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State Estimation for Distribution Networks with
Asynchronous Sensors using Stochastic Descent

Bala Kameshwar Poolla, Guido Cavraro, Andrey Bernstein

Abstract—This paper investigates the problem of state es-
timation for distribution networks with asynchronous sensors
comprising of a mix of smart meters and phasor measurement
units (PMUs) with multiple sampling and reporting rates. We
consider two independent scenarios of state estimation and
tracking, with either voltages or currents as states. With these two
sets, we investigate estimation under (a) full data, assuming all
measurements are available and (b) limited data, where an online
algorithmic approach is adopted to estimate the possibly time-
varying states by processing measurements as and when avail-
able. The proposed algorithm, inspired by the classical Stochastic
Gradient Descent (SGD) approach updates the states based on the
previous estimate and the newly available measurements. Finally,
we demonstrate the estimation and tracking efficacy through
numerical simulations on the IEEE-37 test network, while also
highlighting how estimation with currents as states leads to faster
convergence.

Index Terms—state estimation, asynchronous sensors, stochas-
tic gradient descent, distribution networks, sensor networks.

I. INTRODUCTION

In power systems, state estimation (SE) enables us to
reconstruct electrical quantities from sparse data to maintain
efficient and safe system operation [1], and its application in
distribution grids has received a renewed interest recently. In
[2], the authors propose a new technique for robust SE in the
presence of topological errors. The article [3] investigates the-
oretical lower bounds on the distance between the true solution
and the nearest spurious local minimum and shows that adding
redundant information reduces the number of spurious minima.
Classic state estimators for transmission systems are designed
for the case in which the system operator has an overabun-
dance of measurements [4]. Although distribution networks
were historically under-metered [5], in recent years utilities
have been installing massive numbers of metering devices,
such as smart meters and phasor measurement units (PMUs).
However, such devices are intrinsically heterogeneous and
have different sampling rates. For instance, residential smart
meters take measurements typically every 15 - 60 minutes,
whereas PMUs can take 30 - 60 measurements every second.
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Moreover, sensors do not take and report measurements all
at the same time to keep communication networks free from
congestion [6], [7]. As a result, data available to utilities
are asynchronized and not enough measurements are typically
available to obtain a well-conditioned state estimation problem
at any given time. Historical load data that utilities collect
for billing purposes are used to obtain pseudo-measurements,
that can be fed to classic least-squares estimators, or to build
load probabilistic models. When probability distributions of
load demand are available, the Bayesian linear state estimator
in [8] or approaches based on Kalman filtering can be used [9],
[10]. Other methods rely only on measurement data, e.g., the
matrix completion approach proposed in [11]. By leveraging
the communication, actuation, and sensing capabilities of
smart inverters, authors in [12] probe the grid by varying the
power injections at selected buses, record the incurred voltage
responses, and infer the complex loads at non-actuated buses.

Here, we target SE for power distribution networks with
incoming streams of asynchronous measurements as in [13]
but considering the exact, non-linear power-flow model. We
consider two possible definitions of state: node voltages and
nodal currents. While classical analysis relies on voltage-based
estimation, considering the nodal currents as the network state
tremendously speeds up convergence. Further, we propose an
algorithm built upon the classic SGD method to process the
measurements available at each time and iteratively track the
network state. The main feature of the algorithm is that it
provides meaningful estimates even when only a few mea-
surements are available at each time. The proposed approach
is well-suited for new-age distribution systems because of the
following reasons: (a) the measurements from PMUs, DERs,
and smart meters [14], [15] are usually asynchronous with
considerable differences in measurement time [16], [6]; (b)
the available measurements at each time can be modeled
as time-varying functions of the state; (c) the integration of
renewables and electric vehicles results in a highly variable
loading condition [17] and makes it harder to obtain pseudo-
measurements [18].

The paper is structured as follows. The power network
modeling and non-linear mathematical expressions for mea-
surements in terms of currents and voltages as states are
presented in Section II. The non-linear state estimation prob-
lem formulation is introduced in Section III along with the
approach adopted when there is limited availability of mea-
surement data. The nonlinear state estimation problem and
numerical validation for the IEEE-37 distribution test network
are presented in Section IV, while Section V concludes the
paper with some key insights and future directions of research.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Notation: The lowercase (respectively, uppercase) boldface
letters denote column vectors (respectively, matrices). The use
of calligraphic symbols are reserved for sets. The symbol > is
used to denote transposition. We use 0n and 1n to represent
the vector of zeros and ones, while en is the n-th canonical
vector. The symbols ‖x‖ and ‖X‖ denote the 2-norm of the
vector x and of the matrix X, respectively; ‖x‖Q = x>Qx
for a positive definite matrix Q. The diagonal matrix having
the elements of the finite set {x`} = {x1, x2, . . .} on its
diagonal is denoted by diag(x`). The expectation operator is
defined by E[·], and ∇ is used to denote the gradient.

II. DISTRIBUTION GRID MODELING

An electric power network can be modeled by a graph
G = (V, E), where the set V = {0, . . . , N} collects the
electrical buses, and the set of edges E , with E ⊂ V × V ,
captures the electrical lines. The substation, modeled as a slack
bus, is denoted as node 0. Let the vectors collecting nodal
currents and voltages be i = {i1, . . . , i`} and v = {v1, . . . , v`}.
Similarly, let the vectors of apparent power injections, active
power injections, and reactive power injections at each node
be denoted by s, p, and q respectively. The nodal complex
current injections and voltages are related as[

i0
i

]
=

[
Y00 y>0
y0 Y

]
︸ ︷︷ ︸

Ynet

[
v0
v

]
, (1)

where Ynet is the net system admittance matrix which has been
properly partitioned to highlight the components associated
with the slack bus. In the following, without loss of generality,
we assume the slack bus voltage to be v0 = 1∠0. From
equation (1), voltages can then be written as a function of
currents as

v = 1n + X i, (2)

where X := Y−1. Furthermore, powers, currents, and voltages
are related as

s = p + jq = diag (v) i?, (3)

where ? is the complex conjugate operator. We denote the real
and imaginary parts of matrices X and Y as XR := R(X),
XI := I(X), YR := R(Y), YI := I(Y), y0R := R(y0),
and y0I := I(y0), respectively. Further, let S define the set
of buses endowed with a measurement device. We consider
two kinds of sensors: smart meters– able to measure power
injections and voltage magnitudes; and phasor measurement
units (PMUs)– able to measure additionally, complex voltages
and complex currents [14], [15]. As we will show in the
following, all the aforesaid measurable quantities can be
expressed as quadratic functions of either the nodal voltages
or the nodal currents. In particular, denote the m-th measurand
of the sensor placed at the metered bus n1, n ∈ S, as ỹm,n;
it can be expressed in the quadratic form
ỹm,n(t) = x(t)>Am,n(t)x(t)+x(t)>bm,n(t)+cm,n(t), (4)

where the vector x(t) is the state of the system (either voltages
or currents as explained below); Am,n(t), bm,n(t), cm,n(t)
are possibly time-varying system matrices, vectors, scalars,

1We assume each reporting node has either a PMU or a smart meter.

respectively. Clearly, the expression for the entities appearing
in (4) depends on what is assumed to be the state of the
network. Next, we show the form that (4) takes when the state
consists of the nodal currents and the nodal voltages.

A. Currents as states

Let the vector x =
[
i>r i>i

]>
collect the real (ir = R(i))

and imaginary components (ii = I(i)) of the nodal current in-
jections i. Then, it can be shown that the sensor measurements
can be expressed with the quadratic form (4). In particular,
after defining xRn := XR en, xIn := XI en, we derive the
following expressions for the:
(1) squared voltage magnitude |vn|2

A1,n =

xRn xRn
>+xIn xIn

> xIn xRn
>−xRn xIn

>

xRn xIn
>−xIn xRn

> xRn xRn
>+xIn xIn

>

 ,
b1,n

> =
[
2xRn

> −2xIn
>], and c1,n = 1;

(2) active power injection pn

A2,n =
1

2

 2 en xRn
> xIn en

>−en xIn
>

en xIn
>−xIn

> en
> 2 en xRn

>

 ,
b2,n

> =
[
en
> 0n

>], and c2,n = 0;
(3) reactive power injection qn

A3,n =
1

2

 2 en xIn
> xRn en

>−en xRn
>

en xRn
>−xRn

> en
> 2 en xIn

>

 ,
b3,n

> =
[
0n
> en

>], and c3,n = 0;
(4) complex current real part (ir)n

A4,n = 0, b4,n
> =

[
en
> 0n

>] , and c4,n = 0;

(5) complex current imaginary part (ii)n

A5,n = 0, b5,n
> =

[
0n
> en

>] , and c5,n = 0;

(6) complex voltage real part (vr)n

A6,n = 0, b6,n
> =

[
xRn

> −xIn
>] , and c6,n = 1;

(7) complex voltage imaginary part (vi)n

A7,n = 0, b7,n
> =

[
xIn
> xRn

>] , and c7,n = 0.

B. Voltages as states

Let the vector x =
[
v>r v>i

]>
collect the real (vr = R(v))

and imaginary components (vi = I(v)) of the nodal voltage
injections v. Similar to the previous subsection, the sensor
measurements can be expressed with the quadratic form (4).
More precisely, we have the following expression for the:
(1) squared voltage magnitude |vn|2

A1,n =

en en
> 0

0 en en
>

 ,
b1,n

> =
[
0n
> 0n

>], and c1,n = 0;
(2) active power injection pn

A2,n =

YR en en
> YI en en

>

−YI en en
> YR en en

>

 ,
b2,n

> =
[
en en

> y0R en en
> y0I

]
, and c2,n = 0;

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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(3) reactive power injection qn

A3,n =

−YI en en
> YR en en

>

−YR en en
> −YI en en

>

 ,
b3,n

> =
[
−en en

> y0I en en
> y0R

]
, and c3,n = 0;

(4) complex current real part (ir)n

A4,n = 0, b4,n
> =

[
en
>YR −en>YI

]
, and c4,n = 0;

(5) complex current imaginary part (ii)n

A5,n = 0, b5,n
> =

[
en
>YI en

>YR

]
, and c5,n = 0;

(6) complex voltage real part (vr)n

A6,n = 0, b6,n
> =

[
en
> 0n

>] , and c6,n = 0;

(7) complex voltage imaginary part (vi)n

A7,n = 0, b7,n
> =

[
0n
> en

>] , and c7,n = 0;

Although the use of nodal voltages as network states is a fairly
standard practice, we advocate the use of nodal currents due to
the enhanced speed of convergence and illustrate this through
simulations.

III. THE STATE ESTIMATOR

In this section, we introduce the state estimator for distri-
bution networks with asynchronous sensors. We recall that the
key objective of the estimation problem is to effectively track
the system states, namely, currents or voltages, using smart
meter data (voltage magnitude, active and reactive power) and
PMU measurements (real and imaginary currents, voltages).
As we observed in the previous section, the sensor data can be
expressed as quadratic functions of either currents or voltages
as state variables. Let the m-th measurement taken at node
n ∈ S be denoted as

ym,n(t) = ỹm,n(t) + ηm,n(t),

with ηm,n(t) as the measurement noise. Let the vector y =
[y>1,1 . . . y

>
m,n]> collect the set of measurements from the

smart meters and the PMUs for all nodes in the network. Then
the standard weighted least squares approach to estimate the
system states x is given by the optimization problem

min
x
f(x) = min

x

∑
n

∑
m

w2
m ‖fm,n(x)‖2, (5)

where fm,n(x) = ym,n − (x>Am,nx+ x>bm,n + cm,n), the
matrices/vectors Am,n, bm,n, and cm,n are the terms from the
quadratic expressions of the measurements presented in the
previous section, and wm is the weight associated with each
measurement. To solve problem (5) at time t, several solutions
have been developed in the literature, e.g., gradient-based
or Newton-Raphson techniques [19]. Typically, the system
operator needs to compute the gradient

∇f(x(t)) =
∑

n∈S(t)

∑
m

−2w2
m fm,n(x(t))(2Am,nx(t)+bm,n).

However, in a setup where the sensors report at different
rates and the network state changes rapidly, there is not
enough information to obtain ∇f(x(t)). Thus, we are unable
to compute the closed-form gradient and apply off-the-shelf
gradient-based algorithms.

Let S(t) be the set of sensors reporting at time t and ϕn

be the reporting frequency of sensor n, i.e., the number of

times it sends measurements to the system operator each hour.
Without loss of generality, we assume that sensor n can report
at most once every minute, or mathematically, that ϕn ≤ 60.
Moreover, let πn = ϕn/60, where we interpret πn as the
probability that sensor n reports measurements to the system
operator. We introduce the vector
∇f̂(x(t)) =∑
n∈S(t)

60

ϕn

(∑
m

−2w2
m fm,n(x(t))(2Am,n x(t) + bm,n)

)
,

which is an approximation of the gradient ∇f(x(t)), built
using only data (and weighted to account for the probability of
availability of measurements) coming from reporting sensors.

Let the state estimate at time t be denoted as x̂(t). We
propose to update the state estimate every time a new set of
measurements become available with the following rule

x̂(t+ 1) = x̂(t)− α∇f̂(x(t)). (6)
where α is a suitable positive constant. The update rule (6)
can be interpreted as a stochastic gradient descent of the cost
in (5). Indeed, resorting to the probabilistic interpretation of
the parameters πns, it is easy to note that
E[∇f̂(x(t))] =∑
n∈S(t)

60πn
ϕn

(∑
m

−2w2
m fm,n(x(t))(2Am,n x(t) + bm,n)

)
,

= ∇f(x(t)).

In case the state of the network is fixed, i.e., x(t) ≡ x̄
for a certain x̄, algorithm (6) inherits the convergence prop-
erties of the stochastic gradient descent [20]: it does not
necessarily converge to the true optimal solution and, under
certain conditions on the parameters, only convergence to
a norm-ball around the true optimizer can be guaranteed.
However, for time-varying system states, a theoretical stability
characterization of the algorithm is still a challenging problem
and has been numerically shown in the next section.

IV. SIMULATION RESULTS

We consider the IEEE-37 bus distribution test feeder shown
in Figure 1 for the dynamic SE problem discussed in the
previous sections. The buses in the network host two types
of measurement devices: (a) smart meters measuring active,
reactive power, voltage magnitude, and (b) Phasor Measure-
ment Units (PMUs) measuring currents, voltage magnitude,
and voltage angle.

A. A gradient approach for traditional state estimation.

Here, we considered a classic SE problem in which the
information/data available is sufficient to build an estimate
of the system state, or in other words, the distribution grid
is observable. More precisely, we assume that measurements
from all the sensors are available and hence, problem (5)
admits a local solution. After initializing the optimization from
a flat voltage profile, a local minimum is found through the
standard gradient descent scheme. Notice that here we are
considering a traditional SE framework in which the goal
is to numerically solve the problem defined in (5) rather

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Fig. 10. The IEEE 37-bus feeder.

measurements. In general, the WLS algorithm assumes that there are enough measurements at each timestep for

the problem to be over-determined, but this is not necessarily true for asynchronous measurements. Thus, the WLS

algorithm was modified by concatenating the current timestep’s measurements with the previous 60 minutes of

outdated past measurements, keeping only the most recent one if a measurement appears more than once, to create

full set. In a sense, we are treating the outdated past measurements as pseudo-measurements for state estimation.

The state estimation algorithms are tested on 250 Monte Carlo simulations. Since every sensor reports its

measurement at least once every hour and state estimation is performed every minute, we have τ ≤ 60. Although

our approach relies on the approximate grid model of (39), voltages were calculated using the full ac grid model

throughout our tests.

First, the DASE’s performance for different values of γ is studied. Figure 11 shows the average state estimation

error among the Monte Carlo simulations under various settings of the inertia parameter γ. Here, γ∗ minimizes the

RHS of equation (38), whereas γ+, experimentally found, is the value that gives the minimum estimation error.

Second, we show how the DASE compares with the adopted WLS. Figure 12 reports the average relative estimation

error in the power injections among the Monte Carlo runs. It can be seen that the WLS is very inaccurate for the first

60 minutes before stabilizing to a more accurate level since it has not experienced enough measurements to have

system observability. Since the goal of state estimation in power systems is usually to infer the system voltages,

Figure 13 reports the average relative error in voltage estimation over time. Notably, the DASE outperforms the

WLS. Finally, Figure 14 shows the tracking of the real power injection for one phase at bus 23.

In general, the behavior is similar to the one described in Section VI: the estimate results jumpy from its sensitivity

to the measurement error or not very responsive in tracking the true state when γ is smaller or γ is bigger than the

optimal parameter, respectively.

VIII. CONCLUSION

We have proposed a dynamic state estimation algorithm for systems with heterogeneous sensors. The estimator

has a recursive expression in which the new estimate is found as a function of the previous estimate and of the

June 2, 2020 DRAFT

Fig. 1. IEEE-37 network indicating the location of smart meters and PMUs.
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Fig. 2. Relative norm of the estimation error for voltage tracking when
initialized around the flat voltage profile.

than tracking the state over time. Even though traditional
approaches for solving problem (5) rely on more efficient
algorithms, e.g., Newton-Raphson techniques, we believe it
is interesting to report the convergence rate of the gradi-
ent scheme. When voltages are considered as the network
states, Figure 2 illustrates the relative norm estimation error
‖v − v?‖/‖v?‖, as a function of number of iterations. (Note
that the step-size α is numerically optimized for superior
convergence). On the other hand, Figure 3 demonstrates the
case with the nodal currents as the network states and plots
the relative norm estimation error ‖i− i?‖/‖i?‖. Notably, the
convergence to the solution of (5) is in general much faster
in the second case. Finally, in Figure 4, the relative norm
estimation error for voltages is plotted for the two cases, i.e.,
Figure 2 is overlaid with voltages derived from current profiles
in Figure 3. This observation highlights that currents, rather
than voltages, should be considered as the network states in
the dynamic SE setting described in this paper.

B. Dynamic state estimation
Due to the faster convergence for estimation of currents as

discussed above, for the scenario with limited measurement in-
formation at asynchronous rates, we investigate current track-
ing. To this end, we consider a varying power injection with
updates every minute. To compute the statistics of this load
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Fig. 3. Relative norm of the estimation error (log scale) for current tracking
when initialized around the flat voltage profile.
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Fig. 4. Relative norm of the estimation error for voltages, when using
voltages/currents as states and initialized around the flat voltage profile.

variation (represented by σP and σQ), we used the 15 minute
rolling-horizon data from [21] and obtained a relative standard
deviation of 0.05%. The sensors reporting at different rates
are affected by measurement noise such that, (a) smart meters
provide measurements once every 15 minutes and introduce
noise that is modeled as a zero-mean Gaussian random vari-
able with a relative standard deviation σSM = 0.5%, (b) PMUs
provide measurements every minute and introduce noise that
is modeled as a zero-mean Gaussian random variable with a
relative standard deviation σPMU = 0.05%, i.e., we have

p(t+ 1) =(p(t) + σP · pnom · ζ) (1 + σSM · λ),

q(t+ 1) =(q(t) + σQ · qnom · ζ) (1 + σSM · λ),

where ζ, λ are random scalars drawn from normal distribution
and pnom, qnom are the nominal active, reactive power vectors.

We used the Stochastic Gradient Descent approach pre-
viously described to for estimate the nodal currents in the
network. In Figure 5, we consider a weighted estimation
problem for varying α with a ratio wPMU :wSM=10 : 12 and
with measurements corrupted by white noise as above. Fur-
thermore, to account for the asynchronicity in reporting, the
terms associated with the smart meters are scaled by a factor
of 15 (as they provide scarce measurements, compared to
the minute-scale resolution of PMUs). Recall from our pre-
vious discussion that the data is weighted with an inversely

2wSM corresponds to m=1, 2, 3, and wPMU to m=4, 5, 6, 7

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Fig. 6. Relative norm of the estimation error for voltages corresponding to
the currents in Figure 5 for α = 0.005, α = 0.01.

proportional factor, 1/πn to account for the probability that
measurements at n ∈ S(t) are available at iteration t.

In Figure 6, we reconsider the weighed estimation problem
for nodal currents as in Figure 5 and compute the nodal
voltages in the network from the estimated currents using
the power flow relation (2). Note that the relative error for
voltages is of the order 10−2 even under load variation and
measurement noise, thus highlighting the effective tracking
performance of our proposed algorithm.

V. CONCLUSIONS

In this paper, we investigated a dynamic SE problem for
systems with heterogeneous sensors and multiple sampling,
reporting rates. We considered two scenarios: one in which
full measurement data was available; one with partial data
availability from sensors. The gradient of the SE problem’s
cost could be computed in the first scenario but not in
the second, preventing the use of classical gradient descent
algorithms. Hence, we proposed an SGD-like algorithm to
estimate the system states. Furthermore, we observed that
estimating currents (both real and imaginary) resulted in a
faster convergence rate than with voltages as states. Finally,
we demonstrated our algorithm on the IEEE-37 distribution

test bed with real-world load-variation statistics data and
white noise-corrupted measurements, thereby highlighting the
efficacy of our non-linear estimation approach in terms of
tracking performance and the relative norm estimation error.
As future work, we plan to theoretically characterize the
algorithmic stability for time-varying system states.
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