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Abstract—An increasing penetration level of inverter-based
renewable energy resources changes the inertia of power systems,
posing challenges for maintaining the desired system frequency
stability. An accurate frequency nadir estimation is crucial for
power system operators to prepare preventive actions against
large frequency excursions. In this paper, five machine learning
methods—linear regression, gradient boosting, support vector re-
gression, an artificial neural network, and XGBoost—are applied
to two different datasets, i.e., 1) the unit generation dataset and 2)
the system total inertia and headroom dataset, for the prediction
of the frequency nadir. The training and testing datasets are
generated through extensive generation scheduling simulations
using Multi-timescale Integrated Dynamic and Scheduling (MI-
DAS) toolbox on the Western Electricity Coordinating Council
240-bus system with high renewable penetration levels. Numerical
results show that all five machine learning methods perform well
in predicting the nadir frequency of the system. Among them, the
gradient boosting and the XGBoost are clear winners yielding
the best prediction accuracy in terms of four evaluation metrics.

Index Terms—data driven, machine learning, frequency nadir
estimation, power system stability

I. INTRODUCTION

To tackle the problem of climate change and fossil fuel
depletion, renewable energy sources (RES) and energy storage
are considered the most practical solutions in the power
system. Many works in the literature have explored uncertain
RES in the unit commitment (UC) and economic dispatch
problems in the day-ahead market [1]–[5]. References [1],
[2] proposed mixed-integer linear programming-based opti-
mization for power system integration high photovoltaic (PV)
penetration, and the authors demonstrated that it significantly
reduces day-ahead market cost while considering PV and a
battery energy storage system as ancillary service providers.
References [3], [4] proposed a method to optimize generation
under high RES penetration on the distribution locational
marginal price components and distributed energy resources’
schedules in the day-ahead market model. Reference [5] pro-
posed a method to solve stochastic network-constrained unit
commitment with an increasing penetration level of renew-
able energy by an accelerating technique; however, as more
conventional generators are retired and replaced by RES, the
power system stability can be adversely affected due to the
reduced system inertia [6]. Therefore, a challenge emerges that
a lack of system inertia could contribute to fast decline of the
grid frequency during a generator trip in the frequency, as

Fig. 1: Illustration of frequency dynamic response after the
largest generator trips

shown in Fig. 1, which could lead to cascading failures and
eventually a electrical grid blackout [7]. However, none of
the above literature consider the frequency of nadir during the
day-ahead unit commitment, which may cause server issue in
the dynamic results, especially in the island system with high
renewable penetration. Our study proposes a straightforward
and efficient frequency nadir estimator which helps maintain
power system stability in the day-ahead market.

An accurate estimation of frequency nadir can assist power
system operators in maintaining sufficient inertia and adequate
headroom for primary frequency response and in maintaining
system frequency stability [8]. Because of the availability of
a large volume of historical and model-based data, machine
learning techniques have gained attraction in frequency nadir
prediction because they can achieve high accuracy in real-
world classification, prediction, and regression problems. They
have been used in many practical applications, such as short-
term wind speed prediction [9] and temperature prediction
[10], [11], unit commitment problems [12], transient stability
assessment [8], [13], and power system resilience studies [14].
A multivariate random forest regression-based frequency nadir
estimation was proposed in [8] using time-domain simulation
data from a realistic power system model to predict the real-
time frequency nadir of varying system conditions with the
predetermined contingency, given the system inertia and the
generation dispatch of conventional generators. Reference [13]
proposed state-of-art artificial-intelligence-based applications
in power systems including inertia estimation, disturbance
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size and location estimation, system stability assessment, and
data authentication; thereby providing accurate results and
improving efficiency to those applications. A frequency nadir
prediction model with high accuracy was proposed in [15] to
establish primary frequency response in various scenarios by
polynomial fitting. A nonlinear auto-regressive model based
on an artificial neural network (ANN) was proposed in [16]
to predict the timing of a frequency nadir under various
prediction horizons.

All of these works reported that machine learning can
achieve high performance for frequency nadir prediction, but a
comprehensive comparison among different machine learning
methods has not been conducted yet. This paper tries to fill
this gap by proposing two different ways to preprocess data
and comparing five maching learning methods: linear regres-
sion (LR), gradient boosting (GB), support vector regression
(SVR), ANN, and XGBoost. A detailed comparison is carried
out based on extensive simulations on the Multi-timescale
Integrated Dynamic and Scheduling (MIDAS) toolbox [17]
developed by the National Renewable Energy Laboratory.
The remainder of this paper is structured as follows. The
research background and the machine learning methods used
are described in Section II. Numerical results are presented
and analyzed in Section III. Section IV concludes the paper.

II. BACKGROUND AND FORMULATION

A. Background

In this section, we briefly review the five machine learning
methods used and the background of the proposed work. In
this study, we explore two ways to approach the dataset neces-
sary for the machine learning methods: 1) the unit generation
dataset (UGD) and 2) the system total inertia and headroom
dataset (TIH). Both datasets are generated by running the
PSS/E [18] on the Western Electricity Coordinating Council
(WECC) 240-bus system [19], [20]. More details about the
dataset generation are discussed in the next section. The UGD
is a dataset with hourly generation of all units in the power
system. The TIH dataset consists of the hourly total inertia
and total headroom of the system, which can be calculated as
follows:

TInertia =
N∑
i=0

Hi ·Mbasei,∀i (1)

THR =
N∑
i=0

(Pmaxi − Pi),∀i ∈ [S,G,H] (2)

where TInertia and THR are the system total inertia and total
headroom at each hour; Hi is the inertia of unit i in second;
Mbasei is the rating in MVA of unit i; Pmaxi is the maximum
power generation of unit i; and S, G, and H represent the set
of steam, gas, and hydropower generators, respectively. Note
that the headroom of the TIH dataset is considered in these
three types of generators. The inertia of a unit exists only when
the unit is on.

Fig. 2: Simplified ANN model

B. Machine Learning Methods

1) Linear regression:

yi = βxTi + εi (3)

where xi is the input variable, and yi is the output variable.
The slope of the line is β, and εi is the intercept (the value of
y when x = 0) [21]. Linear regression can be used to construct
linear constraint of frequency nadir which is suitable for the
day-ahead UC model.

2) Gradient boosting:

F0(x) = arg min
γ

n∑
i=1

L(yi, γ) (4)

Fm(x) = Fm−1(x)+arg min
hm∈H

n∑
i=1

L(yi, Fm−1(xi)+hm(xi))

(5)
where Fi, hi are the objective learning function and the generic
function at stage m, and L is the loss function. Parameters
γ, x, and y are the initialization, input variable, and output
variable, respectively [22].

3) Support Vector Regression:

min
1

2
‖ w ‖2 + C

N∑
i=1

(ξi + ξ∗i ) (6)

yi − wxi − b ≤ ε+ ξi (7)

−yi + wxi + b ≤ ε+ ξ∗i (8)

ξi, ξ
∗
i ≥ 0 (9)

where w refers to the hyperplane; ε is the boundary line;
ξi and ξ∗i are the upper-bound error and lower-bound error,
respectively; xi is the input variable; and yi is the output
variable. The objective of the SVR is to minimize the error in
Equation (6) in the hyperplane, which maximizes the margin
as constraints (7)–(9) [23].
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Fig. 3: Flowchart of generating UGD and TIH datasets

4) Artificial Neural Network:

W = W − α∇J(W ) (10)

∇J(W ) =
( ∂J
∂w1

,
∂J

∂w2
, ...,

∂J

∂wN

)
(11)

where W is the updated parameters set of the regression func-
tion, and J is the loss function, which is calculated by mean
square error (MSE). Fig. 2 shows the graphic architecture of
a fully connected neural network with two input neurals, four
hidden neurals, and one output neural. The ANN is built based
on the gradient descent with activation functions [24].

5) XGBoost: XGBoost stands for Extreme Gradient Boost-
ing, which is built based on gradient boosting but has more
accurate approximations by enabling the regularization and
second-order gradients [25]. The objective function of the
XGBoost is as follows:

Lt =
n∑
i=1

l(ŷi, yt) +
∑
k

Ω(fk) (12)

Ω(f) = γT +
1

2
λ ‖ w ‖2 (13)

where l is the loss function that measures the difference
between the prediction, ŷi, and the read value, yi. The second
term, Ω, penalizes the complexity of the model (i.e., the
regression tree functions), which helps to smooth the final
learnt weights to avoid overfitting [25]. Parameters γ, T , and w
are the coefficient, the number of leaves, and the leaf weights
for the corresponding regression tree, respectively.

III. CASE STUDY

The datasets of the proposed study were collected from a
1-year dynamic simulation in the WECC 240-bus system with
high RES penetration. The dynamic simulation is conducted
in PSS/E. The procedure of obtaining the UGD and TIH
datasets is shown in Fig. 3. The hourly generation dispatch
is obtained from MIDAS which is an open-source power-
system-simulation tool for simulating the electricity market
that considers multi-timescale operations with an interface
for dynamic simulations. It can address the challenge of
operating the grid with extremely high renewable penetrations

Fig. 4: Frequency nadir versus total inertia and headroom

TABLE I: Hyper-parameters of ANN

activation L2 regularization # hidden units optimizer
UGD logistic 0.001 50 Adam
TIH tanh 5e-05 50 SGD

by bridging the modeling the gaps of different timescales
between economics, reliability, and stability of grid operation
[26].

Once the generation dispatch is given from the MIDAS
scheduling, the PSS/E-based dynamic simulation is processed
following the trip of the largest generator. Then, the frequency
nadir points are recorded. In this procedure, the frequency
nadir in the TIH dataset can be visualized as a 3D plot in Fig.
4. Figure 4 depicts three dimensions—inertia, headroom, and
frequency nadir—and the z-axis is the frequency nadir point
corresponding to the total inertia and the headroom calculated
based on the generator dispatch point according to Equation
(1) and (2). The outliers in the Fig. 4 are caused by the various
tripped largest generator because the different generator has
different effect on frequency. In addition, it is seen that the
more inertia and headroom can contribute higher frequency
nadir.

We randomly split the dataset into 80% and 20% for the
training and testing, respectively. The hyper-parameters and
architecture information of the ANN are listed in Table I.
Those parameters were finely tuned for an optimal MSE. In
addition to the MSE, other metrics—including mean absolute
error (MAE), root mean square error (RMSE), and maximum
error (ME)—were used on both the UGD and the TIH datasets
for training and testing evaluations in the remaining part of this
section.

The UDG training results are given in Table II. As shown,
the gradient boosting has the best training performance among
all five machine learning methods, and the performance of the
XGBoost is second. Note that a maximum error of 0.02487
from the gradient boosting indicates that the prediction error
of the gradient boosting is no greater than 0.02487 Hz. The
UGD testing results are shown in Table III. Analogously, the
gradient boosting has the best prediction performance in terms
of MAE, MSE, and RMSE; however, the maximum error
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TABLE II: Evaluation metrics of UGD training

Methods MAE (Hz) MSE (Hz) RMSE (Hz) ME (Hz)
LR 0.01014 0.00027 0.01646 0.16097
GB 0.00231 0.00001 0.00295 0.02487

SVR 0.00461 0.00250 0.04852 0.10047
ANN 0.02741 0.00161 0.04068 0.27947

XGBoost 0.00366 0.00003 0.00557 0.11243

TABLE III: Evaluation metrics of UGD testing

Methods MAE (Hz) MSE (Hz) RMSE (Hz) ME (Hz)
LR 0.01028 0.00035 0.01813 0.17674
GB 0.00345 0.00005 0.00682 0.10395

SVR 0.04674 0.00256 0.04886 0.1351
ANN 0.02494 0.00149 0.03675 0.30963

XGBoost 0.00428 0.00006 0.00762 0.10137

of the XGBoost is slightly better than that of the gradient
boosting. Additionally, the SVR leads to a smaller maximum
error but larger MSE and RMSE than the ANN.

The TIH training results are provided in Table IV. Different
from the UGD dataset, the XGBoost has the best MAE, MSE,
and RMSE among all five methods, whereas the gradient
boosting outperforms the other methods in terms of maximum
error. In addition, the evaluation metrics for both the gradient
boosting and the XGBoost are quite similar to the TIH training
dataset. Table V lists the TIH testing results of all the methods.
Again, the XGBoost leads to the best performance; however,
the ANN’s performance in this dataset is worse than that of
the UGD dataset, whereas the other methods perform quite
similarly between the two datasets.

Figure 5 shows the error distribution for the (top) UGD
and (bottom) TIH datasets. In general, the gradient boosting
achieves the best error distribution in both datasets, whereas
the XGBoost performs nearly as well. In contrast, the ANN
and the SVR are not suitable for the proposed work because
of the high variance distribution. In addition, both methods
perform worse in the TIH testing dataset. Note that the per-
formance of the linear regressing ranks third in both datasets.

IV. CONCLUSION

In this paper, we propose to use machine-learning method,
rather than dynamic simulation, to predict frequency nadir
of the largest N-1 contingency analysis based on steady-state
scheduling results. Five methods—linear regression, gradient
boosting, SVR, ANN, and XGBoost—are compared by testing

TABLE IV: Evaluation metrics of TIH training

Methods MAE (Hz) MSE (Hz) RMSE (Hz) ME (Hz)
LR 0.01023 0.00028 0.0167 0.16213
GB 0.00461 0.00006 0.00753 0.07957

SVR 0.05291 0.00309 0.05557 0.10048
ANN 0.03251 0.02101 0.14496 3.87351

XGBoost 0.00403 0.00004 0.00623 0.10039

TABLE V: Evaluation metrics of TIH testing

Methods MAE (Hz) MSE (Hz) RMSE (Hz) ME (Hz)
LR 0.01056 0.00030 0.01733 0.17674
GB 0.00499 0.00007 0.00861 0.09003

SVR 0.05383 0.00318 0.05636 0.11954
ANN 0.04853 0.08453 0.29074 4.00111

XGBoost 0.00469 0.00006 0.00781 0.07819

Fig. 5: Error distribution of UGD (top) and TIH (bottom)
testing

the reduced WECC 240-bus system with high RES pene-
tration. Results show that these methods can achieve high
prediction accuracy in general. The prediction performance
of the gradient boosting and the XGBoost are the best. In
addition, both gradient boosting and XGBoost achieve high
accuracy in the two method’s dataset which are proposed in
this paper 1) the unit generation dataset; 2) the system total
inertia and headroom dataset. In the future, we will propose a
machine learning-based security constrained unit commitment
model and analyze the dynamic simulation of the proposed
work.
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