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Outline

J1

J2

J3

3-junction inverted metamorphic 
multijunction (IMM)

• Materials Science
• Quantum well cell : optical thickness
• GaInP top cell : point defect annihilation
• Metamorphic GaInAs : dislocation glide

• Device integration & results
• 2-junction cell
• 3-junction cell

• Applications
• Radiation data
• Other uses
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Optimal III-V materials for incident spectrum

3J optimal bandgaps



NREL    |    4

3-junction solar cell approaches
Standard Ge-based
Inverted Metamorphic
QW + metamorphic

• Lattice-matched, high-performance
• High efficiency despite not having 

optimal bandgaps
• Ge is indirect, has low bandgap
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3-junction solar cell approaches
Standard Ge-based
Inverted Metamorphic
QW + metamorphic

• More optimal bandgap combination
• Record efficiency 3J, 37.9% AM1.5G

Dislocations 
within 
graded 
buffer

TEM

Low- dislocation 
density active material
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3-junction solar cell approaches
Standard Ge-based
Inverted Metamorphic
QW + metamorphic

GaAs 
bandgap

GaInP/
GaAs

• Lower bandgap middle cell is better, 
but competes with high-quality GaAs
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3-junction solar cell approaches
Standard Ge-based
Inverted Metamorphic
QW + metamorphic

• Pseudomorphic compressive Ga0.9In0.1As, 
thinner than the critical thickness

• Stress-balance with tensile GaAs0.9P0.1

• Optimal 3J bandgap combination

~10nm



Quantum-well Solar Cells
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Quantum-well solar cell background

Sayed and Bedair, JPV 9, 402 (2019)

Thermionic 
emission out of 
wells

Tunneling 
through the 
barriers

Quantum efficiency

Ekins-Daukes et al., APL 75, 4195 (1999)

Transport is dominated by drift in the 
electric field, rather than diffusion.

Initial quantum well solar cell work: 
-Wanlass and Blakeslee, 1982
-Chaffin, Osbourn, Dawson, Biefeld, 1989
-Barnham, 1990, many works from Imperial College
QW solar cell commercialization:
-Tibbits et al, 2008, Brown et al, 2013 

early 
work

subsequent 
work
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Challenges with QW solar cells
Materials challenges

• Strain-balancing 
• Interfacial layers
• Strained-surface control

MQW solar cell

Wafer curvature
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Challenges with QW solar cells
Materials challenges

• Strain-balancing
• Interfacial layers
• Strained-surface control

Transmission Electron Microscopy
high magnification

BF STEM performed by J. Selvidge, UCSB

GaInAs

TEM of QW solar cell 
• High mag. imaging shows 

good interfaces

GaAsP

GaInAs
GaAsP
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Challenges with QW solar cells
Materials challenges

• Strain-balancing
• Interfacial layers
• Strained-surface control

Transmission Electron Microscopy
low magnification

Phase separation 
dislocations 

stacking faults

Flat quantum wells

Rippled quantum wells

Progressive step-
bunching 

“Self-organized growth of alloy superlattices”
P. Venezuela et al, Nature, 397, 678 (1999).
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Material quality in QWs
MQW solar cell with high GaInAs AsH3 partial pressure

Growth 
direction

• Eg = 1.34 eV
• Voc > 1.02 V

Growth conditions limit surface segregation, 
improves solar cell performance

Stable ripples
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GaAs 
band-
edge

Variable i-region thickness

Optically-thick QW devices

Sub-bandgap Jsc increase up to: 
2.8 mA/cm2 AM1.5G
3.6 mA/cm2 AM0



NREL    |    15

High performance QW devices
• Jsc increase wrt GaAs of 2.5 mA/cm2 AM1.5G and 3.1 mA/cm2 AM0
• Max 1J QW efficiency of 27.5% AM1.5G and 23.9% AM0
• Other work: thin GaAsP barriers, doped QWs, DBRs

GaAs QWs

Demonstrated optically-thick QW device 
with excellent performance



GaInP top cell
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GaInP top cell structure: rear vs front junction
Rear Heterojunction (RHJ)
• voltage is excellent
• diffusion length is limited
• poor post-radiation performance

RHJ vs FJ after 1 MeV e- radiation

Front homojunction (FJ)
• voltage is low
• diffusion length is good
• good post-radiation performance

n-AlInP

n-GaInP

p-AlGaInP

n-AlInP
n-GaInP

p-AlGaInP

p-GaInP
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High performance GaInP:Zn by annealing
Inverted GaInP solar cells

Vary presence of TJ

Vary anneal temp. 
and time

Etched 
after 
growth

• 19.8% AM1.5G efficiency front-junction 
GaInP (w/out rear reflector)

• Theory: TJ introduces complementary point 
defects that annihilate native defects

Diffusion length 
increase to 8 𝜇𝜇m

Voc gain ~100mV
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Hypothesis: point defect passivation

1. Zn doping introduces a point defect X into the GaInP base
2. The TJ injects a complementary point defect Y
3. After anneal, defect Y passivates defect X 

Examples: X = V_Ga, Y = i_Ga
X = i_Zn,   Y = V_Ga

Growth direction

Dopant or defect
concentration Se dopant

Zn dopant
Defect X
Defect Y
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Metamorphic bottom cell
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Metamorphic Material

• Intentionally introduce dislocations to alter 
in-plane lattice constant

• Need to minimize threading dislocation 
density for performance

• Maximize dislocation glide

Misfit
(relieves
strain)

thread
(bad)

Defects 
impede glide 
and thread 
annihilation

Strained 
GaInP layer

Substrate
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Woc = Eg - Voc

Metamorphic GaInAs cell performance

Bandgap (eV):      1.2, 1.1, 1.0, 0.9, 0.8, 0.74, 0.70

Graded buffers can be used for lattice-mismatched GaInAs subcells 
with collection spanning large portion of solar spectrum Used in 3J



Multijunction cell results
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RECORD RESULTS
AM1.5G IV data
Voc = 2.51 V
FF = 87.3 %
Jsc = 15.0 mA/cm2

AM1.5G Efficiency = 32.9%

AM0  Efficiency = 29.2%

Two-Junction GaInP/GaAs+MQW cells

1.9-eV GaInP

2J structure

1.34-eV QW cell

• 184 GaInAs wells
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3-junction cell results: subcell analysis

Woc = Eg/q - Voc : GaInP =  0.41 V  / GaAs-QW = 0.35 V  / LMM GaInAs = 0.35 V

global
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Record 3-Junction GaInP / GaAs+MQW / GaInAs cells

New world record! 
France et al., Joule, 6, 1121, (2022)

1.9-eV GaInP

3J structure

1.34-eV QW

• 184 GaInAs wells
• 1560 nm GaInAs
• No DBR behind QWs

0.9-eV GaInAs

Graded buffer

AM1.5G efficiency = 39.5%
AM0 efficiency = 34.2%

Green et al., Prog. Photovolt., 30, 3, (2022)
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Radiation data: single junction QW cell
Structure
• Front junction 

QW cell
• p-i-n 

n-AlInP

p-GaAs

GaAsP
InGaAs

Au AM1.5g BOL EOL Retention

Jsc (mA/cm2) 22.5 22.5 1.0

Voc (V) 0.948 0.793 0.84

FF (%) 79.7 75.0 0.94

• Voltage loss due to large depletion region
• EOL Woc of p-i-n QW cell is the same as a 

comparable p-i-n GaAs cell

BOL            EOL              1MeV 5e14 e- radiation

AM1.5gNo ARC
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Radiation data: dual junction cells
2J Structure

AM1.5g Pre-rad Post-rad Retention

Jsc (mA/cm2) 11.28 11.45 1.01

Voc (V) 2.319 2.088 0.90

FF (%) 83.8 83.1 0.99

Eff (%) 21.9 19.9 0.91

• Overdriven QW cell prevents FF loss
• Over 90% power retention after 5e14 1MeV e-

• Predicted AM0 EOL efficiency : >24%
• Adapted to AM0 spectrum with ARC

BOL            EOL              1MeV 5e14 e- radiation

1.9-eV GaInP

1.34-eV 
GaInAs/GaAsP

2.2 µm GaInP

2 µm QWs + 
2 µm GaAs

EOL subcell Jscs:
J1: 11.5 mA/cm2

J2: 12.0 mA/cm2

AM1.5gNo ARC
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III-V applications

III-V cells grown on GaAs

GaAs
QW cell

metamorphic

• Area-constrained applications, concentrators
• Space PV: Low-radiation, and potentially higher radiation
• Other uses of bandgap modification

3J optimal bandgaps
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III-V applications

III-V cells grown on GaAs

GaAs
QW cell

metamorphic

3J optimal bandgaps
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Conclusions

QW solar cell
• excellent voltage
• optically thick

Record 2J and 3J solar cells
• optimal bandgap combination

3-junction cell efficiency
AM1.5G = 39.5%
AM0 = 34.2%

2-junction cell efficiency
AM1.5G = 32.9%
AM0 = 29.2%

Bandgap Voltage offset
(Woc =  Eg/q - Voc ) 
GaInP =  0.41 V
GaAs-QW = 0.35 V 
LMM GaInAs = 0.35 V
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