular space to a highly targeted exploration of 
regions likely to contain high-reward molecules.

To search for potential candidate radicals, 200 rollout work-
ers were split across 50 compute nodes for 4 h, with a single node 
equipped with dual Tesla V100 graphics processing units handling 
the continual training of the policy model. This approach resulted in 
a total of 34,626 rollouts and over 3.8 million terminal state radicals 
evaluated with the surrogate objective function. Figure 3c plots the 
final reward from each molecule rollout as a function of time, along 
with the loss values for training the policy model to predict the final 
value and prior probabilities for intermediate molecule states. Using 
ranked rewards to rescale the final reward as a function of recent 
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rollouts means that the policy model is forced to continually adapt 
to predict which intermediate states are the most likely to lead to 
higher-performing radicals.

Of the 3.8 million radicals evaluated during the optimization, 
1,078 had a total surrogate reward greater than 195, correspond-
ing to a minimum stability score of 95. The radical stability met-
ric rewards molecules with highly delocalized electrons and bulky 
groups offering steric protection of the radical centre. As such, the 
stability metric tends to have a higher maximum value for larger 
molecules. Known stable radicals in this size range include TEMPO 
(with a stability score of 93.9) and the phenoxy radical (77.2). The 
reward function includes a maximum of 100 points for meeting 
all redox and bond strength criteria in addition to the radical sta-
bility score. From the radical training database, no radicals were 
found that had a stability score greater than 90 while satisfying the  
redox criteria.

Confirmation of RL-optimized candidates with DFT. All 1,078 
molecules predicted to have the desired properties were subse-
quently analysed with DFT to verify the accuracy of the ML models. 
Most top-performing candidates had close to the maximum mole-
cule size, with 960 molecules having 12 heavy atoms, 110 molecules 
having 11 heavy atoms, 6 atoms having 10 heavy atoms and just 2 
molecules with 9 heavy atoms.

In Fig. 4a, we plot the ML-predicted redox voltages for the cho-
sen subset, which all lie within the target triangle to permit a single 
radical to function as both the electron donor and acceptor in an 
aqueous RFB with a total voltage of at least 1 V. For radicals for 
which the DFT calculations converged, 80.5% fell within the desired 
target region (Fig. 4b). The stability scores of the radicals predicted 
via ML were then checked against those obtained via DFT. Figure 4c 
shows the distribution of stability scores for both approaches, and 
that stability scores obtained via DFT tended to be lower than those 
predicted with the surrogate objective function. Using a cutoff score 
of 90, well within the stability scores observed for experimentally 
known stable species, 41.9% of radicals were still classified as stable. 
As shown in Extended Data Fig. 4, while buried volume predictions 
for optimized radicals were highly consistent with those obtained 
from DFT, accurate prediction of spin density was more difficult 
for these highly delocalized radicals. Additional training data in 
this region of molecular space may improve accuracy in subsequent 
experiments, as the generated radicals tended to be much more sta-
ble than those found in the training data (Fig. 4c).

Evaluation of the synthesizability of generated molecules. The 
synthesizability of molecules proposed by generative algorithms 
has been identified as an area of concern, as theoretically optimized 
molecules that cannot be experimentally tested are of limited prac-
tical value43. To address this concern, the ASKCOS retrosynthesis 
prediction web service was applied post hoc to evaluate the 1,078 
top-ranked candidates (Methods)41,62. Of these, 87 returned putative 
synthetic routes with a median of five synthetic routes per candi-
date and an average depth of 7.9 steps. Following DFT validation, 
a total of 32 molecules were confirmed to satisfy the redox require-
ments while having high stability (>90). Chemical structures for a 
representative subset of these molecules are depicted in Fig. 5a. The 
RL-optimized molecules show structural variability through the 
varied inclusion of N, S and O heteroatoms and extended delocal-
ized structures, frequently with unsaturated carbo- and heterocyclic 
(for example, cyclopentadienyl, pyrrole, furan, thiophene) cores. 
We notice a trend of alkoxy thiophene subunits among the chemi-
cally synthesizable RL candidates. This is in correlation with the 
increasing use of similar molecules in organic bioelectronic devices. 
Previous work has shown that the electrical properties of thio-
phenes can be tuned by introducing alkoxy substituents63,64. Their 
enrichment among the chemically synthesizable radicals may also 
be due to the availability of reaction templates for this chemistry, 
as only 104 of the 232 DFT-confirmed RL candidates possess this 
functional group.

As required by the objective function, all radicals demonstrate 
high spin delocalization and high steric protection of the site of 
highest spin density. In Fig. 5b, we visually compare spin delocal-
ization and buried volumes for both experimentally known and 
RL-optimized radicals. As expected, a high predicted stability is 
achieved by delocalizing the radical electron density across multiple 
atoms and centring the location of highest spin density on an atom 
with a high buried volume. We note that in Fig. 5a,b the surrogate 
model correctly predicts that the spin is predominantly focused on 
the location of highest buried volume, matching DFT results, even 
though the radical centre is formally specified at a different atom in 
the SMILES string.

We next investigated the predicted retrosynthetic pathways by 
which the wide variety of top-performing radicals might be exper-
imentally prepared. In Fig. 5c, we show a putative pathway from 
ASKCOS for the hydrogenated form of a thiophene-based radical. 
Thiophenes are well known fragments in organic electronics, where 
their semiconducting properties are exploited for high efficiency65. 
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The retrosynthetic route consists of a minimum of two well estab-
lished transformations involving a Friedel–Crafts alkylation and an 
acidic methyl ether cleavage, starting from commercially available 
2-methoxythiophene and tert-butyl chloride (Sigma-Aldrich)66.

Error analysis of the surrogate objective function. The surro-
gate objective function successfully guided molecule optimiza-
tion towards regions meeting the desired criteria at the DFT level. 
However, approximately half of the radicals predicted to meet the 
desired criteria ultimately failed DFT confirmation. In Fig. 6a we 
show optimized radicals with a DFT-calculated stability substan-
tially lower than that predicted with the surrogate model. One rea-
son for such failure is the incorrect prediction of the maximum 
spin location, with a higher fraction of spin residing on an atom 
that is not highly shielded by bulky substituents. This failure rep-
resents in part a weakness of the chosen stability metric, as minor 
differences in predicted resonance can lead to large swings in the 
combined score. However, erroneously predicted loci of maximum 
spin were chemically reasonable, generally corresponding to the 
location of the second-highest DFT spin density. Extended conju-
gated thiocarbonyl-based radicals and five-membered cyclic alk-
oxy thiophenes are encountered frequently in these outliers. With 
DFT relaxation, the maximum spin typically locates on the termi-
nal S atom, while the surrogate objective model predicts greater 
spin at a or g positions, in accordance with the general principle 
of vinylogy67. Retraining the surrogate objective with additional 

examples of these systems may improve predictions in subsequent 
generation rounds.

Errors in redox predictions also tended to occur for functional 
groups absent from the training data. In Fig. 6b we show the struc-
ture of one such outlier. Using the embeddings assigned by the sur-
rogate model’s penultimate prediction layer, we can explore which 
training set molecules are closest in structure to the target predic-
tion. A nearest-neighbour search on this latent space reveals several 
cyclopentadienyl radicals with calculated redox potentials close to 
the erroneous prediction. The thioether substituent on a cyclopen-
tadienyl, which is not found in any of the molecules in the redox 
potential training database, strongly influences redox behaviour in a 
way not captured by the surrogate model. The sulfur atom provides 
additional stabilization of the oxidized form through resonance and 
of the reduced form through inductive effects (that is, stabilization 
of the a-anion resonance structure). These types of prediction out-
lier could be remedied by augmenting the redox potential database 
with additional structural diversity.

Searching for a symmetric electrolyte candidate places a chal-
lenging constraint on the electronic properties of optimized mol-
ecules, as both the OP and RP must be precisely and independently 
tuned. To explore the strategies used by the RL algorithm, we plot 
the relationship between OP (derived from the ionization energy) 
and RP (derived from the electron affinity) in Fig. 6c. Electron-rich, 
more readily oxidized (for example, planar aminal) radicals are 
found in the lower left corner, while electron-deficient, more readily  
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reduced (for example, heterocyclic sp2) radicals are found in the top 
right corner of this plot (Extended Data Fig. 5).

For open-shell molecules studied with spin-unrestricted Kohn–
Sham DFT, the analogue to Koopmans’ theorem relates the energy of 
the highest singly occupied molecular orbital (SOMO) to the verti-
cal ionization energy68. Similarly, the lowest unoccupied molecular 
orbital is linked closely to vertical electron affinity, mainly when 
using long-range corrected density functionals69. From our compu-
tations we observe a correlation between a radical’s SOMO energy 
and both redox potentials (Fig. 6c). This interdependence illus-
trates the challenge of independently tuning the anode and cathode 
half-reactions. Qualitatively, electron-poor radicals tend to be easily 
reduced and difficult to oxidize, while electron-rich radicals are easily 
oxidized and hard to reduce. However, the RL algorithm still man-
ages to find candidates that meet both redox criteria. Radicals with 
the required redox properties for aqueous batteries have a SOMO 
energy in the range of −6.5 to −7 eV (grey region in Fig. 6c). To inde-
pendently optimize OP and RP at a fixed SOMO energy, the RL pol-
icy learns to harness captodative stabilization of the radical centre70. 
Captodative stabilization involves the incorporation of conjugated 
electron-donating and electron-withdrawing groups, and provides 
enhanced stability to all three important redox states: the radical, oxi-
dized and reduced states. Interestingly, this strategy mirrors the use 

of bipolar redox-active molecules, an emerging strategy in the devel-
opment of non-aqueous RFBs such as 2-phenyl-4,4,5,5-tetramethyli
midazoline-1-oxyl-3-oxide71. The algorithm thus rediscovers a fun-
damental concept in radical chemistry that has shown promise in the 
development of symmetric RFBs. However, unlike existing bipolar 
redox-active molecules with relatively bulky functional groups, those 
discovered by RL more efficiently blend all required functionality 
into a much lower-molecular-weight moiety.

Conclusion
In this study, we have performed a search for molecular structures 
that simultaneously satisfy several complex quantum chemical 
phenomena important in advanced energy applications. We have 
demonstrated that combining high-fidelity quantum chemistry 
simulations, ML predictive models and state-of-the-art RL strate-
gies is an effective tool in efficiently exploring molecular space. 
Without being explicitly programmed on how to construct reso-
nantly stabilized radicals with appropriate orbital energies, the RL 
algorithm learns a range of strategies that lead to high-performance 
candidates. While in this study candidates were found with reason-
able efficiency (50% of optimized radicals), iterative refinement of 
the surrogate model with respect to the ground-truth calculations 
would improve the model’s accuracy. Additionally, while molecules  
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with putative synthetic routes were found from among the 
top-performing candidates, more accurate and faster methods of 
searching synthetically accessible space are required.

Additional refinement of the top-performing candidates is also 
required before they are likely to be applicable in aqueous organic 
RFBs. Widening the redox potential ranges considered can account 
for applicability of additional radicals in organic RFBs, which can also 
allow for higher overall cell voltage. Optimizing solubility with pre-
dictive models72,73 and including charged moieties in both the train-
ing data and action space will be particularly important in achieving 
a high charge density. The stability metric employed also may have 
limitations that will need to be refined following experimental inves-
tigation. The radical stability metric was developed to capture pro-
cesses sensitive to steric effects such as bimolecular recombination or 
disproportionation. Other fates, such as oxidative aromatization, may 
not be adequately predicted, requiring further refinement. Addressing 
these limitations to achieve holistic prediction of improved bipolar 
redox actives candidates remains a future goal.

Methods
Calculation and validity analysis of redox potentials. Full DFT estimation of 
the adiabatic (that is, including the effects of geometric relaxation and vibrational 
zero-point energy) ionization energy and electron affinity for a given radical takes 
hours per candidate, and requires three separate geometry optimizations to obtain 
standard-state Gibbs energies of the neutral radical and both anionic and cationic 
closed-shell species. We further obtain OP and RP values in volts by referencing 
the standard-state Gibbs energy changes to the absolute potential of the SHE74. 
Gaussian 16 (ref. 75) was used for all DFT calculations with a default ultrafine 
grid for all numerical integration. The primary database of redox potentials was 
built using the M06-2x/def2-TZVP level of theory by separately optimizing the 
neutral, oxidized and reduced radical species. The calculations were performed 
using the SMD solvation model with a water solvent at 298 K (ref. 48). The same 
initial structures were used for all three calculations and were taken from previous 
calculations performed in the gas phase51. Where an initial relaxed structure is not 
available, a single lowest-energy conformer is found using the MMFF forcefield 
in RDKit, as described previously51. Iodine-based molecules in the experimental 
redox benchmark were optimized with the LAN2DZ basis set in combination with 
6-31G(d,p) and 6-31G+(d,p).

An automated workflow was developed to check optimizations for convergence 
by ensuring the absence of imaginary vibrational frequencies and that all bond 
lengths remained within 0.4 Å of the sum of their covalent radii. Additionally, 
molecules were inspected to see whether new bonds were formed during 
optimization, as this often led to difficult-to-predict redox potentials. Atom 
adjacency matrices were used to determine if any two atoms were closer than  
1.3 times the sum of their covalent radii, and these molecules were removed from 
the training dataset. This primarily occurred during oxidation, as 8,566 oxidized 
molecules, 602 reduced molecules and 177 neutral radicals were removed from the 
database in this fashion.
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Spin contamination was checked by looking at the expectation value of the  
total spin, S2. Radicals were expected to have S2 = 0.75, and a handful of 
optimizations were discarded where spin contamination resulted in S2 > 0.8. 
Anions and cations were assumed to adopt a closed-shell singlet state, with S2 ~ 0. 
To improve the consistency of the dataset, open-shell anions and cations with 
S2 > 0.25 were removed.

Training the surrogate objective models. Two separate ML models were 
developed to predict quantum mechanical properties as a function of a candidate 
radical’s SMILES76 notation, that is, on the basis of only atoms and bonds 
without considering a specific 3D conformation. The first model predicts spin 
delocalization and buried volume on each heavy atom in the molecule. The second 
model predicts the radical’s OP and RP (V relative to SHE). SMILES strings were 
first converted to a graph representation using the nfp77 and RDKit78 Python 
libraries. Atoms and bonds were classified depending on features determined via 
RDKit. For atoms, this included their atomic type, chirality, presence in a ring, 
number of heavy atom neighbours (degree), aromaticity, number of neighbouring 
hydrogens and presence of a formal radical centre. For bonds, this included the 
atom types of the joined atoms, the bond type (single, double, aromatic), presence 

in a ring and Z/E stereochemistry (if present). The GNN edges are directional, and 
therefore two graph edges are created for each bond in the molecule, one pointing 
from atom A to atom B and another pointing from atom B to atom A. Each model 
consisted of a GNN with a similar core structure depicted in Fig. 2 and further 
detailed in Extended Data Fig. 6. The GNN generates representative embeddings 
at the atom, bond and global levels by passing the initial features through a series 
of message blocks79. In the stability prediction GNN, the final atom feature vector 
is reduced to two output predictions for each atom’s buried volume and spin 
density. In the redox GNN, the final global feature vector is reduced to two output 
predictions for the RP and OP. Both models are trained with a batch size of 128 
molecules for 500 epochs over the training data, using the AdamW optimizer with 
an initial learning rate of 1 × 10−4, decayed by 1 × 10−5 each update step. The weight 
decay was set to an initial value of 1 × 10−5 (1 × 10−6 for the redox model) and was 
decayed by 1 × 10−5 each update step.

Learning curves were generated by restricting the training set to a random 
subset of examples while retaining the same validation throughout the different 
models. Models were trained as described above using a fixed number of gradient 
updates (equivalent to 500 passes over the entire training dataset), and the 
performance on the held-out validation set was recorded. To improve predictive 
performance in the region of high-reward radicals, 3,978 high-scoring molecules 
from previous RL runs were optimized with DFT and added to the training data 
for the surrogate objective functions in the final RL iteration. These molecules 
ranged in size between 9 and 15 heavy atoms with a maximum stability score of 
109.7. DFT confirmation of the final 1,078 candidates could be used to augment 
this training set of high-scoring molecules in subsequent iterations.

Details of the reward function. To find radicals that meet all the desired criteria, 
predictions and desired ranges for multiple properties were synthesized into a 
scalar reward function. A continuous piecewise linear function, referred to as 
window below, was used to convert predictions to a score between 0 and 1, with 
a 1 assigned if the prediction was inside the desired range, 0 outside and a linear 
transition between the two scores if the prediction was near the boundary (with 
width equal to one sixth the width of the desired region).

The overall reward function was then composed by summing over individual 
scores from different properties:

reward = 50 (1 − max si) + 100 BVj

+25 window
(

Rpred, [−0.5 V, 0.2 V]
)

+25 window
(

Opred, [0.5 V, 1.2 V]
)

+25 window
(

Rpred − Opred, [1 V, 0.2 V]
)

+25 window
(

BDEpred, [60, 80]
)

where si represents the predicted fractional spin on atom i, and BV is a vector 
of predicted buried volumes. The reward function was constructed to place 
approximately equal weights between the stability score (including spin and 
buried volume contributions, typically near 100 for highly stable radicals) and the 
remaining BDE (kcal mol−1) and redox requirements.

Description of the molecular action space. Beginning with the initial state of a 
single carbon atom (that is, methane after adding implicit hydrogens), possible 
actions were enumerated following a series of expansion and filtering steps. First, 
all possible tautomers of the given starting molecule were considered as possible 
starting states58. From each starting state, a new bond was added between an atom 
in the molecule and a second atom, either one already in the molecule (forming a 
ring) or an unbonded C, N, O, or S atom. New molecules were generated for every 
possible atom pair and bond type (single, double or triple) for which valence rules 
were satisfied. From this set of all possible next actions, molecules were filtered 
according to several ring, saturation and synthetic accessibility criteria80, including 
restricting molecules to a maximum SAScore of 4.0. The action space was then 
further expanded by enumerating all possible stereochemical configurations of 
the starting molecule, followed by a reduction to canonical tautomer forms. Next 
actions were then de-duplicated by SMILES string. Additionally, we removed 
molecules containing moieties that differed substantially from the redox and 
stability training database. Hydrogen atoms were handled implicitly and filled free 
valence positions in each final molecule.

Our action space differs from previously described molecular ‘environments’ 
in several ways. Unlike the environment proposed in MolDQN31, our approach 
results in a DAG over possible molecules by eliminating the possibility to remove 
atoms and bonds from molecules under construction. This DAG property 
prevents cyclical searching and guarantees forward progress when building a 
radical. It also makes learning the value function easier by eliminating conflation 
and cross-contamination from cyclical paths in the search graph. Our approach 
is similar in this respect to the generation environment proposed by You et al.30, 
where atom and bond additions are guided by a policy network. Unlike You 
et al., we do not decompose the action into a node selection and a link selection 
step, and instead only evaluate policy predictions once both the atom and bond 
type have been chosen. This allows us to easily filter the action space on the 
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basis of valence rules and markedly reduces the number of invalid molecules 
constructed by the algorithm. It additionally allows us to easily consider additional 
modifications of the action space, including stereochemical enumeration (for 
example, at tetrahedral carbon atoms and of double bonds), tautomerization and 
synthesizability considerations.

Details of the RL algorithm. The RL optimization was performed using the 
rlmolecule library81 (https://github.com/NREL/rlmolecule), which implements the 
AlphaZero approach for molecule and material design. In this study, the RL agent 
learned to select from a parametric action space, where the molecular structures 
resulting from possible next actions were passed through a trainable policy GNN. 
The policy GNN had a structure similar to that used for redox prediction (Fig. 2b), 
using only three message-passing layers and a feature dimension of 64. The policy 
model was trained with the Adam optimizer with a learning rate of 1 × 10−3 and a 
batch size of 32 positions. Within each batch, the policy model is presented with 
a molecule state and a list of potential next actions from a recently played MCTS 
rollout. The policy model is trained to simultaneously predict the actual visitation 
frequency from MCTS, as well as the outcome of the resulting molecule rollout 
(0 or 1 as scored via ranked rewards). Starting at the root methane state, molecule 
rollouts consisted of conducting 250 MCTS samples (or for a maximum of 30 s) and 
selecting the subsequent molecule state with probability proportional to the softmax 
of the visit counts. This procedure is repeated until a terminal state is selected.

The wall time limit was imposed to mitigate the effects of problematic regions 
of chemical space where the number of possible next actions per molecule, and 
therefore the time required to enumerate them, vastly outnumbered typical 
molecules. This was typically encountered with molecules with many possible 
tautomers and resulted in rollouts being added to the replay buffer that used an 
outdated version of the policy model.

Communication between the policy network training script and the MCTS 
rollout workers is handled through a shared filesystem and a PostgreSQL server. 
Policy checkpoints are previously written to a shared filesystem location, which 
is checked at the beginning of each rollout by the workers. Final statistics and 
molecule reward calculations are then written to the shared SQL database. The 
policy training script in turn selects the 256 most recent rollouts each training 
epoch, with each epoch consisting of 100 training steps.

Synthesizability prediction. Retrosynthetic routes are predicted using the 
ASKCOS web interface tool (https://askcos.mit.edu) using the tree builder module. 
Settings were chosen to match those used in a previous study evaluating the 
synthesizability of generative models43. Specifically, the maximum tree depth is 
limited to nine steps, the maximum branching ratio is set to 25 and the maximum 
wall time of each expansion is limited to 60 s, with a maximum reagent cost of 
US$100 g−1, 1,000 max templates and a maximum target probability of 0.999. 
Employing these settings along with no defined banned chemicals and reactions 
for radical 1 (Fig. 5a), we obtained a total of 43 routes, containing 90 chemicals and 
970 reactions. Computation time for each parent molecule’s retrosynthesis tree was 
approximately 1 h.

Data availability
Data for both radical stability and redox potential are deposited on figshare56. 
The initial training data for redox potential are provided as SMILES strings with 
associated potentials (versus SHE) in volts. In addition, these data contain a set of 
3,978 high-scoring radicals used to augment the training database in the region of 
high stability, and DFT confirmation for the full set of 1,078 RL-optimized radicals. 
The exact ML models used in the reward optimization are available as saved 
tensorflow models82. For the final set of 32 radicals, optimized 3D coordinates 
from DFT for the oxidized, radical, and reduced states are provided, as well as the 
calculated stability and redox potentials.

Code availability
The rlmolecule software library is available under the BSD 3-Clause Licence from 
https://github.com/nrel/rlmolecule81. The nfp software library used to train the 
neural networks is available under the same license from https://github.com/nrel/
nfp, and provided as a PyPI package77.
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Extended Data Fig. 1 | Schematic for redox potential calculation. Methods used in calculation of redox potentials of the reduction and oxidation reactions 
for the benchmark experimental dataset (top) and the computational dataset in water (bottom). The respective equations used to determine the redox 
potential are also shown.
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Extended Data Fig. 2 | Aqueous redox potential benchmark. Comparison of experimental redox potentials in water against computed redox potential 
using M06-2x/def2-TZVP methodology for a set of 46 molecules.
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Extended Data Fig. 3 | Computational complexity of the molecule search space. (left) Maximum number of molecule states versus maximum molecule 
size for the search tree described in this study. Extrapolating from these results yields approximately 1.9 × 109 valid molecules with 12 or fewer heavy 
atoms. (right) Computational time required to enumerate the search space as a function of maximum molecule size. In addition to requiring more 
evaluations, larger molecules require additional computational time to check for a valid 3D embedding and to enumerate possible stereoisomers, and the 
time required for larger molecules may grow faster than simply exponential. An exponential fit to the last four datapoints indicates that a full enumeration 
of the 12 or fewer heavy atom search space would require 17.25 days. In addition to the time required to enumerate all candidates, a high-throughput 
screening would require evaluation of the final molecules with the reward function. This would require three separate neural network evaluations 
(which could be called in parallel) to estimate radical stability, redox potential, and X-H bond strength, and would likely add several days to the overall 
computational cost.
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Extended Data Fig. 4 | Plot of ML versus DFT stability sub-scores for top-performing RL candidates. (A) RL-generated molecules tend to have highly 
distributed electrons, making the pre-diction of their spin difficult. (B) Buried volume predictions for these molecules are in line with expected errors from 
the validation set radicals.
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Extended Data Fig. 5 | Structural insight into the correlation of oxidation and reduction potentials. (A) Molecular orbitals involved in the three redox 
states that are leveraged in a symmetric battery candidate. (B) Example structures of radicals with high and low oxidation potentials (OP) and reduction 
potentials (RP).
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Extended Data Fig. 6 | Additional details for the GNN update blocks. (A) The bond update block concatenates the features of the source atom and the 
target atom together with bond’s starting features and passes them through two dense layers. The output of this network is summed with the input bond 
features in a residual fashion. (B) The atom update block separately concatenates the atom’s features with the features of each bond targeting the given 
atom and passes them through two dense layers. The output of these layers is summed over the incoming bonds and further passed through a series of 
dense layers to form an updated atom state. This updated state is summed with the previous atom feature vector in a residual fashion. (C) The global 
update block concatenates all bonds and atoms in the molecule and performs a multi-head dot product attention operation. This operation extracts a 
single feature vector for the entire molecule in a manner that is in variant to the ordering of atoms and bonds in the graph.
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