

Ryan France

Outline

- Materials Science
 - Quantum well cell: optical thickness
 - GaInP top cell : point defect annihilation
 - Metamorphic GalnAs : dislocation glide
- Device integration & results
 - 2-junction cell
 - 3-junction cell
- Applications
 - Radiation data
 - Other uses

3-junction inverted metamorphic multijunction (IMM)

Optimal III-V materials for incident spectrum

- Lattice-matched, high-performance
- High efficiency despite not having optimal bandgaps
- Ge is indirect, has low bandgap

NREL | 5

Standard Ge-based

Inverted Metamorphic

QW + metamorphic

Lower bandgap middle cell is better, but competes with high-quality GaAs

Standard Ge-based Inverted Metamorphic

QW + metamorphic

- Pseudomorphic compressive Ga_{0.9}In_{0.1}As, thinner than the critical thickness
- Stress-balance with tensile GaAs_{0.9}P_{0.1}
- Optimal 3J bandgap combination

Quantum-well Solar Cells

Quantum-well solar cell background

Quantum efficiency 80 70 subsequent work S.B. GaAsP/InGaAs 20 MQW early work 900 100 Wavelength/nm Ekins-Daukes et al., APL 75, 4195 (1999)

Initial quantum well solar cell work:

- -Wanlass and Blakeslee, 1982
- -Chaffin, Osbourn, Dawson, Biefeld, 1989
- -Barnham, 1990, many works from Imperial College

QW solar cell commercialization:

-Tibbits et al, 2008, Brown et al, 2013

Challenges with QW solar cells

Materials challenges

- Strain-balancing
- Interfacial layers
- Strained-surface control

Wafer curvature

MQW solar cell

Challenges with QW solar cells

Materials challenges

- Strain-balancing
- **Interfacial layers**
- Strained-surface control

TEM of QW solar cell

High mag. imaging shows good interfaces

Transmission Electron Microscopy

high magnification

GaAsP GalnAs

Challenges with QW solar cells

Materials challenges

- Strain-balancing
- Interfacial layers
- Strained-surface control

Transmission Electron Microscopy

low magnification

"Self-organized growth of alloy superlattices" P. Venezuela et al, Nature, **397**, 678 (1999).

Material quality in QWs

MQW solar cell with high GalnAs AsH₃ partial pressure

- Eg = 1.34 eV
- Voc > 1.02 V

Growth conditions limit surface segregation, improves solar cell performance

Optically-thick QW devices

Sub-bandgap Jsc increase up to:

2.8 mA/cm² AM1.5G

 $3.6 \text{ mA/cm}^2 \text{ AMO}$

High performance QW devices

- Jsc increase wrt GaAs of 2.5 mA/cm² AM1.5G and 3.1 mA/cm² AM0
- Max 1J QW efficiency of 27.5% AM1.5G and 23.9% AM0
- Other work: thin GaAsP barriers, doped QWs, DBRs

Demonstrated optically-thick QW device with excellent performance

GaInP top cell

GalnP top cell structure: rear vs front junction

Rear Heterojunction (RHJ)

- voltage is excellent
- diffusion length is limited
- poor post-radiation performance

Front homojunction (FJ)

- voltage is low
- diffusion length is good
- good post-radiation performance

High performance GaInP:Zn by annealing

AlGaAs cont. layer

Au contact

defects that annihilate native defects

Hypothesis: point defect passivation

- Se dopant
- Zn dopant
- Defect X
- O Defect Y

Growth direction

Dopant or defect

concentration

- 1. Zn doping introduces a point defect X into the GaInP base
- 2. The TJ injects a complementary point defect Y
- 3. After anneal, defect Y passivates defect X

Examples:
$$X = V_Ga$$
, $Y = i_Ga$
 $X = i_Zn$, $Y = V_Ga$

Hypothesis: point defect passivation

- Se dopant
- Zn dopant
- Defect X
- O Defect Y

Growth direction

Dopant or defect

concentration

- 1. Zn doping introduces a point defect X into the GaInP base
- 2. The TJ injects a complementary point defect Y
- 3. After anneal, defect Y passivates defect X

Examples:
$$X = V_Ga$$
, $Y = i_Ga$
 $X = i_Zn$, $Y = V_Ga$

Hypothesis: point defect passivation

- Se dopant
- Zn dopant
- Defect X
 - O Defect Y

Growth direction

Dopant or defect

concentration

- 1. Zn doping introduces a point defect X into the GaInP base
- 2. The TJ injects a complementary point defect Y
- 3. After anneal, defect Y passivates defect X

Examples:
$$X = V_Ga$$
, $Y = i_Ga$
 $X = i_Zn$, $Y = V_Ga$

Metamorphic bottom cell

Metamorphic Material

- Intentionally introduce dislocations to alter in-plane lattice constant
- Need to minimize threading dislocation density for performance
- Maximize dislocation glide

Metamorphic GalnAs cell performance

Graded buffers can be used for lattice-mismatched GaInAs subcells with collection spanning large portion of solar spectrum

Used in 3J

Multijunction cell results

Two-Junction GaInP/GaAs+MQW cells

2J structure

1.9-eV GaInP

1.34-eV QW cell

184 GaInAs wells

RECORD RESULTS

AM1.5G IV data

Voc = 2.51 V

FF = 87.3 %

 $Jsc = 15.0 \text{ mA/cm}^2$

AM1.5G Efficiency = 32.9%

AMO Efficiency = 29.2%

3-junction cell results: subcell analysis

Woc = E_g/q - Voc : GaInP = 0.41 V / GaAs-QW = 0.35 V / LMM GaInAs = 0.35 V

Record 3-Junction GaInP / GaAs+MQW / GaInAs cells

- 184 GaInAs wells
- 1560 nm GalnAs
- No DBR behind QWs

AM1.5G efficiency = 39.5% AM0 efficiency = 34.2%

France *et al.*, Joule, 6, 1121, (2022)

NREL

GaInP/mqw-GaAs/GaInAs Cell

Device temperature: 24.2 ± 0.2 °C

Device area: $0.242 \text{ cm}^2 \pm 0.1\%$

Device ID: MT845An4

4:38 PM 9/23/2021

Green et al., Prog. Photovolt., 30, 3, (2022)

Radiation data: single junction QW cell

Structure

- Front junction
 QW cell
- p-i-n

- Voltage loss due to large depletion region
- EOL Woc of p-i-n QW cell is the same as a comparable p-i-n GaAs cell

AM1.5g	BOL	EOL	Retention
Jsc (mA/cm ²)	22.5	22.5	1.0
Voc (V)	0.948	0.793	0.84
FF (%)	79.7	75.0	0.94

Radiation data: dual junction cells

2J Structure

EOL subcell Jscs:

J1: 11.5 mA/cm²

J2: 12.0 mA/cm²

- Overdriven QW cell prevents FF loss
- Over 90% power retention after 5e14 1MeV e-
- Predicted AM0 EOL efficiency : >24%
 - Adapted to AM0 spectrum with ARC

AM1.5g	Pre-rad	Post-rad	Retention
Jsc (mA/cm²)	11.28	11.45	1.01
Voc (V)	2.319	2.088	0.90
FF (%)	83.8	83.1	0.99
Eff (%)	21.9	19.9	0.91

III-V applications

- Area-constrained applications, concentrators
- Space PV: Low-radiation, and potentially higher radiation
- Other uses of bandgap modification

III-V applications

nature

Article

Thermophotovoltaic efficiency of 40%

Alina LaPotin¹, Kevin L. Schulte², Myles A. Steiner², Kyle Buznitsky¹, Colin C. Kelsall¹, Daniel J. Friedman², Eric J. Tervo², Ryan M. France², Michelle R. Young², Andrew Rohskopf¹, Shomik Verma¹, Evelyn N. Wang¹ & Asegun Henry^{1⊠}

Sustainable Energy & Fuels

Photoelectrochemical water splitting using strainbalanced multiple quantum well photovoltaic cells†

Conclusions

QW solar cell

- excellent voltage
- optically thick

Record 2J and 3J solar cells

optimal bandgap combination

2-junction cell efficiency

AM1.5G = **32.9%**

AM0 = 29.2%

3-junction cell efficiency

AM1.5G = **39.5%**

AM0 = 34.2%

Bandgap Voltage offset (Woc = E_g/q - Voc) GaInP = 0.41 V GaAs-QW = 0.35 V LMM GaInAs = 0.35 V

Acknowledgements

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

NREL

- Myles Steiner
- Dan Friedman
- John Geisz
- Tao Song
- Jeronimo Buencuerpo
- Meadow Bradsby
- Harvey Guthrey
- Matt Young
- Michelle Young
- Waldo Olavarria
- Alan Kibbler

External

- Manuel Hinojosa (UPM)
- Jennifer Selvidge (UCSB)
- Kunal Mukherjee (Stanford)
- Ned Ekins-Daukes (UNSW)
- SolAero Technologies
- MicroLink Devices

U.S. Department of Energy Energy Efficiency & Renewable Energy

Solar Energy Technologies
Office

Thank you!

Ryan.France@nrel.gov

