

Grassmannian Shape Representations for Aerodynamic Applications

Olga Doronina¹

Parameter Sween

NREL/PO-2C00-82154

Motivation

Airfoil shape design is a classical problem in engineering and manufacturing. Our motivation is to combine principled physics-based considerations for the shape design problem with modern computational techniques informed by a data-driven approach. Traditional analyses of airfoil shapes emphasize a flow-based sensitivity to deformations which can be represented generally by affine transformations (rotation, scaling, shearing, translation). We present a novel representation of shapes which decouples affine-style deformations from a rich set of data-driven deformations over a submanifold of the Grassmannian. This representation enhances manufacturability and design of aerodynamic shapes by providing a unified design space for 2D airfoils and enabling consistent 3D blade representations and perturbations over a sequence of nominal shapes.

Airfoil Shape Representations & Affine Transformations

We represent a 2D shape as a boundary defined by the closed (injective) curve

$$c: d \subset \mathbb{R} \to \mathbb{R}^2: s \mapsto c(s)$$

over a compact domain d which can be arbitrarily reparametrized to [0.1]

Affine deformations of the airfoil have the form

$$\tilde{c}(s) = M^{\mathsf{T}}c(s) + b$$

where $M \in GL_2$ is from the set of all invertible 2×2 matrices and $b \in \mathbb{R}^2$

In practice, we represent the airfoil shape as an ordered sequence of n landmarks

$$(x_i) \in \mathbb{R}^2$$
 for $i = 1, ..., n$

which we can combine into a matrix

$$X = [x_1, \dots, x_n]^T \in \mathbb{R}^{n \times 2}$$

where $\mathbb{R}^{n\times 2}$ refers to the space of full-rank $n\times 2$ matrices

Affine deformations of discrete shape representation can be written as the smooth right action with translation

$$\tilde{X} = XM + 1 \operatorname{diag}(b)$$

where $1 \in \mathbb{R}^{n \times 2}$ denotes a matrix of ones

The linear term M can drive four types of physically meaningful deformations as one-parameter subgroups through GL2:

- (i) changes in thickness
- (ii) changes in camber
- (iii) changes in chord
- (iv) changes in twist (rotation or angle-of-attack)

Grassmannian Shapes

The **Grassmannian** $\mathcal{G}(n,q)$ is the space of all q-dimensional subspaces of \mathbb{R}^n

 \rightarrow Note that for (planar) airfoil design, we consider q=2

Formally, $\mathcal{G}(n,q) \cong \mathbb{R}^{n\times q}_*/GL_q$ and $\tilde{X} \in \mathbb{R}^{n\times q}_*$ is a full-rank representative element of an equivalence class $[\tilde{X}] \in \mathcal{G}(n,q)$ of all matrices with equivalent span [1]

- → Every element of the Grassmannian is a full-rank matrix modulo GL_a deformations
- → Airfoil elements of the Grassmannian are decoupled from the aerodynamically important affine

Landmark-Affine (LA) standardization maps physical airfoil shapes as elements of the Grassmannian [2]

→ Normalizes the shape such that it has zero mean and identity covariance

Principal Geodesic Representations

Independence of G(n, q) to affine deformations enables a data-driven approach to identifying high-order, physically relevant shape deformations known as principal geodesic analysis (PGA) [3]

- → Generalization of principal component analysis (PCA) over Riemannian manifolds
- \rightarrow Determines principal components as elements in a **central tangent space**, $T_{\lceil \tilde{X}_n \rceil} \mathcal{G}(n,2)$ of a given dataset, where \tilde{X}_{\bullet} is the Karcher mean over the manifold

PGA constitutes a manifold learning procedure for computing an important submanifold of $\mathcal{G}(n,2)$ representing a design space of physically relevant airfoil shapes inferred from provided data [4]

Airfoil Example

Data considerations:

- · Consider 16 baseline airfoils from the NREL 5MW, DTU 10MW, and IEA 15MW reference wind turbines [5, 6, 7]
- Identify baseline shapes' class-shape transformation (CST) representations, which encode upper and lower surfaces as a 20-term polynomial expansion [8]
- Define 1.000 perturbations of nominal CST coefficients by up to 20% for each baseline airfoil

Using PGA, we reduce the full 20-dimensional CST parameter to r = 4 principal basis components

- → PGA perturbations are independent of previous affine deformations
- → Distribution of the complete design space is more unified than with CST
- → Sampling through parameters results in realistic airfoil shapes

Note: figure only shows a random selection of four CST parameters from the full 20D space for readability

Blade Interpolation and Perturbation

Wind turbine blade designs are often characterized by an ordered set of planar airfoils at different bladespan positions from hub to tip of the blade

- → Current design approaches require significant hand-tuning of airfoils to ensure the construction of valid blade geometries without dimples or kinks
- → The Grassmannian framework enables the flexible design of new blades by applying consistent deformations to all airfoils and smooth interpolation of shapes between landmarks

We represent a discretized blade as a sequence of matrices $(X_k) \in \mathbb{R}^{n \times 2}$ with an induced sequence of equivalence classes over the Grassmannian

$$([\tilde{X}_k]) \in \mathcal{G}(n, 2)$$
 for $k = 1, ..., N$

at discrete blade-span positions $\eta_{\nu} \in S \subset \mathbb{R}$

We can construct a piecewise geodesic path over the Grassmannian to interpolate discrete blade shapes independent of affine deformations [9]

$$\tilde{\gamma}_{k,k+1}: [\tilde{X}_k] \mapsto [\tilde{X}_{k+1}]$$

New blade shapes can be constructed by perturbing landmark airfoils along the span of the blade

→ Typically requires careful hand-tuning of the shapes to ensure manufacturability of the blade

PGA shape perturbations are defined by a direction in the tangent space of Karcher mean, $T_{\Gamma, \tilde{Y}_{1}, \tilde{Y}} \mathcal{G}(n, 2)$

We utilize an isometry called parallel transport to smoothly ``translate" the perturbing vector field along separate geodesics connecting the Karcher mean to each of the individual ordered airfoils

$$T_{\lceil \tilde{X}_{k} \rceil}G(n, 2)$$

This results in a natural framework for interpolating 2D shapes into 3D blades and the decoupling of affine and higher-order deformations make Grassmann-based shape representation a powerful tool enabling AI/ML-driven aerodynamic design

References

[2] D. Bryner, E. Klassen, H. Le, and A. Srivastava, "2D affine and projective shape analysis," IEEE Trons. Pottern Anal. Mach. Intell., vol. 36, no. 5, pp. 998-1011, 2014.

3 P.T. Fletcher, C. Lu, and S. Joshi, "Statistics of shape via principal geodesic analysis on Lie groups," in IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 1, pp. 1-1, IEEE, 2003

[5] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, "Definition of a 5-MW reference wind turbine for offshore system development," Tech, Rep. NREL/TP-500-38060, NREL Golden, CO. 2009

[6] C. Bak, F. Zahle, R. Bitsche, T. Kim, A. Yde, L. C. Henriksen, A. Natarajan, and M. H. Hansen, "Description of the dtu 10-MW reference wind turbine," DTU Wind Energy Report +0092, vol. 5, 2013.

E. Gaertner, J. Rinker, L. Sethuraman, et al., "Definition of the IEA 15 MW Offshore Reference Wind Turbine," tech. rep., International Energy Agency, 2020.

[9] A Edolman T & Arise and S T Smith "The geometry of algorithms with orthogonality constraints" SIAM formed on Matrix Analysis and Analysis and 20 on 2 on 303-353 1998

This size is on a familiar in pair by the resoult interestable intering Laboratory reputation by Parkson or Scholarschild English Council in the Council Institute of the Council Institute of the Institute of Institute of