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Recent HVPE grown solar cells at NREL 
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J. Ptak 
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Abstract—In this work we present solar cells grown via 
hydride vapor phase epitaxy (HVPE) in NREL’s dynamic 
HVPE reactor. We show single junction GaAs and GaInP solar 
cells with efficiencies as high as 25.5% and 15.2% respectively, 
and dual junction solar cells with an efficiency of 24.9%.  

Keywords—III-V solar cells, GaAs, GaInP, HVPE 

I. INTRODUCTION 
III-V materials have achieved the highest solar cell 

efficiencies in both single and multi-junction 
configurations[1]. Their strong absorption coefficients permit 
the formation of thin structures that are flexible and light, but 
still optically thick, enabling improved energy harvesting. 
Despite all of their advantages, III-Vs are limited to high-
value applications such as space power primarily due to their 
high manufacturing costs [2]. Hydride vapor phase epitaxy 
(HVPE) has emerged as a potential lower cost alternative to 
current manufacturing processes of III-V solar cells [3, 4]. In 
this work, we highlight recent advances at NREL in the use of 
dynamic-HVPE (D-HVPE) to obtain high efficiency single 
and dual junction solar cells. D-HVPE uses multiple adjacent 
HVPE chambers to generate high quality interfaces needed for 
optoelectronic devices[5].   This has made it possible for us to 
demonstrate single junction GaAs[3] and GaInP[6] solar cells, 
tunnel junctions[7], and tandem devices[8]. We will show 
progress in improving the performance of these devices, 
enabling us to reach efficiencies >25% for single-junction 
GaAs devices. 

II. EXPERIMENTAL METHODS 
Solar cells were grown in our dual growth chamber D-

HVPE reactor[5] using pure Ga and In metal, HCl, AsH3, and 
PH3, with a H2 carrier gas. Dilute H2Se was the n-type dopant, 
while diethylzinc was the p-type dopant. Heterointerfaces 
were formed by rapid mechanical transfer of the substrate 
between the two growth chambers, with each chamber 
stabilized at a new growth condition (either a change in 
material, doping, or both). Substrates were (100) n+ GaAs 
doped with Si and offcut 6° towards the (111)A plane. The 
growth rates of the thick Ga0.5In0.5P and GaAs absorber layers 
were 0.9 and 1.0 µm/min, respectively. The structures, shown 
in Fig. 1, were grown in an inverted fashion and  processed 
using the method detailed in ref. [9]. Ni/Au front contact grids 
and Au metal were used for the front and back contacts 
respectively. External quantum efficiency (EQE) was 
measured on a custom instrument using LED illumination 
(470 and 850 nm) to limit each individual subcell in the 
tandem devices, allowing measurement of individual subcell 
EQE. The spectral reflectance was measured and used to 
calculate the internal quantum efficiency (IQE) of each cell. 
The solar cell one-sun AM1.5G current density-voltage (J-V) 
curves were measured under a calibrated spectrum using 
separate reference cells for each cell. All simulator 
measurements were certified by the PV performance 
characterization team at NREL. 

 
Fig 1. Structure of GaAs (left), GaInP (middle) and tandem (right) cells used in this work.  
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III. RESULTS  
Fig. 2 shows the IQE of each type of cell. The near unity 

IQE of the single junction GaAs cell near the bandedge 
showcases the high collection efficiency of the D-HVPE 
devices. Both the GaInP cell and the tandem device collection 
is limited by the unpassivated GaInP emitter (see Fig. 1). 

Table I shows a summary of the certified solar cell 
measurements. The highest GaAs and GaInP single junction 
cell efficiencies achieved are 25.5% and 15.2%[6], 
respectively. Fig. 3 shows the certified J-V characteristics. The 
dual junction tandem devices, limited by the top cell 
current[10], achieved an efficiency as high as 24.9%.  

TABLE I.  CERTIFIED ONE-SUN SOLAR CELL DATA 

Cell Type VOC 
(V) 

JSC 
(mA/cm2) 

FF 
(%) 

h 
(%) 

HD892 GaAs 1.08 27.8 85.1 25.5 

HC579a GaInP 1.35 13.0 86.7 15.2 

Cell Type VOC 
(V) 

JSC 
(mA/cm2) 

FF 
(%) 

h 
(%) 

HE648 Tandem 2.34 12.6 84.3 24.9 
a. From [6] 

IV. CONCLUSION 
We produced high efficiency solar cells via D-HVPE. We 

obtained certified efficiencies as high as 15.2% and 25.5% for 
single junction GaInP and GaAs solar cells, respectively. Dual 
junction GaInP/GaAs solar cells show efficiencies as high as 
24.9% despite the lack of front-surface passivation. In the 
future, we will use higher bandgap materials[11, 12] to 
improve the top GaInP solar cell passivation to enhance the 
efficiency of both the single junction top cell and tandem 
devices.   
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