

Triple-Junction III-V Solar Cells with 39.5% AM1.5G and 34.2% AM0 Efficiencies

Ryan France

Outline

- Materials Science
	- Quantum well cell : optical thickness
	- GaInP top cell : point defect annihilation
	- Metamorphic GaInAs : dislocation glide
- Device integration & results
	- 2-junction cell
	- 3-junction cell
- **Applications**
	- Radiation data
	- Other uses

3-junction inverted metamorphic multijunction (IMM)

Optimal III-V materials for incident spectrum

Standard Ge-based

Inverted Metamorphic QW + metamorphic

- Lattice-matched, high-performance
- High efficiency despite not having optimal bandgaps
- Ge is indirect, has low bandgap

Standard Ge-based

- Inverted Metamorphic QW + metamorphic
- Lower bandgap middle cell is better, but competes with high-quality GaAs

Standard Ge-based Inverted Metamorphic

- Pseudomorphic compressive $Ga_{0.9}ln_{0.1}As$, thinner than the critical thickness
- Stress-balance with tensile GaAs_{0.9}P_{0.1}
- Optimal 3J bandgap combination

Quantum-well Solar Cells

Quantum-well solar cell background

Challenges with QW solar cells

Materials challenges

- **Strain-balancing**
- Interfacial layers
- Strained-surface control

Wafer curvature

MQW solar cell

Challenges with QW solar cells

Materials challenges

- Strain-balancing
- **Interfacial layers**
- Strained-surface control

TEM of QW solar cell

• High mag. imaging shows good interfaces

GaInAs GaAsP GaInAs GaAsP

Transmission Electron Microscopy

high magnification

BF STEM performed by J. Selvidge, UCSB

Challenges with QW solar cells

Materials challenges

- Strain-balancing
- Interfacial layers
- **Strained-surface control**

Transmission Electron Microscopy low magnification

 $\frac{1}{2}$

"Self-organized growth of alloy superlattices" P. Venezuela et al, Nature, **397**, 678 (1999).

Material quality in QWs

MQW solar cell with **high** GaInAs AsH₃ partial pressure

 $Eg = 1.34$ eV

 $Voc > 1.02$ V

Growth conditions limit surface segregation, improves solar cell performance

Optically-thick QW devices

High performance QW devices

- Jsc increase wrt GaAs of 2.5 mA/cm² AM1.5G and 3.1 mA/cm² AM0
- Max 1J QW efficiency of 27.5% AM1.5G and 23.9% AM0
- Other work: thin GaAsP barriers, doped QWs, DBRs

Demonstrated optically-thick QW device with excellent performance

GaInP top cell

GaInP top cell structure: rear vs front junction

Rear Heterojunction (RHJ)

- voltage is excellent
- diffusion length is limited
- poor post-radiation performance

Front homojunction (FJ)

- voltage is low
- diffusion length is good
- good post-radiation performance

High performance GaInP:Zn by annealing

Hypothesis: point defect passivation

Hypothesis: point defect passivation

3. After anneal, defect Y passivates defect X

Examples: $X = V$ Ga, $Y = i$ Ga $X = i$ Zn, Y = V Ga

Hypothesis: point defect passivation

- 2. The TJ injects a complementary point defect Y
- 3. After anneal, defect Y passivates defect X

Examples:
$$
X = V_Ga
$$
, $Y = i_Ga$
 $X = i_Zn$, $Y = V_Ga$

Metamorphic bottom cell

Metamorphic Material

- Intentionally introduce dislocations to alter in-plane lattice constant
- Need to minimize threading dislocation density for performance
- *Maximize dislocation glide*

Metamorphic GaInAs cell performance

with collection spanning large portion of solar spectrum Used in 3J

Multijunction cell results

Two-Junction GaInP/GaAs+MQW cells

2J structure

• 184 GaInAs wells

RECORD RESULTS

AM1.5G IV data $Voc = 2.51 V$ $FF = 87.3 %$ $Jsc = 15.0$ mA/cm²

AM1.5G Efficiency = 32.9%

AM0 Efficiency = 29.2%

3-junction cell results: subcell analysis

Woc = E_g/q - Voc : GaInP = 0.41 V / GaAs-QW = 0.35 V / LMM GaInAs = 0.35 V

Record 3-Junction GaInP / GaAs+MQW / GaInAs cells

France *et al.*, Joule, 6, 1121, (2022)

Green *et al.*, Prog. Photovolt., 30, 3, (2022)

New world record!

MT845

MT9

စ္တ

Radiation data: single junction QW cell

comparable p-i-n GaAs cell

FF (%) 79.7 75.0 0.94

Radiation data: dual junction cells

- Overdriven QW cell prevents FF loss
- Over 90% power retention after 5e14 1MeV e-
- Predicted AM0 EOL efficiency : >24%
	- Adapted to AM0 spectrum with ARC

III-V applications

- Area-constrained applications, concentrators
- Space PV: Low-radiation, and potentially higher radiation
- Other uses of bandgap modification

III-V applications

nature

Article

Thermophotovoltaic efficiency of 40%

Alina LaPotin¹, Kevin L. Schulte², Myles A. Steiner², Kyle Buznitsky¹, Colin C. Kelsall¹, Daniel J. Friedman², Eric J. Tervo², Ryan M. France², Michelle R. Young², Andrew Rohskopf¹, Shomik Verma¹, Evelyn N. Wang¹ & Asegun Henry^{1 \boxtimes}

Sustainable Energy & Fuels

Photoelectrochemical water splitting using strainbalanced multiple quantum well photovoltaic cells[†]

Myles A. Steiner, ^Dª Collin D. Barraugh,^a Chase W. Aldridge, D^a Isabel Barraza Alvarez,^a Daniel J. Friedman, D^a Nicholas J. Ekins-Daukes,^b Todd G. Deutsch^a and James L. Young^{*a}

Conclusions

QW solar cell

- excellent voltage
- optically thick

Record 2J and 3J solar cells

• optimal bandgap combination

2-junction cell efficiency AM1.5G = **32.9%** AM0 = **29.2%**

3-junction cell efficiency AM1.5G = **39.5%** AM0 = **34.2%**

Acknowledgements

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Thank you!

Ryan.France@nrel.gov

NREL

- Myles Steiner
- Dan Friedman
- John Geisz
- Tao Song
- Jeronimo Buencuerpo
- Meadow Bradsby
- Harvey Guthrey
- Matt Young
- Michelle Young
- Waldo Olavarria
- Alan Kibbler

External

NREL/PR-5900-82374

- Manuel Hinojosa (UPM)
- Jennifer Selvidge (UCSB)
- Kunal Mukherjee (Stanford)
- Ned Ekins-Daukes (UNSW)
- SolAero Technologies
- MicroLink Devices

U.S. Department of Energy Energy Efficiency & Renewable Energy

Solar Energy Technologies **Office**

U.S. Department of Energy

SunShot