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Passivating Contacts and Contact Firing
Contact Firing

Rapid heating and cooling causes 
H release from dielectrics 

poly-Si/SiOx Passivating Contact

Eberle (2016), Phys. Status Solidi-RiVoc (mV) As-dep Fired 400 °C Annealed

SiNx/poly-Si/c-Si 540 590 570

Al2O3/poly-Si/c-Si 545 650 737

iVoc (mV) As-dep Fired 400 °C Annealed

SiNx/poly-Si/c-Si 540 590 570

Al2O3/poly-Si/c-Si 545 650 737

SiNx does not passivate nearly as well as Al2O3
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How Does Hydrogen Reach the Interface from Al2O3 and SiNx?

• SiOx passivates c-Si well, but interface still 
has dangling bonds

• H mobilizes in Al2O3 and SiNx at T>~400 °C, 
allowing for diffusion through structure

• H diffuses to defects in poly-Si, the SiOx/c-Si 
interface, and into the wafer bulk

• H can be beneficial, but can also create 
defects such as LeTID

• Al2O3 can act as diffusion barrier to prevent 
H migration

• Oxides provide O-containing species to aid 
SiO2 passivation

Varshney (2019), IEEE J. Photovolt. 10, 19-27

Yang (2022), IEEE J. Photovolt. 12, 259-266

Meyer (2021), ACS Appl. Nano Mater. 11 1363-1369

Meyer (2021), Energy Environ. Sci. 14, 5416-5422

H2 H2 H2

H2 H2 HH

Jafari (2021), IEEE J. Photovolt. 11, 1363-1369

Benoit (2007), Microelectron. Eng. 84, 2169-2172
Devine (1996), Thin Solid Films 286, 317-320
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Sample Fabrication Process Flow
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Hydrogen Effusion Process Flow
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Hydrogen Effusion Peaks from SiNx Single Layer

• Low T: H2 diffusion in void-rich SiNx

• High T: atomic H diffusion in denser SiNx

• Significant discussion in the literature 
regarding hydrogen diffusion in SiNx

• Si-H and N-H bond restructuring to release 
H2

• Stability of Si-H vs N-H
o N-H ~ 4 eV while Si-H ~ 3.3 eV

o Si may take H from N-H bonds at high T

• Diffusion as molecular H2 or atomic H
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Jafari (2021), IEEE J. Photovolt. 11, 1363-1369

Morimoto (1983), Phys. Stat. Sol. (b) 119, 715-720
Narikawa (1985), Jpn. J. Appl. Phys. 24, 861-863

Beyer (2006), Mater. Res. Soc. Symp. Proc. 910

Benoit (2007), Microelectron. Eng. 84, 2169-2172 Sheoran (2008), Appl. Phys. Lett. 92, 172107

Boehme (2000), J. Appl. Phys. 88, 6055-6059

Cartier (1993), Appl. Phys. Lett. 63, 1510-1512

Si-H + Si-H  Si-Si + H2
Si-H + N-H  Si-N + H2

Kastner (1987), Disordered Semiconductors, 641-658
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Hydrogen Effusion Peaks from SiNx/Al2O3 Stacks

• Total H effused does not change, as 
all is removed by 1000 C

• First curve looks very similar to our 
SiNx only case – two main peaks

• Thermal stability would not 
change, but diffusion through 
Al2O3 is hampered

• Al2O3 is indeed a barrier layer, 
resulting in more H release around 
the peak firing temperature

poly-Si/SiOx

c-Si
poly-Si/SiOx

SiNx

SiNx

Al2O3

Al2O3

poly-Si/SiOx

c-Si
poly-Si/SiOx

SiNx

SiNx

Al2O3

Al2O3 Ramp rates 
= 10 °C/min

Firing 
T ~ 780 °C
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Incremental Ramps Indicate Out-Diffusion Temperatures

    Measurement of sample bonding after elevated 
temperature relates H release to peak annealing 

temperature

Measure FTIRHeat to 400 °C 
@ 10 °C/min

Measure FTIRDeposit 
dielectric stacks

Measure FTIRHeat to 600 °C 
@ 10 °C/min

Measure FTIRHeat to 800 °C 
@ 10 °C/min

Measure FTIRHeat to 1000 °C 
@ 10 °C/min
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Al2O3 Cap Retains H Up to Higher Temperatures 

• Without Al2O3 cap, most hydrogen is 
lost by 600 °C

0.05

As-deposited
400 °C

800 °C
1000 °C

600 °C

Stein (1979), J. Electrochem. Soc. 126, 1750-1754

• With Al2O3 cap, hydrogen is retained 
up to 800 °C

• N-H bonds are lost before Si-H bonds
• Passivation is best with 400 °C anneal, 

worsens with firing
• Changes in the range  400-800 °C 

could be related to passivation

N-H
stretch

Si-H
stretch

Stability of H in each film stack is better understood, 
but cannot be directly compared to firing

iVoc
(mV)
555
721

645

iVoc
(mV)
555
731

675
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Firing Drastically Changes Effusion Profiles

iVoc
644.6 mV

iVoc
675.4 mV

H content is drastically reduced, 
primarily from low-temperature peak

Change in SiNx structure increases 
stability of H bonding within films

Ramp rates 
= 10 °C/min

Morimoto (1983), Phys. Stat. Solidi (b) 119, 715-720
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Passivation of SiNx Recipes Following Firing

• N-H bonding lost in SiNx 1, 
remains in 2 and 3

• Best passivation observed for SiNx
films where more H is retained in 
SiNx

As-deposited
Fired to 780 °C

SiNx 1

SiNx 2

SiNx 3

N-Hx Si-Hx

Si-N

N-H2

iVoc (mV)
SiNx As-dep Fired

1 571 649
2 537 699
3 544 699

0.1
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Summary
• SiNx and Al2O3 dielectric stacks on poly-Si/SiOx

release hydrogen upon heating; H likely migrates to 
the SiOx/c-Si interface

• Al2O3 prevents effusion of H2 at lower temperatures 
and shifts the peak H2 release temperature

• Restructuring of SiNx during firing increases stability 
of Si-H bond through increased N back-bonding

• Passivation quality is correlated to amount of H 
released close to the peak firing temperature

Concluding Question
• What species passivates the SiOx/c-Si 

interface?
• Atomic or molecular hydrogen?
• Other species such as O, O2, OH, or H2O?

Hartenstein@mines.edu
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Fast Firing vs 1 hr 400 °C Anneal in N2

iVoc (mV)
SiNx As-dep Fired N2 Anneal

1 571 649 728
2 537 699 737
3 543 699 670

• Ambient H not needed – sufficient 
amount of bonded H exists in these 
stacks

• Expect to see more N-H bonding in 
Paul’s SiNx, which has best 
passivation condition
o We do see this, but why not clear 

difference in KOH, which is “bad”?

As-deposited

Fired to 780 °C

SiNx 1

SiNx 2

SiNx 3

N-Hx Si-Hx

Si-N

N-H2

400 °C N2 Anneal
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After this is mostly just data
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Future Investigations: H Injection for LeTID

• H has been proven as the 
source of LeTID

• Control amount of H injection 
and thus, degradation with 
AlOx interlayers

• More H should degrade faster,
regenerate higher

c-Si:Ga
SiNx:H

SiNx:H
AlOx:H

AlOx:H

SiNx:H

c-Si:Ga
AlOx:H

AlOx:H
SiNx:H

SiNx:H

SiNx:H
c-Si:Ga

Meyer (2022), Energy Environ. Sci.

Increased H injection from AlOx cap should result in 
faster degradation, followed by increased degradation
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AlOx H effusion and N2 Annealing Passivation

• Passivation with AlOx at 
~ 400 °C provides better 
passivation than SiNx

• Effusion curves show 
m/z = 2 correlates well 
with m/z = 18 up to ~ 
500 °C

• Additional peak exists 
between annealing and 
firing temperature 

Inconsistent baseline above ~675 °C

m/z = 18
m/z = 2

Dingemans (2012), J. Appl. Phys.
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iVoc data for structures

Sample type As-dep Fired FGA’d FGA’d & Fired

AlOx/c-Si 645 700 726 720

SiNx/c-Si 620 590 676 590

Poly/c-Si 535 525 567 560

SiNx/poly/c-Si 540 590 570 586

AlOx/poly/c-Si 545 650 737 716

AlOx/SiNx/poly/c-Si 555 675 731 701

SiNx/AlOx/poly/c-Si 555 645 721 686

Tempress SiNx/p-
poly/c-Si

625 670 660 680
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COMPONENT INFORMATION/ BACKUP SLIDES
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Blistering on AlOx films 

• Bill expressed concern that AlOx films > few nm blister 
after firing (he was right)

• Not sure that this would have effect on our FTIR or 
effusion measurements

• Blisters appear to be deflated (not exploded)
• Blisters don’t appear when AlOx is capping layer
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FTIR spectra after incremental temperature ramps



22

FTIR of fired samples vs unfired

Tempress
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Drastic Passivation Difference Between Al2O3 and SiNx

PERC

• Industry standard
• Low J0,surface
• Improved transport

• Industrial future
• No metal/c-Si contact
• Better transport

Contact Firing

Rapid heating and cooling 
causes H release from 

dielectrics 

Green (2015), Sol. Energ. Mat. Sol. C.

poly-Si/SiOx
Passivating Contact

Eberle (2016), Phys. Status Solidi-R
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Firing of Cells Requiring H-rich Dielectrics
Contact Firing

Rapid heating and cooling causes 
H release from dielectrics 

poly-Si/SiOx Passivating Contact

Eberle (2016), Phys. Status Solidi-R

iVoc As-dep Fired 400 °C Annealed

SiNx/c-Si 620 590 676

Al2O3/c-Si 645 700 726

SiNx/poly-Si/c-Si 540 590 570

Al2O3/poly-Si/c-Si 545 650 737

iVoc As-dep Fired 400 °C Annealed

SiNx/c-Si 620 590 676

Al2O3/c-Si 645 700 726

SiNx/poly-Si/c-Si 540 590 570

Al2O3/poly-Si/c-Si 545 650 737

SiNx does not passivate nearly as well after firing as Al2O3, despite also providing H to SiOx/c-Si interface – why?
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