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Motivation 

Airfoil shape design is a classical problem in engineering and manufacturing. Our motivation is to
combine principled physics-based considerations for the shape design problem with modern com-

putational techniques informed by a data-driven approach. Traditional analyses of airfoil shapes
emphasize a flow-based sensitivity to deformations which can be represented generally by affine

transformations (rotation, scaling, shearing, translation). We present a novel representation of 
shapes which decouples affine-style deformations from a rich set of data-driven deformations over

a submanifold of the Grassmannian. This representation enhances manufacturability and design of

aerodynamic shapes by providing a unified design space for 2D airfoils and enabling consistent 3D

blade representations and perturbations over a sequence of nominal shapes.

Airfoil Shape Representations & Affine Transformations 

We represent a 2D shape as a boundary defined by the closed (injective) curve 

𝑐 ∶ ℐ ⊂ ℝ → ℝ2 ∶ 𝑠 ↦ 𝑐(𝑠) 

over a compact domain ℐ which can be arbitrarily reparametrized to [0, 1] 

Affine deformations of the airfoil have the form 

𝑐(𝑠)̃ = 𝑀 ⊤𝑐(𝑠) + 𝑏 

where 𝑀 ∈ 𝐺𝐿2 is from the set of all invertible 2 × 2 matrices and 𝑏 ∈ ℝ2 

In practice, we represent the airfoil shape as an ordered sequence of 𝑛 landmarks 

(𝑥𝑖) ∈ ℝ2 for 𝑖 = 1, … , 𝑛 

which we can combine into a matrix 

𝑋 = [𝑥1, … , 𝑥𝑛]⊤ ∈ ℝ∗
𝑛×2 

where ℝ𝑛×2
∗ refers to the space of full-rank 𝑛 × 2 matrices 

Affine deformations of discrete shape representation can be written as the smooth right action with
translation 

�̃� = 𝑋𝑀 + 1 diag(𝑏) 

where 1 ∈ ℝ𝑛×2 denotes a matrix of ones 

The linear term 𝑀 can drive four types of physically meaningful deformations as one-parameter sub-
groups through 𝐺𝐿2: 

(i) changes in thickness

(ii) changes in camber

(iii) changes in chord

(iv) changes in twist (rotation or angle-of-attack) 

Grassmannian Shapes 

The Grassmannian 𝒢(𝑛, 𝑞) is the space of all 𝑞-dimensional subspaces of ℝ𝑛 

→ Note that for (planar) airfoil design, we consider 𝑞 = 2 

Formally, 𝒢(𝑛, 𝑞) ≅ ℝ𝑛×𝑞/𝐺𝐿𝑞 and 𝑋 ∈ ℝ𝑛×𝑞
∗ is a full-rank representative element of an equivalence class ∗ ̃

[�̃�] ∈ 𝒢(𝑛, 𝑞) of all matrices with equivalent span [1] 

→ Every element of the Grassmannian is a full-rank matrix modulo 𝐺𝐿𝑞 deformations 

→ Airfoil elements of the Grassmannian are decoupled from the aerodynamically important affine

deformations 

Landmark-Affine (LA) standardization maps physical airfoil shapes as elements of the Grassmannian [2] 

→ Normalizes the shape such that it has zero mean and identity covariance 

Principal Geodesic Representations 

Independence of 𝒢(𝑛, 𝑞) to affine deformations enables a data-driven approach to identifying high-order,

physically relevant shape deformations known as principal geodesic analysis (PGA) [3]

→ Generalization of principal component analysis (PCA) over Riemannian manifolds 

→ Determines principal components as elements in a central tangent space, 𝑇[�̃�0]𝒢(𝑛, 2) of a given 

dataset, where �̃�0 is the Karcher mean over the manifold 

PGA constitutes a manifold learning procedure for computing an important submanifold of 𝒢(𝑛, 2) rep-
resenting a design space of physically relevant airfoil shapes inferred from provided data [4] 

Airfoil Example 

Data considerations: 

⋅ Consider 16 baseline airfoils from the NREL 5MW, DTU 10MW,

and IEA 15MW reference wind turbines [5, 6, 7] 

⋅ Identify baseline shapes' class-shape transformation (CST)
representations, which encode upper and lower surfaces as a
20-term polynomial expansion [8] 

20% for each baseline airfoil 
⋅ Define 1,000 perturbations of nominal CST coefficients by up to

Using PGA, we reduce the full 20-dimensional CST parameter to 𝑟 = 4 principal basis components 

→ PGA perturbations are independent of previous affine deformations 

→ Distribution of the complete design space is more unified than with CST 

→ Sampling through parameters results in realistic airfoil shapes 

Note: figure only shows a random selection of four CST parameters from the full 20D space for readability 

Blade Interpolation and Perturbation 

Wind turbine blade designs are often characterized by an ordered set of planar airfoils at different blade-

span positions from hub to tip of the blade

→ Current design approaches require significant hand-tuning of airfoils to ensure the construc-
tion of valid blade geometries without dimples or kinks 

→ TheGrassmannian framework enables the flexible design of newblades by applying consistent

deformations to all airfoils and smooth interpolation of shapes between landmarks 

We represent a discretized blade as a sequence of matrices (𝑋𝑘) ∈ ℝ𝑛×2
∗ with an induced sequence of 

equivalence classes over the Grassmannian

([�̃�𝑘]) ∈ 𝒢(𝑛, 2) for 𝑘 = 1, … , 𝑁 

at discrete blade-span positions 𝜂𝑘 ∈ 𝒮 ⊂ ℝ 

We can construct a piecewise geodesic path over the Grassmannian to interpolate discrete blade shapes

independent of affine deformations [9] 

�̃�𝑘,𝑘+1 ∶ [�̃�𝑘] ↦ [�̃�𝑘+1] 

New blade shapes can be constructed by perturbing landmark airfoils along the span of the blade

→ Typically requires careful hand-tuning of the shapes to ensure manufacturability of the blade 

PGA shape perturbations are defined by a direction in the tangent space of Karcher mean, 𝑇[�̃�0]𝒢(𝑛, 2) 

We utilize an isometry called parallel transport to smoothly ``translate'' the perturbing vector field along
separate geodesics connecting the Karcher mean to each of the individual ordered airfoils

𝑇[�̃�𝑘]𝒢(𝑛, 2) 

This results in a natural framework for interpolating 2D shapes into 3D blades and the decoupling
of affine and higher-order deformations make Grassmann-based shape representation a powerful tool
enabling AI/ML-driven aerodynamic design 
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