

Hydrogen Transport from Dielectrics to *poly-*Si/SiO_x Passivating Contacts Measured by Mass Spectrometry and Vibrational Spectroscopy

Matthew B. Hartenstein, Sumit Agarwal

Colorado School of Mines

William Nemeth, Matthew Page, David Young, Paul Stradins National Renewable Energy Laboratory

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office under Agreement Number 34359 May 10th, 2022 MRS Spring Meeting Honolulu, USA

NATIONAL RENEWABLE ENERGY LABORATORY

Passivating Contacts and Contact Firing

650

Contact Firing

Eberle (2016), Phys. Status Solidi-R

Rapid heating and cooling causes H release from dielectrics

 SiN_x does not passivate nearly as well as Al_2O_3

737

Al₂O₃/*poly*-Si/*c*-Si

545

How Does Hydrogen Reach the Interface from Al_2O_3 and SiN_x ?

- SiO_x passivates *c*-Si well, but interface still has dangling bonds
- H mobilizes in Al₂O₃ and SiN_x at T>~400 °C, allowing for diffusion through structure Meyer (2021), ACS Appl. Nano Mater. 11 1363-1369
- H diffuses to defects in *poly*-Si, the SiO_x/*c*-Si interface, and into the wafer bulk
- H can be beneficial, but can also create defects such as LeTID Meyer (2021), Energy Environ. Sci. 14, 5416-5422
- Al₂O₃ can act as diffusion barrier to prevent H migration Vang (2022), IEEE J. Photovolt. **12**, 259-266 Jafari (2021), IEEE J. Photovolt. **11**, 1363-1369
 - Varshney (2019), IEEE J. Photovolt. 10, 19-27 Oxides provide O-containing species to aid SiO₂ passivation Benoit (2007), Microelectron. Eng. 84, 2169-2172 Devine (1996), Thin Solid Films 286, 317-320

Sample Fabrication Process Flow

Hydrogen Effusion Process Flow

Hydrogen Effusion Peaks from SiN_x Single Layer

- Low T: H_2 diffusion in void-rich SiN_x
- High T: atomic H diffusion in denser SiN_x
- Significant discussion in the literature regarding hydrogen diffusion in SiN_x
- Si-H and N-H bond restructuring to release Jafari (2021), IEEE J. Photovolt. 11, 1363-1369 Kastner (1987), Disordered Semiconductors, 641-658
- Stability of Si-H vs N-H Narikawa (1985), Jpn. J. Appl. Phys. 24, 861-863 Morimoto (1983), Phys. Stat. Sol. (b) 119, 715-720
 - \circ N-H ~ 4 eV while Si-H ~ 3.3 eV
 - $_{\odot}~$ Si may take H from N-H bonds at high T
- Diffusion as molecular H₂ or atomic H

Cartier (1993), Appl. Phys. Lett. **63**, 1510-1512 Sheoran (2008), Appl. Phys. Lett. **92**, 172107 Boehme (2000), J. Appl. Phys. **88**, 6055-6059

Hydrogen Effusion Peaks from SiN_x/Al₂O₃ Stacks

- Total H effused does not change, as all is removed by 1000 C
- First curve looks very similar to our SiN_x only case – two main peaks
- Thermal stability would not change, but <u>diffusion</u> through Al₂O₃ is hampered
- Al₂O₃ is indeed a barrier layer, resulting in more H release around the peak firing temperature

Incremental Ramps Indicate Out-Diffusion Temperatures

Measurement of sample bonding after elevated temperature relates H release to peak annealing temperature

Al₂O₃ Cap Retains H Up to Higher Temperatures

Si-H N-H *iV*_{oc} 0.05 rbance stretch stretch (mV)SiN Al₂O 555 As-deposited polv-Ši/ŠiO. Without Al_2O_3 cap, most hydrogen is c-Si 721 polv-Si/SiO 400 °C lost by 600 °C 0 Al₂O₃ S SiN 600 °C A D 645 With Al_2O_3 cap, hydrogen is retained 800 °C 1000 °C up to 800 °C N-H bonds are lost before Si-H bonds iV_{oc} Ð (mV)Passivation is best with 400 °C anneal, C Al₂O₃ SiN 555 poly-Si/SiO, ത worsens with firing c-Si ē 731 poly-Si/SiO_x Changes in the range 400-800 °C SiN 0 Al₂O₃ S could be related to passivation Ab 675 3500 3400 3300 2300 2200 2100 2000 Stability of H in each film stack is better understood, Wavenumber (cm^{-1}) but cannot be directly compared to firing

Firing Drastically Changes Effusion Profiles

Morimoto (1983), Phys. Stat. Solidi (b) **119**, 715-720

<i>iV</i> _{oc} (mV)					
SiN _x	As-dep	Fired			
1	571	649			
2	537	699			
3	544	699			

- N-H bonding lost in SiN_{y} 1, remains in 2 and 3
- Best passivation observed for SiN_x films where more H is retained in SiN_x

Summary

- SiN_x and Al₂O₃ dielectric stacks on *poly*-Si/SiO_x release hydrogen upon heating; H likely migrates to the SiO_x/c-Si interface
- Al₂O₃ prevents effusion of H₂ at lower temperatures and shifts the peak H₂ release temperature
- Restructuring of SiN_x during firing increases stability of Si-H bond through increased N back-bonding
- Passivation quality is correlated to amount of H released close to the peak firing temperature

Concluding Question

- What species passivates the SiO_x/c-Si interface?
- Atomic or molecular hydrogen?
- Other species such as O, O_2 , OH, or H_2O ?

Hartenstein@mines.edu

Acknowledgements

NREL Si PV

Group

- Dr. Pauls Stradins
- Dr. David Young
- Bill Nemeth
- Vinnie LaSalvia
- Matt Page
- San Theingi
- Dr. Ryan France
- Dr. Steven Harvey
- Dr. Harvey Guthrey

CSM Group

- Dr. Sumit Agarwal
- Abigail Meyer
- Kejun Chen
- Caroline L. S. de Souza
- Xue Wang
- Andrew Kaye
- Chirag Mule
- Dirk Steyn
- Wallis Sholl

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office under Agreement Number 34359

Fast Firing vs 1 hr 400 °C Anneal in N₂

AlO SiN

poly-Sî/O_x

After this is mostly just data

Future Investigations: H Injection for LeTID

- H has been proven as the source of LeTID
- Control amount of H injection and thus, degradation with AlOx interlayers
- More H should degrade faster, regenerate higher

Increased H injection from AlOx cap should result in faster degradation, followed by increased degradation

AIO_x H effusion and N₂ Annealing Passivation

- Passivation with AlO_x at ~ 400 °C provides better passivation than SiN_x
- Effusion curves show m/z = 2 correlates well with m/z = 18 up to ~ 500 °C
- Additional peak exists between annealing and firing temperature

iVoc data for structures

Sample type	As-dep	Fired	FGA'd	FGA'd & Fired
AlOx/c-Si	645	700	726	720
SiNx/c-Si	620	590	676	590
Poly/c-Si	535	525	567	560
SiNx/poly/c-Si	540	590	570	586
AlOx/poly/c-Si	545	650	737	716
AlOx/SiNx/poly/c-Si	555	675	731	701
SiNx/AlOx/poly/c-Si	555	645	721	686
Tempress SiNx/p- poly/c-Si	625	670	660	680

COMPONENT INFORMATION/ BACKUP SLIDES

Blistering on AlOx films

- Bill expressed concern that AlOx films > few nm blister after firing (he was right)
- Not sure that this would have effect on our FTIR or effusion measurements
- Blisters appear to be deflated (not exploded)
- Blisters don't appear when AlOx is capping layer

FTIR spectra after incremental temperature ramps

FTIR of fired samples vs unfired

Drastic Passivation Difference Between Al₂O₃ and SiN_x

Firing of Cells Requiring H-rich Dielectrics

 SiN_x does not passivate nearly as well after firing as Al_2O_3 , despite also providing H to SiO_x/c -Si interface – why?

737

Al₂O₃/*poly*-Si/*c*-Si

545

650

