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ABSTRACT: Poly(ethylenimine) (PEI) is widely recognized as an
efficient carbon capture medium. When loaded onto mesoporous oxide
supports, the polymer becomes particularly attractive for direct air
capture (DAC) applications given the high surface area of the
composites, the low volatility of the polymer, and the excellent
cyclability of the system. As polymer segmental mobility is coupled
with CO2 uptake and diffusion, understanding how that mobility is
influenced by nanoconfinement will ultimately be critical to the
development of more efficient DAC systems. Here, we discuss our
development of a fluorescent probe molecule based on tetrakis(4-
hydroxyphenyl)ethylene. As the fluorescence intensity of this molecule
and the shape of the emission spectra are strongly dependent on the
viscosity of the supporting medium, doping PEI-composites with this
fluorescent probe can provide sensitive indication of polymer glass
transition and/or melting temperatures across a wide range of temperatures (−100 to +100 °C). Herein, we demonstrate how this
molecule can be used as a ratiometric probe to study bulk PEI dynamics and confinement effects in mesoporous silica as influenced
by pore functionality, polymer fill fraction, and polymer architecture.

1. INTRODUCTION

As countries around the world work to reduce their carbon
footprint, numerous reports1,2 and reviews3−5 anticipate that
direct air capture (DAC) systems will play an increasingly
important role in curbing net global greenhouse gas emissions
through CO2 removal. Among the different types of capture
systems being studied for DAC,6 chemisorbent amines, such as
poly(ethylenimine) (PEI) supported in solid mesoporous
oxide composites, are receiving extensive attention.7−17 In
addition to having CO2 adsorption enthalpies in an ideal range
to perform separations at the low partial pressure of CO2 in
air,18 the low volatility, commercial availability, and high
cyclability of PEI in combination with the high surface area of
the support leave these composites well suited for DAC
applications.
Understanding aminopolymer mobility plays an important,

but often overlooked, role in the optimization of these DAC
systems. In general, gas diffusion through any polymeric
material is coupled with polymer segmental mobility. Rubbery
polymers, or polymers that are employed above their glass
transition temperature (Tg), are able to promote more efficient
gas diffusion than glassy polymers.19 Thus, aminopolymers
with a low Tg/high mobility are attractive for promoting
efficient gas diffusion in DAC. However, their segmental
mobility is also dramatically influenced by the dynamic uptake

and release of CO2 upon cycling, as electrostatic cross-links
develop throughout the polymer when amine and CO2 react to
produce carbamate species. This phenomenon significantly
rigidifies the aminopolymer and can in turn create a barrier for
subsequent gas diffusion.20 For this reason, inert plasticizers
and additives such as poly(ethylene glycol) (PEG)20 have been
blended with aminopolymers in an effort to decrease their
rigidity and promote more optimal uptake kinetics. Addition-
ally, polymer mobility can be influenced by a variety of surface,
interface, and confinement effects21−23 that vary quite
dramatically from the bulk when loaded into nanocomposites.
For example, the thermal transitions of PEG loaded into
various framework supports can shift by as much as 100 °C
due to different polymer−support interactions.24 Given the
myriad factors that can influence the mobility of amino-
polymers and polymeric additives in DAC, the design of more
efficient DAC processes would benefit from a thorough
fundamental understanding of mobility.
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Conventional techniques for probing generic thermal
transitions and mobility of bulk polymers include viscometry,
thermal or dynamic mechanical analysis (DMA), and differ-
ential scanning calorimetry (DSC). However, these techniques
are often either not sensitive enough to determine transitions
in thin films or at low polymer loadings in composites or they
are of limited application for probing polymer properties
within nanoconfined pores. Several specialized techniques have
been developed to study the mechanical properties of ultrathin
films, including so-called bubble inflation and buckling
measurements, which have been used to characterize unique
behavior induced by substrate interactions, including glassy
softening25,26 and rubbery stiffening.27,28 Broadband dielectric
spectroscopy was recently used in conjunction with NMR29 to
infer information about the mobility of specific regions of PEI
under different conditions, i.e., backbone, side chain, and chain
end mobility in the bulk vs in confined composites. Neutron
scattering has also been employed to provide particularly rich
information about the nature of PEI mobility within different
mesoporous composites as a function of polymer loading and
pore functionality.30−32 However, given the vast number of
parameters that can influence aminopolymer mobility in DAC
systems, the development of sensitive benchtop techniques
that can provide additional or complementary information to
the aforementioned methods concerning mobility in nano-
confinement would be of significant value for advancing the
field.
The recent development of several fluorescence techniques

for characterizing glass-forming polymers33 offers some
intriguing opportunities for evaluating DAC-based systems.
While fluorescence can be used to characterize the Tg of bulk
polymers,34,35 the sensitivity of this benchtop technique and its
ability to provide location-specific information through the
tethering of probe molecules make fluorescence particularly
powerful for studying polymer properties at the nanoscale. In
addition to studying glass transitions, fluorescence measure-
ments can also aid in the physical characterization of polymeric
properties such as mobility and diffusion,36,37 physical
aging,38,39 and mechanical response.40,41 These measurements
can further be utilized to study the effects of complex
geometries, including capped films,23 multilayer films,39,42

polymer−polymer interfaces,43,44 and nanocomposites.23,45

While fluorescent probes have also been tethered to PEI46

and to the walls of mesoporous silicas47 for various
applications, to our knowledge, there are no reports on the
use and development of a fluorescent probe designed
specifically to study PEI thermal transitions, much less in
nanoconfined systems employed in DAC.
Herein, we report our efforts to develop such a probe

whereby we identified a suitable fluorogen compatible with PEI
and benchmarked its response in different environments across
a wide swath of temperatures. We then studied fluorescence in
a series of PEI samples with different molecular weights and
architectures and probed relative PEI mobility in confined
mesoporous silicas as a function of different polymer loadings
and pore functionalities. The results were then verified through
a comparison with literature studies using other techniques to
probe PEI dynamics.

2. EXPERIMENTAL SECTION
2.1. Materials. Tetraphenylethylene (TPE) derivatives

were purchased from TCI. 2,6-Dimethylbenzonitrile (DMB)
was purchased from Fischer Scientific. All other reagents,

chemicals, and polymers were purchased from Aldrich and
used without purification, unless otherwise noted. SBA15-
OH30 and SBA15-CH3

31 were synthesized according to
literature procedures.

2.2. Fluorescent Doping Procedure. Bulk polymers and
small molecules were doped with tetrakis(4-hydroxyphenyl)-
ethylene (THPE) (0.02−1 wt %) by stirring the mixtures
under a N2 atmosphere in the dark well above the mp/glass
transition temperature of a given matrix (e.g., 50 °C for
branched PEI, 100 °C for linear PEI). Composites were
prepared by first stirring pre-doped PEI and SBA15 in separate
methanol solutions (∼10 mg/mL) for 1 h and then combining
and further stirring for 3 h. The combined mixture was then
placed on a rotary evaporator to remove the methanol. Final
degassing was performed on a Schlenk line under vacuum
(∼100 mTorr) at 110 °C for 48 h in the dark to remove any
CO2, moisture, and residual solvent. Samples were left under
vacuum and taken directly into an inert atmosphere for further
handling.

2.3. Differential Scanning Calorimeter (DSC). The
phase changes of the samples were compared with data
obtained from a TA Instruments DSC 25 equipped with a
Discovery liquid N2 pump allowing a minimum sampling
temperature of −150 °C. Samples were prepared under an
inert He atmosphere. The system was calibrated at the
temperature ramp of choice using an indium reference sample
prior to the measurements. The samples were heated at a 10
°C/min ramp rate with a 50 mL/min N2 flow through the cell
and a 307 mL/min base purge.

2.4. Isotherms. N2 physisorption isotherms at 77 K
performed in a Micromeritics TriStar 3020 were collected
with 45 s equilibration time in the p/p0 range of 0−0.001,
which was decreased to 10 s for p/p0 > 0.001. From these
isotherms, the specific surface area and pore volume of the
samples were extracted through the Brunauer−Emmett−Teller
(BET) in the range of p/p0 from 0.05 to 0.2 and the Barrett−
Joyner−Halenda (BJH) method from the total N2 adsorbed at
p/p0 0.95, respectively.

2.5. Thermogravimetric Analysis (TGA). PEI content in
the composites was estimated using a TA Instrument Q600
TGA apparatus and a literature procedure.48 Weight loss from
120 to 900 °C under a 100 mL/min flow of N2 diluted air was
recorded at 10 °C/min and normalized by the residual mass at
900 °C.

2.6. Photoluminescence (PL) Spectroscopy. PL experi-
ments were conducted on a custom-built Princeton Instru-
ments spectrometer using a liquid N2-cooled Si CCD (PyLoN)
array for collecting visible−near-infrared (NIR) spectra (400−
900 nm). Intensity calibration was performed daily using an
IntelliCal USB-LSVN (9000-410) calibration lamp. Samples
were placed in a 2 mm quartz cuvette and excited with a 365
nm light-emitting diode (LED) (7.5 nm full width at half-
maximum (FWHM)). A 400 nm longpass filter was employed
between the sample and collection fiber. Emission spectra were
collected from 200 to 800 nm using a 150 g/mm grating with
an 800 nm blaze and a 3 mm slit; 20 spectra were averaged
with an overall exposure time of ∼5 s. Temperature control
was achieved with an Oxford Instruments OptistatDN sample-
in-N2-vapor cryostat. Unless otherwise specified, polymer
samples were both cooled and heated at a rate of ∼1 °C/
min. The standard error was calculated by dividing the
standard deviation by the square root of the sample size,
typically attained from three different independent samples.
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3. RESULTS AND DISCUSSION

3.1. Tetraphenylethylene Derivatives as Ratiometric
Fluorescent Probes. A wide variety of fluorescent probe
molecules and techniques have recently been employed to
study diffusion and mobility phenomena in polymer systems.33

Among these probe techniques, aggregation-induced emission
luminogens (AIEgens) are particularly sensitive to minute
changes in the viscosity of their supporting matrix. AIEgens
have high photoluminescent quantum yield (PLQY) when
aggregated or suspended in a frozen or glassy matrix, but
PLQY decreases substantially when dissolved in a fluid
system.49 Tetraphenylethylene (TPE) is an archetypal AIEgen
whose derivatives have been widely used for sensing
applications ranging from biomolecular science50,51 to
mechanoresponsive systems.52 The viscosity-dependent
PLQY of TPE has also recently been employed to study
glass transition dynamics of amorphous polymer films.35,53

The fluorescence of TPE is largely governed by intra-
molecular rotations.49 In a fluid matrix, rotation of the phenyl
groups around their single bond axes in photoexcited TPE
molecules contributes to nonradiative decay from their
photoexcited state. Furthermore, the central olefinic double
bond of TPE can open in the photoexcited state, leading to
torsional rotation around the central C−C bond that creates
significant additional friction with solvating molecules and
subsequent thermal relaxation. Hence, TPE becomes virtually
nonemissive when well solvated in low or nonviscous fluids.
The shape of the TPE emission spectra can also be highly
dependent on the viscosity of the supporting matrix, emitting a
photon of one wavelength when rotational motion is restricted,
but emitting at a longer wavelength when the excited state
molecule can rotate into a more energetically favorable
conformation with a smaller highest occupied molecular
orbital (HOMO)−lowest unoccupied molecular orbital
(LUMO) transition.54 The dependence of the shape of the
emission spectrum on viscosity affords an opportunity to
employ TPE derivatives as ratiometric fluorescent probes,
whereby the ratios of intensities at two or more wavelengths
are recorded. In this way, the technique is effectively self-
referencing and allows for the comparison of samples with
different geometries, light-scattering properties, concentrations
of the fluorescent probe, and even loss of fluorescence intensity
with time due to photobleaching.55

In principle, TPE derivatives can be introduced into a
polymer matrix to probe mobility via several different
strategies, each with its own nuanced advantages. If the
probe molecule has good miscibility with the matrix over the
full range of temperatures being studied, it has been
demonstrated that simply doping the probe into the system
can provide a reliable indicator of polymer Tg.

35 When
miscibility/solubility is a concern, TPE derivatives can also be
covalently tethered to aminopolymers.35,46 For nanocomposite
systems (i.e., mesoporous silica impregnated with amino-
polymer), TPE can also in principle be tethered to the pore
wall.47 While we found that TPE itself is not soluble in
branched PEI, the commercially available analogue tetrakis(4-
hydroxyphenyl)ethylene (THPE) could be well dispersed in
bulk aminopolymers (Figure 1). We thus opted to first
consider simple doping strategies in this initial fluorescence
investigation of PEI mobility.
3.2. Tetrakis(4-hydroxyphenyl)ethylene (THPE) Fluo-

rescence in Small-Molecule Matrices. As discussed, even

aminopolymers with very low glass transition temperatures can
effectively become glassy at higher temperatures upon CO2
uptake; thus, a fluorescent probe developed to study mobility
in aminopolymer-based DAC systems would ideally operate in
a predictable fashion over a wide range of temperatures. Here,
we begin to benchmark the fluorescence response of THPE in
several different small-molecule organic solvents, namely,
tetrahydrofuran (THF), naphthalene, and 2,6-dimethylbenzo-
nitrile (DMB), with corresponding mp values of −109, 80, and
89 °C, respectively. Small-molecule matrices were attractive for
this initial study because they tend to have well-defined
thermal transitions as well as tunable melting point (mp)
values and polarities.
While THPE is essentially nonemissive in THF at room

temperature (rt), the fluorescence spectrum of a 0.02 wt %
solution of THPE in frozen THF at −180 °C showed intense
emission at a λmax of 458 nm (Figure 2, top panel). This
observation agrees well with previous reports citing an
emission λmax near 450 nm, depending on the nature of the
solid-state matrix.56 Both the emission λmax and PLQY stayed
essentially constant between −180 and −140 °C, changing less
than 2%. However, between −120 and −100 °C, the relative
fluorescence intensity dropped by a factor of 20 (Figure 2,
middle panel), and λmax red-shifted with increasing temper-
ature. Above −100 °C, λmax stayed essentially constant at ∼525
nm, though the signal-to-noise ratio became very poor under
these conditions. Overall, the results are highly consistent with
the behavior of TPE in 3-methylpentane,54 which similarly
displayed three temperature-dependent “regions” with differing
fluorescence responses and emission λmax shifting from 460 to
525 nm. In the lower panel of Figure 2, we plot the change in
ratiometric intensity as a function of temperature; 530 and 460
nm were selected as representative of λmax at the relatively
warm and cold temperatures, respectively, for the different
samples studied throughout this manuscript. From the plots in
Figure 2, both fluorescence intensity at 460 nm and the change
in ratiometric intensity appear to be good indicators of the mp
of THF (−109 °C).
The same general trend in fluorescence behavior of THPE

was observed for a 0.02 wt % sample doped into DMB, albeit
shifted at 200 °C. This sample was prepared by stirring THPE

Figure 1. Chemical structures of tetrakis(4-hydroxyphenyl)ethylene
(THPE) as well as linear and branched poly(ethylenimine) (PEI) are
used in this work.
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and DMB at 110 °C for 1 h under a N2 atmosphere in the dark
and then cooling to rt. The ratiometric fluorescence intensity
(530/460 nm) of this sample remained relatively constant
between 20 and 80 °C but then undergoes dramatic change
above the mp of DMB (89 °C). While the fluorescence
intensity at 460 nm drops ∼30% between 20 and 80 °C, there
is a marked decrease above the mp of DMB, and the solution
was only weakly emissive above 110 °C.

In contrast to the THF and DMB solutions, the ratiometric
fluorescence response of THPE was markedly different when
the molecule was dispersed into a matrix where it was poorly
miscible, such as naphthalene. While THPE would fully
dissolve in the former two solutions, rapid stirring in liquid
naphthalene at 110 °C for 1 h produced a very fine suspension
that scattered light, indicative of THPE aggregation. Upon
heating a 0.02 wt % suspension from rt through its mp (80 °C)
up to 120 °C, the emission maximum remained essentially
constant near 450 nm, and no dramatic increase in ratiometric
intensity near the mp of the solvent was observed as in the
other two solvents. The results were consistent with our
observation that THPE aggregates in liquid naphthalene,
which would restrict intramolecular rotation, even above the
melting temperature of the matrix. We note that while the
shape of the emission spectra does not change, the absolute
fluorescence intensity of THPE in naphthalene does start to
drop significantly above 90 °C (Figure 2, middle panel); taken
as a whole, the results suggest that THPE can be employed as a
reliable indicator of small-molecule phase changes over a range
of nearly 200 °C, and furthermore, the molecule is an excellent
ratiometric probe over this range when well solvated in its
matrix (THF and DMB).

3.3. Polymer Mobility and Thermal Transitions.
3.3.1. DSC Data. Prior to investigating polymer thermal
transitions with our fluorescent probe, we first used DSC to
determine the effect of doping up to 1 wt % of the probe
molecule into a series of PEI samples with different molecular
weights and architectures. A fundamental requirement of using
any probe molecule to investigate the mobility of a medium is
that the presence of the probe should have a minimal effect on
the medium. In Table 1, thermal transitions of the bulk

polymer recorded by DSC are compared with fluorogen-doped
polymer transitions for branched PEI samples with weight
average molecular weights (Mw) of 800 and 25,000 g/mol and
a linear PEI sample with Mw ∼ 2500 g/mol. The traces are
illustrated in Figure S3 and were recorded at a heating rate of
10 °C/min. Values of Tg for the branched PEI samples were
estimated at −65 and −52 °C for low- and high-molecular-
weight samples, respectively. The onset of Tm for the linear
PEI sample occurred at 54 °C. The values for both the
branched57 and linear58 samples were fully consistent with
literature values that employed the same heating rates. As seen
in Table 1, fluorogen-doped polymer samples differed by only
1−2 °C when compared with the neat sample. Although
doping at lower concentrations of a fluorogen (0.02 wt %)
made these already small differences completely negligible,
employing a 1 wt % fluorogen gave a substantially better signal-
to-noise ratio during fluorescence measurements with polymer
systems. An improved signal-to-noise ratio allowed spectra to
be collected with an overall lower intensity of excitation light
and/or with a shorter duration of light exposure, both of which
lead to less artifacts in the mobility data (vide inf ra).

Figure 2. (Top) Emission spectra of tetrahydrofuran doped with 0.02
wt % THPE as it is heated through its melting point at −109 °C.
Excitation at 365 nm. (Middle) Normalized fluorescence intensity at
460 nm as a function of temperature for 0.02 wt % THPE solutions in
tetrahydrofuran (red circles), naphthalene (black triangles), and 2,6-
dimethylbenzonitrile (blue squares). (Bottom) Ratiometric fluores-
cence intensity (530/460 nm) for the same data set. Dashed vertical
lines indicate literature mp values.

Table 1. Thermal Transitions Recorded with DSC (°C)a

polymer neat 1 wt % TPHE

L-PEI 2500b 54 53
B-PEI 800c −65 −64
B-PEI 25,000c −52 −50

aHeating rate = 10 °C/min. bOnset temperature of melting (°C).
cEstimation of the polymer glass transition temperature (°C).
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3.3.2. Photostability and Cycling. In the presence of
oxygen, TPE and its derivatives can be photo-oxidized to a
diphenylphenanthrene derivative within minutes of UV
exposure at irradiances used in this work (∼1 mW/cm2),
both in solution and in the solid state.59 However, under an
inert N2 atmosphere, we observed THPE to generally be
photostable toward any degradation on the timescale of our
experiments. We performed a photostability study on a 40 wt
% composite of branched PEI 800 and commercial grade
mesoporous silica (MCM-41). The latter parent compound
had a surface area of ∼1020 m2/g, an average pore-size
distribution of 2.5 nm, and a pore volume of 0.8 cm3/g. PEI
was doped with 1 wt % THPE relative to the polymer. The
stability of the probe was then investigated over a wide range
of temperatures (−120 to 100 °C) by holding the sample at a
given temperature under an inert atmosphere, exciting the
sample for 5 s at ∼1 mW/cm2 of 365 nm light to collect an
emission spectrum, and then performing four subsequent
measurements over the course of 10 min. Emission spectra
from each of these five measurements were compared and
monitored for changes due to photobleaching or degradation.
We found that below rt, the first and fifth emission spectra
were virtually indistinguishable, implying excellent photo-
stability under these conditions. At rt, the intensity of the
first and fifth emission spectra varied only 1%. At 100 °C, the
intensity of the fifth emission spectra was ∼5% lower than that
of the first spectrum, though the ratiometric intensity (530/
460 nm) remained essentially constant. The results suggest
that the probe is more than sufficiently photostable during the
collection of a typical emission spectrum to infer reliable
mobility information at all temperatures employed in this
manuscript.
We note that at temperatures above the Tg of the polymer,

where both the polymer matrix and the THPE molecule are
more mobile, longer durations of light excitation/exposure (on
the order of minutes) can result in a red shift in the recorded
emission spectrum as compared to a spectrum collected over 5
s. Presumably, this is the result of localized heating that can be
attributed to the excited state THPE molecule rotating more
freely and dissipating more energy to the matrix through
nonradiative (thermal) decay mechanisms. If allowed to re-
equilibrate for several minutes after longer light exposures, the
spectrum will blue-shift back to its original shape. We note this
as a word of caution when inferring differences in polymer
mobility across samples at a given temperature; we found it is
critical that light exposure is both minimized and held constant
across samples. Below the polymer Tg where TPHE rotation is
restricted, this reversible red−blue shift phenomenon was not
observed.
We also cycled THPE-doped PEI above and below its Tg to

ensure that THPE was not aggregating with time at colder
temperatures and that the measurements were fully reprodu-
cible upon cycling. In Figure 3, ratiometric fluorescence
intensity is illustrated for a 50 wt % composite of branched PEI
800 and mesoporous silica (SBA15-OH). PEI was doped with
1 wt % THPE and the sample was cycled six times above and
below its Tg (−65 °C) for a total of 12 measurements. Figure 3
illustrates how constant the ratio remains at a given
temperature, particularly for cycles 2−6. The subtle difference
in ratiometric intensities between corresponding data points in
cycles 1 and 2 is likely due to the uncontrolled thermal history
of the first cycle (see the discussion in Section 3.3.3). Overall,

the cycling experiment provides additional evidence for the
reliability and reproducibility of these measurements.

3.3.3. Thermal History. For most fluorescence measure-
ments conducted in this manuscript, the intensity of the
emission spectrum changes more than an order of magnitude
across the temperatures investigated, dropping in intensity as
the temperature is increased. As a high-fluorescence signal-to-
noise ratio is typically achieved by optimizing several different
light acquisition parameters for a given sample, it is desirable to
optimize those parameters at the temperature where the signal
is most intense so as not to risk saturating the detector midway
through a series of temperature-dependent measurements with
the increasing signal. For this reason, the fluorescence signal-
to-noise ratio was optimized at low temperatures for most of
our measurements, at which point it was pragmatic to collect
spectra upon heating.
We acknowledge that measurements probing polymer

mobility as a function of heating (vs cooling) are technically
estimating the so-called fictive temperature of a material rather
than the glass transition; the latter can only be attained upon
cooling.60 We provide several references here discussing the
nuances of these parameters and perspectives on the kinetics of
glass-forming polymers.61−63 We note that it has also been
proposed64 and observed60 that when the thermal history of a
given sample is well controlled and rates of cooling and heating
are equivalent, values of fictive and glass transition temper-
atures vary by only ∼1 °C and are thus close approximations of
each other. When the rates of heating and cooling are not
equivalent, volumetric changes associated with thermal
expansion are complicated by the kinetics of structural
recovery. The phenomenology is, however, generally well
understood.62 For example, if cooling is relatively rapid, the
polymer can be kinetically arrested far from its equilibrium
state. A slow heating following rapid cooling can initially result
in negative thermal expansion as arrested chains are effectively
afforded more time to approach their equilibrium state at a
given temperature.60 Here, we study the fluorescence response
of THPE-doped PEI as a function of thermal history to gauge
the sensitivity of our technique in detecting and studying such
phenomena.

Figure 3. Ratiometric fluorescence intensity (530/460 nm) for
SBA15-OH with 50 wt % PEI doped with 1 wt % THPE. The sample
was cycled 6 times between −80 and −20 °C, above and below the Tg
of −65 °C.
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In Figure 4, we illustrate the fluorescence response of two
samples with different thermal histories. The first was cooled

slowly at 1 °C/min from 20 to −120 °C, while the second
sample was quenched to −120 °C one order of magnitude
more quickly (within ∼15 min). Emission spectra were then
collected for both samples at a heating rate of 1 °C/min
(representative spectra are illustrated in Figure S2). A
comparison of the two data sets in Figure 4 reveals differences
in the fluorescence response as a function of their cooling rate/
thermal history. Those responses begin deviating from each
other at approximately −70 °C (near Tg estimated from DSC).
For the sample with equivalent rates of heating and cooling,
the smooth increase in ratiometric fluorescence intensity is
consistent with a general increase in mobility and/or thermal
expansion of the polymer matrix. In contrast, we observed that
the ratiometric response of the rapidly cooled sample initially
decreased upon heating from −70 to −50 °C before increasing
again at higher temperatures (see Figure 4). The results are
consistent with literature examples of systems that experience
negative thermal expansivity upon slow heating after rapid
cooling.60 In addition to illustrating the importance of
controlling the thermal history of a sample, we believe that
these results also highlight the power of the probe to detect
and study sensitive changes in glass-forming kinetic phenom-
ena, such as polymer fragility,65 which we are currently
evaluating.
3.3.4. PEI Molecular Weights and Architecture. The

fluorescence responses of bulk linear PEI 2500 as well as
branched PEI 800 and 25,000 doped with THPE are illustrated
in Figure 5. The dashed lines on the plot indicate values of Tg
and the onset of Tm estimated from DSC. As can be seen in
this figure, there is a sharp transition in the ratiometric
fluorescence response of THPE-doped linear PEI between 50
and 60 °C, which corresponds well to the onset of Tm
determined by DSC as 53 °C for this sample (Table 1). The
rapid change in fluorescence response is similar to that
observed in the melt transitions of the small-molecule matrices
discussed earlier. In the branched PEI samples, the ratiometric

fluorescence response is also pronounced as the material passes
through a glass transition; however, changes in fluorescence
response are generally more gradual in these amorphous
polymers than in systems that experience formal melting. The
behavior can be rationalized by considering that glass
transitions are pseudo-second-order transitions characterized
by a change in the slope of a specific volume at Tg rather than a
large stepwise change in specific volume at Tm (see Figure 3 in
Burroughs et al.33).
We note that certain techniques (e.g., dielectric spectrosco-

py) are sensitive to sub-Tg molecular motions. While the glass
transition is generally believed to be associated with the
coordinated motion of 50−100 carbon atoms (often labeled
the α-relaxation),66 dielectric spectroscopy has been used to
identify independent movements in the side chains of PEI
associated with 4−8 carbon atoms (a.k.a. β-relaxation) and
terminal amino group motion (γ-relaxation) at temperatures
well below Tg of branched PEI.57 Both of these motions are
believed to facilitate the physical aging phenomenon in
polymers held below their Tg.

67 They have also been invoked
to explain penetrant transport into glassy polymers, including
diffusivity of CO2 through glassy poly(vinyl acetate) as a
function of polymer aging.68 However, it does not appear from
the data illustrated in Figure 5 collected down to −150 °C that
sub-Tg molecular motions can be detected with this probe
molecule. The results suggest that the probe is much more
adept at detecting so-called α-relaxations than β- or γ-
relaxations.

3.3.5. Mobility of PEI in Confinement. Having studied the
fluorescence response of THPE in bulk polymer and small-
molecule matrices, we turn now to investigate the probe
response in more accurate models of DAC operating systems,
namely, PEI loaded mesoporous oxide composites. Inter-
actions between the polymer and support in these composite
gas sorbents are well known to influence performance in these
materials; e.g., pore wall functionalization and polymer fill
fraction have been correlated with CO2 sorption kinetics and
capacities.30,31 Due to the well-defined and tunable nature of
mesoporous silicas such as SBA15, aminopolymer-loaded
SBA15 composites are often employed in both fundamental
and applied systematic DAC studies.3 Here, we probe the

Figure 4. Temperature dependence of the ratiometric fluorescence
intensity (530/460 nm) of bulk PEI 800 doped with 1 wt % TPHE
upon heating at 1 °C/min. The cooling rate of one sample was
controlled at 1 °C/min (purple), while the other sample (blue) was
flash-cooled to −120 °C in 15 min.

Figure 5. Temperature dependence of the ratiometric fluorescence
intensity (530/460 nm) of branched PEI 800 (green), branched PEI
25,000 (blue), and linear PEI 2500 (black). Dashed lines illustrate Tg
and onset of Tm estimated from DSC.
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mobility of PEI 800 in composites with native silanol-
terminated silica (SBA15-OH) as well as hydrophobic-
functionalized silica (SBA15-CH3), where silanol functional
groups are capped via reaction with hexamethyldisilazane. The
effect of the polymer fill fraction in both composites is also
investigated.
Details of the preparation of the fluorescent-doped

composites are provided in the experimental section. The
surface area and pore volumes of the parent materials and
composites were characterized by nitrogen-physisorption
isotherms, and the PEI content was determined via TGA.
Nominal polymer fill fractions of 40 and 50 wt % were targeted
for SBA15-CH3 and SBA15-OH, respectively, as these values
are near the theoretical loading limit for each composite. The 5
wt % composites were also used for each system for
comparison to literature data concerning polymer mobility at
specific fill fractions. Data characterizing these composites are
summarized in Table 2. Pore-size distributions are illustrated in
Figure S5.

Figure 6 illustrates the ratiometric fluorescence data
measured for the SBA15 composites alongside bulk PEI. The
data indicates that confinement of PEI in mesoporous silica in
all cases significantly lowers its mobility relative to the bulk. A
comparison of the fluorescence response for the two samples
near their theoretical loading suggests that PEI in the SBA15-

CH3 composite has higher mobility than PEI in SBA15-OH.
The results are consistent with previous literature inves-
tigations using quasielastic neutron scattering (QENS) and
molecular dynamics (MD) simulations to establish the nature
of polymer−support interactions and polymer chain dynam-
ics.31 Those studies determined that hydrophobic functional-
ization of silica weakens the silica−PEI interactions and results
in greater mobility of the PEI than in composites where more
extensive hydrogen bonding with silanol surface groups existed.
Furthermore, the fluorescence data suggests that PEI in both 5
wt % samples is significantly less mobile than that in the higher
fill fraction composites, which is also consistent with the
literature QENS studies.
To reduce or eliminate the possibility that THPE may

migrate as a function of temperature in the composites and
begin interacting with the pore walls, we synthesized a TPE-
based probe that was covalently tethered to PEI. Details of the
synthesis and characterization are recorded in the Supporting
Information. In Figure S9, we compare the ratiometric
fluorescence intensity of a composite where THPE was
doped into the system vs a composite with tethered TPE.
The fluorescence responses of these two systems are
remarkably similar. The results provide additional support
that the polymer mobility we believe we are probing is not an
artifact of temperature-dependent probe migration.
Finally, we note that thermal transitions could be detected

with DSC in all composites near their theoretical loading; a
shift in PEI 800 Tg was recorded from −65 °C in the bulk to
between −58 and −56 °C in confinement (Figure S4).
However, no thermal transitions were detected for the 5 wt %
composites. In the latter samples, a relatively high fraction of
the material could be present both at the polymer−support
and polymer−air interfaces. This can result in a large mobility
gradient across the thin supported films that can be difficult to
disentangle.69,70 Indeed it has been argued that the field needs
to look beyond simple Tg measurements to characterize the
dynamics of thin supported polymer films.71 As such, this
fluorescence technique allows for powerful qualitative compar-
isons of relative mobilities across different samples over a range
of temperatures that few other benchtop techniques can
provide.

4. CONCLUSIONS
This work represents an effort to develop a suitable fluorescent
probe for extracting information about aminopolymer chain
dynamics in confinement that can otherwise be difficult to
ascertain. After benchmarking the response of our probe in
different bulk environments across a wide swath of temper-
atures, we determined the photo and cycling stability of the
probe and established its ability to detect subtle polymer aging
phenomena based on the thermal histories of the sample. We
then demonstrated that these fluorescence measurements
could be used to study chain dynamics across a series of PEI
samples with different molecular weights and architectures. We
further probed PEI chain dynamics in confined mesoporous
silicas as a function of different polymer loadings and pore
functionalities. The results highlight the power of the
technique to detect subtle changes to polymer dynamics
induced by different microenvironments in nanoporous
supports using a benchtop technique. As composites with
faster PEI dynamics have been found to be more efficient for
CO2 capture, the results are also particularly relevant for
carbon capture applications. We believe that understanding

Table 2. Characterization of PEI 800-Mesoporous
Composites

sample
pore volume
(cm3/g)

organic content
(wt %)a

SBA15-OH 0.99 4.3b

5 wt % PEI/SBA15-OH 0.75 11
50 wt % PEI/SBA15-OH 0.08 56
SBA15-CH3 0.66 8.1
5 wt % PEI/SBA15-CH3 0.64 12
40 wt % PEI/SBA15-CH3 0.16 45
aEstimated from mass loss between 150 and 895 °C via TGA.
bPartially attributed to decomposition of silanol surface groups.

Figure 6. Temperature dependence of the ratiometric fluorescence
intensity (530/460 nm) of bulk PEI 800 as well as mesoporous silica
composites with different PEI 800 loadings and surface functional
groups (−OH vs −CH3).
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how the aminopolymer mobility is influenced by nanoconfine-
ment and other environmental factors and conditions will
ultimately be critical to the development of more efficient
DAC systems employing these materials, and we contend that
this technique is a powerful means for advancing that
understanding.
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